
 

 

Point cloud densification via symmetry 

Yu Wei 

Faculty of Computer Science, Harbin Institute of Technology, Harbin, China 

 

ywei.binary@gmail.com 

Abstract. Three-dimensional objects are usually represented by point cloud based on lidar 

reflection of the sensors. However, the point clouds are commonly sparse since the lidar 

reflection is restricted by the location where the machine scans the objects around it. 

Commonly, the point cloud data that we use in autonomous driving are basically concentrated 

on one side or two sides and can seldom depict the whole image of all the objects. In this paper, 

we propose methods based on symmetry to diminish this intrinsic problem. Our work uses 

CenterPoint as our backbone and we do some fine-tune on it to make the data augmented. 

Moreover, we use FutureDet as the detector and the predictor to see whether the results of the 

methods fit the design. We obtain the information of CenterPoint from the detector and use the 

position information of the center point to do symmetry so as to make the points exist on the 

other side. We are trying to address the issue by comparing the results of metrics from the 

FutureDet and the fine-tune model on nuScenes dataset. 

Keywords: computer vision, 3D detection, point cloud, data augmentation. 

1.  Introduction 
Object detection is what we use everyday through all kinds of devices. With the development of 

technology, 2D image detection becomes more and more mature. Many methods can do this job 

quickly and perfectly such as Yolo, Faster-RCNN and so on. However, these methods cannot meet our 

needs since we live in a 3D world. Strong 3D perception is an indispensable ingredient in many scenes 

of our real lives like autonomous diving [1]. Compared to 2D detection which is based on images, 3D 

detection mostly uses point cloud data as the input. However, this kind of data has some inherent 

issues. One of them is sparsity. Most regions of objects are not measured by the sensor and the points 

are on the surface of the objects assembling on the sides facing the lidar machine. In order to improve 

the performance of detection model and get more deep feature of the object, in this paper, we try to 

propose a new method using the thought of data augmentation to reduce sparse distribution of the 

point cloud data. Data augmentation is a useful and pragmatic technique that is common in all kinds of 

enhancement of the model, which can increases the amount of data and can remove the particularity of 

the data [2]. Thus, it seems necessary to propose a new data augmentation method to address the 

sparsity problem. 

Flipping, rotation, clipping, adding noise [3,4] can both increase the amount of the date and 

diversify the variety of dataset so as to improve the generalization of the data and make the model 

robust when it meets all kinds of different situation. Nowadays, these operations are quite common in 

the data processing [5] which happens before training and inference. Thus, in our humble opinion, 
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when we deal with point cloud data, the same operations which we do on 2D images can also be used. 

our target is trying to use data augmentation to alleviate the problem of sparsity. We try to use data 

augmentation to get more features of the object [6], since most of the features are extracted from the 

point cloud accumulated on the surface of one side. More information of the object is needed [8] such 

as the points in the inner of the object and the points on the other side of the objects which fail to be 

detected by the sensor. To some extent, such data augmentation can improve the performance of the 

original model empirically [7]. 

In this paper, we propose a new point cloud augmentation method which use center symmetry to go 

deep into the objects to get more features. Our backbone model output heatmaps and centers that can 

depict the information of predicted trajectory and the rough location. Based on our methods, we do 

symmetry by using the centers’ features which will augment the amount of the points in or on the 

surface of objects. More features can help regress more precise bounding box in the detection task.  

To regress a better bounding box for the object, we cannot only use the first frame’s data to do the 

symmetry. Points from different frames are mapped together to reduce the excessive dependence on 

the results of first frame. However, different points from different frames come from different moment. 

In order to map them together, we do the operation with the help of speed which can also get from the 

information of center points when we run forecasting of the model [9,10]. After we acquiring all of 

these center point features, we can compute bounding box by using our symmetry methods. 

We try to test our proposed data augment strategy on nuScenes dataset and since the restriction of 

our resource, we only pay attention to the most important sub-type data in autonomous driving which 

is the vehicles. 

