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Abstract. Explore-then-commit (ETC) algorithm is a widely used algorithm in bandit 

problems, which are used to identify the optimal choice among a series of choices that yield 

random outcomes. The ETC algorithm is adapted from A/B testing, a popular procedure in 

decision-making process. This paper explores the multi-armed bandit problem and some 

related algorithms to tackle the multi-armed bandit problem. In particular, this paper focuses on 

the explore-then-commit (ETC) algorithm, a simple algorithm that has an exploration phase, 

and then commits the best action. To evaluate the performance of ETC, a variety of settings is 

made in the experiment, such as the number of arms and input parameter m, i.e., how many 

times each arm is pulled in the exploration phase. The result shows that the average cumulative 

regret increases when the number of arms gets larger. With the increase of parameter m, the 

cumulative regret decreases in the beginning, until reaching the minimum value, and then starts 

increasing. The purpose of this paper is to empirically evaluate the performance of the ETC 

algorithm and investigate the relationships between the parameter settings and the overall 

performance of the algorithm. 
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1.  Introduction 

The multi-armed bandit problem is one of the most popular and important problems in machine 

learning and probability theory, which exemplifies the classical exploration-exploitation dilemma. A 

bandit problem is a sequential game between a learner and an environment [1]. There are a wide range 

of applications for bandit algorithms, for example, recommendation systems, clinical trials and the 

selection of optimal machine learning model to deploy in technology companies. A variety of bandit 

models exist as well, such as stochastic bandits, adversarial bandits, contextual bandits and 

combinatorial bandits, depending on the type of problem to be solved [1]. In this paper, stochastic 

bandits will be discussed in detail, which is a sequential decision-making process where the reward of 

each arm follows a certain probability distribution. 

There exists a spectrum of algorithms that can be applied to tackle the bandit problem, one of 

which is called explore-then-commit (ETC), a simple but effective algorithm to solve stochastic bandit 

problems. The idea of ETC algorithm is originated from A/B testing, a popular user experience 

research methodology. It is vital to understand the performance of each algorithm, therefore a 

spectrum of papers have already discussed the mathematical proofs of the ETC algorithm performance. 

However, the empirical study of the explore-then-commit algorithm is scarce, in particular, the 

relationship between the input parameter m and the performance outcome. Therefore, this paper 
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mainly evaluates the performance of ETC algorithm from an empirical research perspective. It begins 

by recapitulating the rigid definition of bandit problem and the ETC algorithm. After that, it describes 

the example environment as well as the setup of experiment and parameter. Finally, it demonstrates 

the result of the experiment and provides some explanations of the result afterwards. 

2.  Literature review 

A number of mathematical proofs and regret analyses on the explore-then-commit algorithm can be 

found in the bandit algorithm textbooks [1, 2], which provide a thorough, theoretical examination of 

the explore-then-commit algorithm’s performance. In addition, Garivier et al. [3] suggest a method to 

achieve asymptotically optimal performance of the ETC algorithm without previous knowledge of 

sub-optimality gaps between each arm. Jin et al. [4] propose a double explore-then-commit (DETC) 

algorithm that has two exploration phases and two exploitation phases, which achieves asymptotic 

optimality. They also provide theoretical proofs and empirical experiments of the algorithm. As for 

Kuleshov and Precup’s research [5], they conducted a series of empirical confirmations of the 

effectiveness of classical multi-armed bandit algorithms. Since the ETC algorithm is largely inspired 

by A/B testing, a variety of research on A/B testing performance exists as well. Gui et al. [6] and 

Kaufmann et al. [7] examine the complexity of A/B testing algorithm from a mathematical perspective. 

Xu et al. [8] focus on A/B testing at a large scale in social network settings, such as LinkedIn. Young 

[9] applies A/B testing to a practical web-based application in an academic library, while Gilotte et al. 

[10] evaluate the offline A/B testing performance and propose a new counterfactual estimator. 

3.  Methodology 

A bandit problem is a sequential game between a learner and an environment [1]. An environment 

consists of a set of actions. Each action reveals a reward when it is pulled. The game will be played in 

n rounds in total (also known as the horizon).  In each round t = 1, 2, …, n, the learner chooses a 

bandit arm (action) At from a set of k possible actions. When the arm is pulled by the learner, the 

environment will reveal a reward Xt, according to the probability distribution of the chosen arm. The 

objective of the learner is to maximize the cumulative reward over n rounds, i.e., Σ𝑡=1
𝑛 . The main 

challenge for the learner is that it is impossible to obtain the future reward of each arm in advance. The 

only knowledge for the learner is the list of action-reward history (A1, X1, …, At-1, Xt-1). To maximize 

the cumulative reward, the learner has to choose the optimal action from the action list according to 

the history only. 

