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Abstract. With many gaming AI being developed and being able to defeat top human players in 

recent years, AI has once again become the hottest topic in research and even in our daily life. 

This paper also researches on gaming AI and chess. Instead of using deep learning and the Monte 

Carlo Search algorithm, this paper focuses on the opening only with multi-armed bandit 

algorithms to find the best moves and opening. Specifically, the method used in this paper is 

epsilon greedy and Thompson sampling. The dataset used in this paper is from Kaggle. This 

paper considers each move as a set of choices one needs to make and considers the big picture as 

a multi-armed bandit problem. This paper aims to develop a relative best strategy to counter 

those opening or make changes to a disadvantaged situation. 
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1.  Introduction 

Artificial Intelligence is a challenging research topic. The early research on Artificial intelligence 

focuses on competitive games. These competitive games are good ways to determine the intelligence 

level of the machine [1]. Thus, increasing the intelligence level of the machine becomes the hottest topic 

in the research of competitive game of machines. In recent years, AI has developed, such as AlphaGo, 

which was already able to compete and defeat the top human players in the world. With this news, AI got 

the world's attention and reached unprecedented popularity.  

Nowadays, the game of machines mainly focuses on the deep neural network and uses neural 

networks to study the existing experience. After the neural network gains experience from each game, it 

changes its parameters and outputs its best strategy [2]. AlphaGo gained rich experience from the human 

Go master. When AlphaGo plays a game, it will use those experiences to make decisions like human Go 

masters. However, AlphaGo Zero is based on the basic rule of Go and uses deep learning and Monte 

Carlo Tree Search. After 3D self-gaming, it defeats the last version of AlphaGo. Besides Go, it has also 

achieved the level that humans cannot reach on other board games, such as chess and Shogi [3]. 

AlphaGo was developed in 2016. The AI of chess even has a longer history. Chess is one of the most 

popular and well-known board games in the world. The goal of the game is to use your "army" to 

checkmate your opponent's king while the king has nowhere to run. Different pieces have different 

advantages and limits on their move. Researchers also start to develop competitive AI very early, and 

they already developed AI that is able to defeat human chess master Kasparov in 1997 [4].  
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The research on AI in board games already achieved huge success. It shows people cutting-edge 

technology in computer science and the potential of AI. This paper uses a different approach to 

investigate the theories in chess. Instead of gaining experience from each game, this paper only focuses 

on the opening strategy. The algorithms used in this paper are the epsilon greedy algorithm and 

Thompson sampling. Multi-armed bandit algorithms explore the data and find the best mean reward of 

all moves. Finally, it generates a relatively good strategy for the opponent's opening. With the result of 

this research, one can gain a deep understanding of the theory of chess, such as how to counter the 

opponent's strategies or how people make a difference in their current strategies when their opening is 

disadvantaged to their opponents. 

2.  Basics analysis of dataset 

2.1.  Chess background 

Chess is an abstract strategy game with observable characteristics, which means the player can know the 

information of both sides. It starts with a board that has eight by eight grids and the grid arrangement is 

black and white intertwined. The bottom left grid must be black. The chess pieces are arranged in the 

same way each time. From up to down, the first two rows are all black pieces and the last second rows 

are all white pieces. The second row and the second last row are filled with pawns. The first row and last 

row are arranged in the order of rook, knight, bishop, queen, king, bishop, knight, and rook. 

Each piece has different ways to move which gives each of them different strategic significance. 

Besides obeying these rules to move, capture pieces, and checkmate the opponent, there are two 

additional rules to move. One of them is castling. It can only happen when there are no pieces in between, 

the king and rook have not moved prior, and the king is not being checked. The other one is transforming, 

when a pawn reaches the other side of the board, it can transform into any piece but the king. 

The move of chess can be recorded easily. The board is placed at the white side's perspective and is 

considered as a co-ordinate. The y-axis is 1 to 8 and the x-axis is a to h for each grid. The upper case of 

the name of each piece is used to represent each piece. The lower case of a character plus a number is 

used to represent the location the piece moved to. For example, Qd3 means move the queen to d3. The 

knight is represented by N because K is already taken by the King. The pawn is a special case that only 

the location is enough, such as e4 means the pawn move to e4. The transforming of a pawn is 

represented by the location plus "=" plus the piece that transforms into. If the move captures a piece, an 

"x" is put between the piece and the location. If a pawn is making a capture, a lowercase character is 

used to represent the file it is moving from. If the move is a check, a "+" should be added at last. If the 

move is checkmate, add a "\#" at last. Sometimes, the representation might be ambiguous for the same 

two pieces in the same rank. For example, Rd1 could mean any one of the rooks. In this case, the file the 

piece is moving from is recorded and placed after the letter that represents pieces. Similarly, if two 

pieces are in the same file, the rank will be recorded in the same way as the previous case do. Finally, the 

castle can be recorded by "O-O" for the kingside and "O-O-O" for the queenside. Since the white side 

always moves first, these representations are enough to show all of the cases of what's going on.  