2.  Related work 

2.1.  Center-based network 

Different from anchor-based network relying on massive number of anchors to search on the image, 

center-based net work is an anchor-free detecting network. It is faster and more accurate than the 

traditional anchor-based network like faster-RCNN [11]. Most of the well-known object detection 

networks describe the target as a bounding box, and then give each bounding box a corresponding 

category, which generally comes with the disadvantages of inefficient operation and additional 

post-processing. In this case, the center-based network uses the center point to describe the target, and 

then returns to different target attributes (such as: size, 3D position, orientation, and attitude) 

according to the task, and this is Centernet [12]. Compared with the traditional object detection 

network can only do the two-dimensional object detection of the target, Centernet only needs to make 

simple modifications to adapt to the two-dimensional object detection, three-dimensional object 

detection and key point detection and other tasks, and has a good performance in detection efficiency 

and accuracy. 

2.2.  Data augmentation 

Data augmentation is really important to some tasks since data amount can always influence the 

performance of one model. When we talk about 2D data augmentation, traditional ways [13] like 

flipping, symmetry, rotation, and mosaic are really common. These can be used in all kinds of tasks to 

increase the amount and the diversity of data and alleviate the problem of overfitting. However, in 3D 

point cloud world, thing become more difficult. It is not only because that the point cloud is more 

complicated on the data organization, but also because it is separate in the 3D space. As a result, when 

you try to make more points, the depth and location of every points can influence our operation. The 

traditional methods may also be useful under some certain circumstance. We still need to propose new 

methods. For example, in the recent work “Multimodal Virtual Point 3D Detection” [14], the authors 

successfully use 2D RGB images to create virtual 3D points. With the help of depth information, the 

method can generate 3D-point cloud near the target objects. 
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2.3.  Object detection  

The 2D object detection is mature, and the representative works include 2 categories: The first 

category is Faster-RCNN, Mask-RCNN and so on, which use RPN structure. The second category is 

one shot model like YOLOv1-YOLOv3. 3D object detection has spewed since 2019. The task’s target 

is to regress three dimensional bounding boxes of the objects which need to be detected [15-19]. 

Different from 2D detectors, we ask more information from 3D detectors including three more angles 

of each axis and the size of one extra dimension. It is also complicated because of the complex 

environment of the real world. Thus, 3D object detection is an important and tough task. In this field 

some excellent works have been done recently. We usually divide these methods into two large 

categories: one-stage method and two-stage method. The one-stage method performs object detection 

by directly regressing the class label and position coordinates of the object, while the two-stage 

method has two steps, first the algorithm predicts a series of 3D candidate boxes, and then further 

sample classification. In the paper CenterPoint [20], the authors proposed a brand new method to 

detect 3D objects. The method is a classic two-stage detector. The first stage is to detect the centers of 

objects and regress to other attributes, including 3D size, 3D orientation, and velocity. In a second 

stage, it refines these estimates using additional point features on the object. The also use the 

connection between different centers from different frames to predict the trajectory. The center-based 

3D detection is good at detect objects in all kinds of anchors without anchors and this can help the 

downstream tasks like track trajectory and so on. 

2.4.  Object tracking 

Object tracking means that once the initial position of the target object is defined, you can estimate or 

predict the position of the target object in every successive frame. Object detection, on the other hand, 

is the process of detecting a target object in every single frame of video. Object detection works only if 

the target image is visible on the given input. In autonomous driving task, 3D object tracking is an 

important part of the whole process. We usually use LiDAR data such as point cloud data as our input 

since the lidar machine can generate points to fix an object’s location. The point cloud data is disorder 

and sparse, the tracking task of this kind of data is different from 2D images in video. Many great 

works have made some great process in this task. For example, in the paper FutureDet [22,23], the 

authors propose a new method to predict the trajectory. By linking future and current locations in a 

many-to-one manner, the method is able to predict multiple futures, which is different from traditional 

end-to-end approaches. We are also inspired by FutureDet to achieve our work.  

3.  Dataset 

The nuScenes dataset is a large-scale dataset for models of autonomous driving tasks to do training 

and test. The 3D object dataset and its annotations are developed by the team at Motional. NuScenes 

data collection was mainly carried out in Boston and Singapore, and the vehicles used for acquisition 

were equipped with 1 spinning LIDAR, 5 long range radar sensors and 6 cameras. The amount of data 

annotation is more than 7 times higher than that of KITTI. Typically, each set of data is extracted from 

a continuous 20-second long sequence of frames representing sensor data at a certain point in time. 