A common and simple idea for the learner to obtain the optimal action at round t would be to select 

the arm which has the highest average reward from previous t-1 rounds, since the arm with the highest 

average reward in history is more inclined to produce a higher reward in the following round, by 

intuition. This is also known as exploitation, i.e., taking advantage of the previous knowledge to 

choose the favorable action in the next round. However, since the expected rewards for the arms are 

hidden from the learner, there can be severe variance between the average reward obtained from the 

first several rounds and the actual mean reward. Without enough exploration, the learner is likely to be 

trapped in the local optimum, and therefore miss the best optimal action. Hence, the perfect balance of 

exploration and exploitation is, by necessity, vital in the performance improvement of multi-armed 

bandit algorithms. 

To quantify the performance of bandit algorithms, some performance measures are required to be 

defined appropriately. One of the most famous measurement criteria is regret. Assuming that the 

action set 𝒜 = 1,2, … , 𝑘, this study defines 𝜇𝑎 to be the mean reward of arm a, and the optimal 

action 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝒜𝜇𝑎  is the action that produces the maximum mean reward, and the 

maximum mean reward is denoted by μ∗ = 𝑚𝑎𝑥𝑎∈𝒜μ𝑎. The reward obtained at round t is denoted by 

𝑋𝑡. Therefore, the regret over n rounds becomes 𝑅𝑛 = 𝑛 𝑚𝑎𝑥
𝑎∈𝒜

− 𝔼[∑ 𝑋𝑡
𝑛
𝑡=1 ], where the first term 

refers to the maximum mean reward the learner can obtain in the first n rounds, and the second term 

refers to the expected reward obtained by the learner in the experiment during the first n rounds [1]. 
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Before the experiment, a brief overview of the bandit algorithm is demonstrated below. The first 

algorithm is called the explore-then-commit (ETC) algorithm, which is inspired by the idea from A/B 

testing, i.e., pulling each action a fixed number of times in a round-robin way during the exploration 

phase, and then committing the action with the maximum average reward in the commit phase. The 

definition of 𝑇𝑖(𝑡), 𝜇̂𝑖, as well as the rigid definition of ETC algorithm are given below. 

 

Algorithm 1 Explore-then-commit [1] 

1: Input m. 

2: In round t choose action 

𝑨𝒕 =  {
(𝒕 𝐦𝐨𝐝 𝒌) + 𝟏,               𝒕 ≤ 𝒎𝒌;
𝒂𝒓𝒈𝒎𝒂𝒙𝒊 𝝁̂𝒊(𝒎𝒌), 𝒕 > 𝒎𝒌.

 

 

There are large varieties of bandit algorithms, which can be found in bandit algorithm textbooks [1, 

2]. However, this paper focuses on the performance of the ETC algorithm. The other algorithms are 

provided here only for reference and performance comparison. 

3.1.  Example environment 

The prominent characteristics of the bandit problem are the number of arms and the reward 

distribution of each arm, and it turns out that these two characteristics also become the only 

characteristics of a bandit problem that need to be considered [5]. For simplicity, a two-armed 

stochastic Bernoulli bandit is be experimented. A stochastic Bernoulli bandit is a subset of a 

stochastic bandit in which the reward 𝑋𝑡 = {0,1} and there exists a vector μ ∈ [0,1]𝑘 such that the 

probability of 𝑋𝑡 = 1 given the action selected at round t (𝐴𝑡 = 𝑎) is μ𝑎 [1]. From the above 

definition, it can be found that the outcome of the reward for each arm is either 0 or 1, and the 

probability of arm a producing 1 as the reward is denoted by μ𝑎. 