2.2.  Basic analysis of dataset 

Before applying the bandits algorithm to the dataset, some data cleaning needs to be done to extract the 

most important information. First, the ids are not helpful to the chess game, so this study first drop the 

features about id which include "id", "black\_id", and "white\_id". In addition, the start and end times 

are not helpful, so the features "created\_at" and "last\_move\_at" are also dropped. At last, the quickest 

way possible to win is the fool's mate, which takes two turns to checkmate. The "turn" in the dataset are 

total moves, so the games that have "turn" less than 3 are meaningless and need to be dropped. 

After the data is cleaned, we can get some basic information and strategies from the dataset without 

any algorithm. First, this study extracts the first move of white and get the 3 most common first moves 

white will take.  
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Figure 1. The most popular move of white top 3. 

As can be seen from Figure 1, white usually moves the pawn from columns d and e by two-step ahead. 

E4 is the most common one and is much more common than other moves. D4, the second common move, 

is only one-third of the people who take e4 as first. The third common move is Nf3. Even though it is the 

third most common move, there are already very few people who will make this move. 

 

Figure 2. Most popular move for black to against white’s e4. 

 

Figure 3. Most popular move for black to against white’s d4. 
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Referring to Figure 2 and Figure 3, for the black side, the most common move to counter e4 is e5, c5, 

and e6. To counter the d4, players will usually take d5, Nf6, and e6 as their moves. 

 

Figure 4. Heat maps for all the move in All the game. 

From the heat map (Figure 4), we notice that most of the moves ended at the center of the board. And 

not much move will end in four corners. Pieces like bishops and queens can gain maximum mobility in 

the center. It makes sense that the center of the board is the most contested area, thus maximizing the 

threat to the opponent and gaining more control of the board. In contrast, the piece at the corner has the 

least mobility so minimizes its threat, which makes the corner position the least popular. 

For white, e4 and d4 can become the most popular first move because it gives the queen and bishop 

mobility, thus taking and controlling the central area to gain the advantage. For d4, it needs to take an 

extra step to move the queen to the central area so it's less popular than e4.  

When white takes e4, Black's moves are out for the same reason as white, to get the queen and/or 

bishop to the center. C5 might be used to limit the d4 for white's next move. If white's move is d4, d5 and 

Nf6 are able to stop the pawn from moving forward, and e6 can make space for the queen and bishop to 

move. The first turn already showed some information about the game strategy both micro and macro. 

3.  Algorithms applied in this study 

3.1.  Epsilon-greedy algorithm 

In a multi-armed bandit problem, the gambler needs to face a set of slot machines and each machine will 

generate a random reward. The bandit algorithm here will help the gambler decide which arm to pull and 

how many times the arm will be pulled, thus getting an overall best reward. The main problem is the 

exploration-exploitation dilemma. Exploration means trying more arms and exploitation means picking 

the best arm in the current situation [5]. 

The epsilon greedy algorithm is a method to deal with this dilemma. It balances exploration and 

exploitation by choosing exploration and exploitation randomly. Based on the basic greedy algorithm, 

the algorithm will always choose the best arm in the current situation. It might generate a poor result in 

long term [6]. The epsilon means the probability that the algorithm will explore a new arm. If one 

assigns a big value to the epsilon, the convergence will be faster thus the learning speed will be faster, 

cause it will reach the best arm faster. Vice versa, if the epsilon is small, it will learn slower but the 

average reward will be higher [7]. 
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3.2.  Thompson Sampling 

The idea of Thompson sampling is to pick a prior over a set of possible environments before the game 

start, and in each round, the learner samples an environment from the posterior and take actions based on 

the optimal action in that environment [8]. 

The exploration of Thompson Sampling is based on randomization. The posterior will affect the 

fluctuation in the samples. If the posterior is scattered, it is expected to be large and likely to be explored. 

As more data is read by the algorithm, the posterior tends to concentrate on one environment, then the 

exploration rate will decrease [9]. 

4.  Experiment 

The experiment first focuses on the first turn. The reward was defined from the white's perspective. For 

white's victory, the reward sets to 1, and the reward sets to -1 for black's victory. The reward for the draw 

will be set to 0. In this paper, the A/B testing is chosen as the baseline, and the author runs the A/B 

testing, epsilon greedy algorithm, and Thompson sampling in order. Then, all the performances of these 

graph are plotted and combined into Figure 5. In Figure 5, 10000 pieces of information about the 

opening are simulated by three algorithms. The percentage of winning by the opening move is presented 

on the y-axis and the number of total openings recommended to take is on the x-axis. During the 

experiment, the epsilon greedy used two values for epsilon. One is 0.1 and the other one is 0.02. Each 

algorithm iterated 10 times to find out the average. 