The dataset includes high-definition (HD) maps, sensor data, and annotations collected from 

real-world driving scenarios in various urban environments. It focuses on complex and diverse urban 

driving scenes and provides rich and diverse sensor data, including lidar point clouds, camera images, 

radar data, and calibrated sensor information. 

In the pursuit of advancing computer vision and autonomous driving, the nuScenes dataset can 

work as a vital resource. With a focus on supporting autonomous driving research, this extensive 

dataset offers a comprehensive collection of diverse driving scenes in two traffic-challenging urban 

environments—Boston and Singapore. By meticulously selecting 1000 unique driving sequences, we 

think that nuScenes dataset captures all kinds of possible traffic scenes and diverse intricate driving 

situations, presenting researchers with rich data for experiment.  
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Since nuScenes recognized the significance of encompassing various road scenarios and potential 

occurrences, the dataset incorporates an extensive array of object types and road conditions, ensuring a 

thorough representation of driving environments. Meticulously annotates 23 object categories, one of 

the standout features of nuScenes is its precise annotation of object classes. These annotations 

manifest as accurate 3D bounding boxes, consistently provided at a rate of 2Hz throughout the entire 

dataset. 

The nuscenes dataset schema comprises 13 components, each representing a specific type of 

information with its unique token. Motional, to assist users in accessing and developing the dataset, 

offers a dedicated Python library known as the nuscenes devkit. This library encompasses various 

functionalities such as data retrieval, coordinate transformation, visualization, and more. By utilizing 

the nuscenes devkit, users can conveniently access and manipulate the dataset, making it easier to 

work with the data and develop applications based on it. The library acts as a valuable resource for 

efficiently navigating and utilizing the nuscenes dataset. 

In our paper this time, due to the limited time and computing resources, we only use vehicle 

category as a test of our methods. 

4.  Methods 

We use existing 3D detection method 3D CenterPoint and FutureDet as our backbones. What we 

contribute in this paper is proposing a new point acquisition method and new point symmetry 

operations. The two types of methods can help us finish the data augmentation operation. 

4.1.  Introduction to backbone   

Generally, we use only 4 numerical value in the point cloud data, which are x,y,z,r. The x,y,z is the 

location of the point. The r represent reflection intensity which can help us know the depth of the point. 

In object detection, what we need to do is to find which bounding box the point belongs to. The 

parameters of the bounding box are u, v, o, w, l, h, θ. The first three parameters are the location of 

center point. The next three parameters are the size of bounding box. The final parameter is the yaw 

rotation along z axis.  

In one of our backbones Centerpoint, the authors use two methods which are VoxelNet [24] and 

PointPillars [25] as their backbones. In our experiments, we choose VoxelNet as our detector, which 

divides different points into certain regular bins. VoxelNet then extract features from all the points 

inside the bins. The output of 3D convolutions is a feature map. 

Simultaneously, within the output layer, we employ various detection techniques to estimate 

distinct attributes like the center point, velocity, and box size. Moreover, it is important to highlight 

that speed computation is based on the center point of bounding boxes in consecutive frames, along 

with the time interval separating them. Given the independence of each frame, we can then regress the 

bounding box (including size and rotation) and center point for each vehicle within every individual 

frame. 

In order to predict object trajectories, we employ a method that involves shifting the center point of 

each object to the subsequent frame based on its speed. Subsequently, we calculate the distances from 

the detected object's bounding box center in the next frame. By selecting the closest distance, we can 

determine the object's anticipated location in the following frame, effectively accomplishing trajectory 

prediction. For this particular experiment, we can decide to set the number of time step which is a 

hyper-parameter, meaning that we utilize n consecutive frames to forecast the object's trajectory. 

4.2.  Symmetry point acquisition and symmetry operation 

To address the issue of point cloud sparsity, particularly when there is limited representation of distant 

objects, we propose employing point symmetry as a solution. This approach aims to mitigate the 

problem of sparsity and enhance the number of point representations for distant objects. 

As we all know, in our real life almost all the cars and other vehicles are center-symmetrical 

cuboids which gives us the hint to do the symmetry operation. The point cloud data is obtained by the 
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reflection of lidar waves. As a result, the points are mainly accumulated on only one or two sides of 

objects which facing lidar sensors. We try to do symmetry to get the points on the other sides of 

objects which can be helpful when we compute the information of bounding box and so on. 