Stochastic Bernoulli bandits are ubiquitous around the world. For example, assume that there is an 

advertisement company that created two different web pages. The objective is to figure out which web 

page is more appealing to the user, such that the user is more likely to click the web page and look 

through the content. One of the two web pages will be distributed to the user according to a certain 

policy, and the user can choose whether to click that web page or not. If the user chooses to click that 

web page, it will reveal a reward of 1. Otherwise, the reward will be 0. In this scenario, the index of 

the web page delivered to the user is an action, and the choice of the user is the environment. The final 

objective is to develop a web page distribution algorithm that maximizes the cumulative reward. It is 

also assumed that the choice of the user is a Bernoulli distribution. For instance, assume that the 

expected reward of arm 1: μ1 = 0.3, it suggests that only 30% of the users who have seen the web 

page choose to click it, while the remaining 70% choose not to click it. This is a typical bandit 

problem, which can be experimented by classical bandit algorithms. 

3.2.  Experimental setup 

In the following experiments, two types of Bernoulli bandits will be examined: two-armed Bernoulli 

bandits and five-armed Bernoulli bandits. Note that by Hoeffding’s lemma, Bernoulli distribution is 

½-subgaussian, and therefore 1-subgaussian. 

As for the two-armed Bernoulli bandits, this paper defines the success probability of each arm 𝑝 =
[0.3, 0.7], or equivalently, the expected reward for each arm 𝜇 = [0.3, 0.7]. It is straightforward to 

find that the optimal arm 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎x𝑎∈𝒜𝜇𝑎 = 3 , and the maximum expected reward 𝜇∗ =
𝑚𝑎𝑥𝑎∈𝒜𝜇𝑎. This study also defines the sub-optimality gaps for each arm, which are calculated by the 

difference between the maximum expected reward and the expected reward of that arm, i.e., Δ𝑎 =
𝜇∗ − 𝜇𝑎. For the optimal arm, the sub-optimality gap Δ𝑎∗ = 0, and the sub-optimality gaps for each 

arm Δ𝑎 = [0.4, 0]. 
As for the five-armed Bernoulli bandit, this study defines the success probability of each arm 𝑝 =

[0.1, 0.3, 0.5, 0.7, 0.9], and the expected reward for each arm μ = [0.1, 0.3, 0.5, 0.7, 0.9]. Similarly, it 
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can be deduced that for the five-armed bandit, 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎x𝑎∈𝒜𝜇𝑎 = 5, and 𝜇∗ = 𝑚𝑎𝑥𝑎∈𝒜𝜇𝑎 =
0.9. The sub-optimality gaps for each arm Δ𝑎 = [0.8, 0.6, 0.4, 0.2, 0]. 

3.3.  Parameter setting 

For simplicity, the total number of rounds i.e., the horizon in the following experiment, is set to be 

100,000. There exists only one parameter in ETC, that is m, the number of times each arm is pulled 

during the exploration phase. With regards to the two-armed bandit, if the sub-optimality gaps are 

already known to the learner, the optimal m can be calculated by the formula ⌈
4 𝑙𝑜𝑔 𝑛

Δ2 ⌉. Therefore, we 

try to evaluate the algorithm on settings where m equals 50, 100, 200, 500, and optimal. In terms of the 

five-armed bandit, since the optimal m formula only applies to the two-armed bandit, the parameter m 

is set to be 50, 100, 200, 500, and 1000 correspondingly. 

Note that the training data for this experiment will be sampled from Bernoulli distribution using the 

artificial pseudo-random number, rather than real-world data set. 

3.4.  Evaluation criteria 

The following performance criteria will be evaluated in this experiment: 

Cumulative regret over the experiment (Rn) 

The percentage of plays in which the optimal arm is committed 

Each experiment was repeated 1000 times, and the results were the average value of each round. 

3.5.  Results 

The main results are shown in Figure 1, Figure 2 for the two-armed bandit, and Figure 3, Figure 4 for 

the five-armed bandit. The x-axis represents the current round number, while the y-axis represents the 

corresponding average cumulative reward at each round. 

 

Figure 1. Rn of 2-armed bandit. 
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Figure 2. Rn of 2-armed bandit (except m = 10). 

With regards to two-armed bandit, it can be found that from m = 10 to 50, the growth rate of 

cumulative regret decreases rapidly, while from m = 50 to optimal (1152), the growth rate is 

approximately the same, with some steady increase. Note that the linear growth of cumulative regret 

curves for m = 10 and 25 is evident, while for m greater than 25, the curve sharply grows at first 

hundreds of rounds and then stabilize without significant increase. 

 

Figure 3. Rn of 5-armed bandit. 
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Figure 4. Rn of 5-armed bandit (except m = 10). 