The A/B testing shows an average performance during their testing period. It only shows 

improvement after the test is concluded. During its test phases, all moves were recommended by the 

same portion [10]. In Figure 5, the A/B testing achieved an overall good result. 

 

Figure 5. The learning result of the opening strategy in white’s perspective in first turn. 

N-visit (test period) is set to 300. 

X: number of recommended move; Y: percent of the recommended move wins 
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The epsilon greedy algorithm in short term is better than the A/B testing. When epsilon is equal to 0.1, 

it converges faster but only converges around 70%. This is because the epsilon greedy algorithm 

balances the exploration and exploitation through epsilon. The epsilon value decides the fraction of time 

the algorithm will be used on exploration, but this fraction is constant for the same bandit. When the 

epsilon value is set to 0.02, it will spend more time on exploration but the curve converges at a higher 

position which resulted in a better performance in long term.  

In Figure 5, it seems that A/B testing achieved a better result than the epsilon greedy in long term 

even for the epsilon value set to 0.02. However, epsilon greed is still a better algorithm. The reason for 

this is that the test period is small. The n\_visit is set to 300 in Figure 5. When the test period sets to a 

larger value, 2000; in Figure 6, the performance of the epsilon greedy and Thompson sampling is not 

affected, but the A/B testing is hugely affected. It is obvious that epsilon greedy was way better than the 

A/B testing. 

Thompson sampling is the best one out of all the three algorithms in both the short term and long 

term. It is because of its dynamic rate of exploration. It will explore more often in the beginning and 

explore less often through time, thus giving it high performance in both the short term and the long term. 

 

Figure 6. The learning result of the opening strategy in white’s perspective in first turn. 

N-visit (test period) is set to 2000. 

X: number of recommended moves; Y: percent of the recommended move wins 

Since Thompson sampling has the best performance, it is chosen to analyze the result. First, the ten 

openings which have the highest mean reward was chosen, and I use the stack plot to plot out the graph.  
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Figure 7. Thompson Sampling result of the white opening strategy. 

X: number of recommended move; Y: percent of the recommended move wins 

In Figure 7, it is obvious to see that the first seven openings all achieved a win rate of around 70 to 

80%. The last three openings have decreasing win rate. Among all of those, Tarrasch Defense is the 

opening that achieves the highest win rate. The result of all the experiments showed the recommended 

strong opening for the white side, and showed the Thompson sampling algorithm's performance. 

5.  Conclusion 

In conclusion, this paper uses three multi-armed bandit algorithms to analyze the opening in chess. 

Simulations of the chess opening move clearly demonstrated that all three algorithms can reduce regret. 

Among these algorithms, Thompson sampling has the best performance overall. However, based on the 

No Free Launch Theorem, different situations still require different algorithms. Sometimes we want the 

algorithm to converge faster and sometimes we want better overall results. Even A/B tests are still a 

good tool to use in some situations. An important consideration is that the bandits algorithm will reduce 

the inferior usage which takes a longer time to establish the statistical significance of their performance. 

So programmers need to consider the trade-off of these algorithms for different situations. 

This paper also uses the Thompson sampling to find out the most recommended opening for white. 

This paper still has room for improvement. The reward is from the white's perspective, and it also can be 

done from the black's perspective by reversing the reward. The paper also only analyses the opening. A 

good opening might give one advantage, but it does not mean it can help you win the game easily. 

Besides the openings, more steps can be considered and get a more macro view of the whole game. 

References 

[1] Yajie Wang, Bingzhi Qi, Yunbo Zhang, Aodong Din. Research on Texas Hold’em Poker 

Algorithm Based on Expected Revenueand UCT Algorithm. Journal of Chongqing 

University of Technology (Natural Science), pp.167-168 (2016).  

[2] LECUNY, BENGIOY, HINTONG: Deep learning. Nature, pp.436 (2015).  

[3] Yajie Wang, Bingzhi Qi, Yunbo Zhang, Aodong Ding: Application of Improved UCT 

Algorithm Combined with Neural Network in Checkers. Journal of Chongqing University of 

Technology (Natural Science), (07), pp.260 (2021). 

[4] Demis Hassabis: Artificial Intelligence: Chess match of the century, Nature, 04, pp.1 (2017). 

[5] Tor Lattimore and Csaba Szepesv ́ari, Bandit Algorithm, Cambridge University Press, pp.7-8 

(2020). 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/13/20230704

27
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