The first thing we need to do is to obtain the scope of points to do symmetry which is the point 

acquisition operation. After that we are required to find the center for symmetry operation and decide 

how to do symmetry. 

In this paper, we introduced two symmetry operations. The first operation involves determining 

another point on the same straight line as the original point and the center point which we can get from 

the output of model. This is a simple and naive symmetry method. The center point is computed as the 

midpoint of the line connecting the generated point and the original point. The second operation 

involves using the original point as one vertex and the center point as the center of a cube. By 

symmetrically generating points, we can obtain the other seven vertices of the cube. 

With the features and information obtained from the 3D object detector, including the object's 

center and bounding box size, we can leverage this data effectively. To determine which points require 

symmetry and which points serve as the centers of symmetry, we explored four different methods. 

Method 1: The first method involves calculating the length of the body diagonal of the bounding 

box cuboid based on its size. Using half of this diagonal length as a threshold, a symmetry operation is 

performed on points within this threshold range from the center point of each object. By applying this 

operation, seven symmetrically generated points are obtained for each qualifying point. 

Method 2: Similar to the first method, the half-diagonal length serves as the threshold. However, in 

this method, only one symmetry operation is allowed for points within the threshold range of an object. 

The center of symmetry is determined by the object's closest center point. This ensures that each point 

near the center of an object is exclusively associated with that particular object. Additionally, seven 

points are generated through the second symmetry operation for each original point. 

Method 3: This method follows the same approach as the second method, but with a distinction. It 

employs the first symmetry operation to generate a single point for each original point. 

Method 4: Considering that the symmetry range thresholds in the previous methods (half-body 

diagonals) may include points unrelated to the object, the fourth method aims to address this issue. By 

reducing the threshold size, it is set to the minimum value among the length, width, and height of the 

bounding box. This adjustment ensures that symmetrical points generated must belong to the object, 

providing a more accurate and reliable symmetry operation. 

By employing these four methods, we explore different approaches to determine the points that 

require symmetry and establish the centers of symmetry. Each method offers its own advantages and 

considerations in achieving precise and effective symmetry operations. 

5.  Experiments and results 

Our experiment is basically use the backbone CenterPoint for 3D detection and Futuredet for 

Trajectory. 

For 3D object detector, we use VoxelNet as the backbone architecture. For the casual data 

augmentation, we do the same operation of CenterPoint , use global random noise scaling and global 

random rotations.  

For dataset, we only use the data of vehicles and try to divide them into three sub-categories: static 

car, linearly moving car and non-linearly moving car. The foundations of the division are as below:  

We consider IoU for every target objects in first and last frames. If the IoU is greater than 0, we 

think the object as static. We then utilize the speed of the first frame of a vehicle to extrapolate its 

bounding box position from the first frame to the last frame. By comparing this extrapolated bounding 

box with the detected bounding box in the last frame, we determine if there is an overlap. If there is an 

overlap, we classify the car's trajectory as linear, indicating that it is moving in a straight line. On the 

other hand, trajectories that do not exhibit overlap and are not classified as static are considered 

nonlinear trajectories, indicating that the vehicle is moving in a non-straight path. This classification 

allows us to differentiate between linear and nonlinear motion patterns in the dataset. 
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We also use some evaluation indicators in this task which are common in autonomous driving 

topics listed as below:  

1) Mean Average Precision (MAP): This metric calculates the average accuracy across all 

categories. It measures the precision of the model's predictions for each category and takes the mean 

value to provide an overall assessment of the model's performance. 

2) Mean Average Recall (MAR): Similar to MAP, this metric calculates the average recall across 

all categories. It measures the model's ability to correctly identify instances of each category and 

computes the mean value to provide an overall evaluation of the model's recall performance. 

3) Average Displacement Error (ADE): This metric quantifies the average difference between 

the predicted points and the corresponding ground-truth points. It measures the accuracy of the 

model's predictions by calculating the average displacement error for all predicted points. 

4) Final Displacement Error (FDE): FDE calculates the distance between the predicted position 

and the corresponding ground-truth value at the end of the prediction period. It provides an indication 

of the model's accuracy in predicting the final position of an object or trajectory. 