Compared to two-armed bandit, the average cumulative regret of five-armed bandit suggested in 

the graph for each m is relatively higher. However, similar to two-armed bandit, the growth rate 

decreases from m = 10 to 50, and then increase steadily from 50 to 1000. In addition, except for m = 

10 and 25, the slope of the remaining curves is approximately equal to 0. 

Table 1. Percentage of committing the optimal arm (Unit: %). 

      m 

k 
10 25 50 100 200 500 1000 1152 

2 96.1 99.5 100 100 100 100 - 100 

5 78.3 94.7 99.7 99.8 100 100 100 - 

 

Table 1 evaluates the percentage of plays in which the optimal arm is committed, in relation to the 

number of arm k and input parameter m. The table indicates that, overall, with regards to the 

percentage of committing the optimal arm, five-armed bandit is generally lower than two-armed bandit. 

It is also suggested that when m = 10, two-armed bandit has already achieved more than 95% accuracy; 

while for five-armed bandit, m should at least be greater than 25. 

4.  Discussion 

For many bandit algorithms, such as UCB and asymptotically optimal UCB, they can be proved to 

achieve logarithmic regret, i.e., 𝑅𝑛 = 𝑂(log 𝑛). The cumulative regret curves of these algorithms 

clearly display the logarithmic growth shape. However, in terms of the shape of the curve, this is not 

the case for the ETC algorithms in our experiment, due to the intrinsic characteristics of the ETC 

algorithm. As mentioned in the introduction section, there is a sharp transition from the exploration 

phase to the commit phase. In the exploration phase, since each arm is selected equally in turn, the 

cumulative regret grows linearly. The reason is that each sub-optimal choice will contribute a constant 

penalty to the regret, while the optimal choice will not contribute any penalty to the regret. Therefore, 

in each round, the average regret per round will be the average of sub-optimality gaps. This can be 

exemplified by the steep linear line at the very beginning of the rounds. 

Nevertheless, when the exploration phase reaches its end, there is an abrupt change in the slope of 

the curve. The curve becomes flat immediately. In the five-armed bandit, it is worth noticing that when 

m is approximately less than 200, the linear growth is clearly evident in the graph, and the slope of the 
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curve decreases dramatically when m becomes larger. In contrast, if m is larger than 500, there is 

almost no increase in the cumulative regret. In the two-armed bandit, except for relatively smaller m, 

there is almost no increase in cumulative regret for m larger than or equal to 50. The result implies that 

the ETC algorithm tends to behave better when the number of arms is relatively small, which could 

also be exemplified in the table above. When m equals 10, the difference between percentages of 

optimal arm commitment is significant. However, when m is larger or equal to 50, the difference can 

be negligible.  The choices of m should also be considered carefully. If m is too small, the probability 

of committing the sub-optimal choice in the commit phase will become large, which results in a 

substantial penalty to the cumulative regret. By contrast, if m is too large, it will contribute to too 

much regret in the exploration phase. 

There are still many aspects that can be improved in this experiment to obtain more convincing 

results. For example, because of the variance of pseudo-random numbers, real-world datasets can be 

applied to the experiment. In addition, since the cumulative regret is calculated by the average of 

multiple experiments, it is admissible to increase the number of repetitions to gain more precise results. 

The horizon can also be lengthened to investigate the growth of the curve in larger rounds. 

5.  Conclusion 

This paper briefly discusses the multi-armed bandit problem, a sequential decision-making problem 

that has a wide range of applications. There exists a variety of classical algorithms to tackle the 

problem, one of which is the explore-then-commit (ETC) algorithm, which is also relatively 

straightforward and easy to implement. However, it seems that the empirical analysis of the ETC 

algorithm is scarce, therefore a set of experiments regarding the ETC algorithm is conducted. 

To evaluate the performance of the ETC algorithm, the cumulative regret over the experiment and 

the percentage of plays in which the optimal arm is committed are examined. The result suggests that 

the overall performance of the ETC algorithm is significantly affected by the number of arms and the 

input parameter m, and the number of times each action is explored during the exploration phase. 

There is also a sharp transition from the exploration phase to the exploitation phase. In addition, the 

linear growth from the graph implies that the ETC algorithm might not be an ideal solution for 

situations where performance requirement is critical. Overall, this paper provided a thorough empirical 

analysis of the explore-then-commit algorithm and illustrates the strong relationship between 

parameter settings and the performance of the ETC algorithm. 
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