5) Miss Rate (MR): The miss rate metric represents the rate of missed detection results in the 

model's detection results. It indicates the proportion of instances or objects that were not detected by 

the model. A lower miss rate signifies a higher level of detection accuracy. 

These evaluation metrics provide quantitative measures to assess different aspects of the model's 

performance, including precision, recall, displacement accuracy, and detection rates. They help in 

understanding the strengths and weaknesses of the model's predictions and are commonly used in 

object detection and tracking tasks. 

The performance evaluation results are presented in the following tables: 

 

Table 1. Model performance using mini dataset. 

CLASS mAP mAR ADE FDE MR 

static_car 0.025 0.096 13.96 27.05 0.974 

linear_car 0.0 0.124 13.96 27.05 0.974 

nonlinear_car 0.0 0.025 1.0 1.0 1.0 

 

Table 2. Model performance using full dataset(Futuredet method). 

CLASS mAP mAR ADE FDE MR 

static_car 0.749 0.954 0.385 0.614 0.065 

linear_car 0.365 0.985 0.332 0.600 0.073 

nonlinear_car 0.956 0.962 0.315 0.598 0.076 

 

Table 3. Model performance using symmetry method 1. 

CLASS mAP mAR ADE FDE MR 

static_car 0.433 0.697 2.629 5.012 0.356 

linear_car 0.004 0.926 2.552 4.944 0.338 

nonlinear_car 0.758 0.800 2.537 4.980 0.340 
 

Table 4. Model performance using symmetry method 2. 

CLASS mAP mAR ADE FDE MR 

static_car 0.492 0.745 2.215 4.207 0.292 

linear_car 0.004 0.926 2.144 4.116 0.280 

nonlinear_car 0.727 0.800 2.145 4.173 0.289 
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Table 5. Model performance using symmetry method 3. 

CLASS mAP mAR ADE FDE MR 

static_car 0.679 0.927 0.472 0.800 0.088 

linear_car 0.175 0.971 0.457 0.793 0.088 

nonlinear_car 0.959 0.957 0.452 0.808 0.096 

 

Table 6. Model performance using symmetry method 4. 

CLASS mAP mAR ADE FDE MR 

static_car 0.699 0.937 0.389 0.642 0.069 

linear_car 0.182 0.971 0.356 0.625 0.081 

nonlinear_car 0.930 0.950 0.393 0.692 0.087 

6.  Conclusion and future work 

Because of time constraints and limited computing resources in this experiment, the results did not 

meet our initial expectations. We can see from the number of assessment indicator, despite 

implementing the most comprehensive symmetric strategy, it did not outperform the baseline method, 

Futuredet. Analyzing the results, we observed that the deviations between the predicted center point 

and the ground truth center point can easily influence our final results. These deviations can introduce 

some inaccuracies in our point acquisition. Also when we do symmetry, the most important 

information is the location of centers, but it seems not so accurate, thereby affecting the final bounding 

box regression.  

Nevertheless, after a horizontal comparison of our methods, we can still find consistent 

improvement in our model’s performance, indicating that the symmetry operations still work in some 

way. However, there are still several areas we can focus on for the future work. 

The first and foremost one we need to do is to effectively address the deviation caused by 

inaccurate prediction of the center point during symmetry operations. 

Additionally, our paper explores the idea of combining information from the preceding and 

subsequent frames to predict the trajectory and velocity and other information. The goal is to map 

corresponding points of objects in these frames, in order to supplement the available points. However, 

we encountered a challenging problem in this aspect. When performing adjacent frame mapping, not 

only do we require the center point for each frame of the object, but we also need the bounding box 

information. If our predictions for the bounding box or center point are inaccurate, it can lead to 

incorrect superposition of objects. Consequently, we find the method too reliant on the initial output of 

the network. 

The third is to improve trajectory prediction for non-linearly moving vehicles, as the current model 

tends to perform better with linearly moving or stationary cars. Moreover, achieving multi-future 

predictions and generating diverse, multi-modal predictions remains an open challenge. These areas 

present valuable avenues for further investigation and careful study in future research endeavors. 

The results indicate a consistent deviation of tens of centimeters between the output of the first 

network, the predicted bounding box, and the center point of the box, compared to the ground truth. 

This discrepancy introduces the possibility of transmitting incorrect information. We have yet to 

devise an effective solution to address this challenge. 
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