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Abstract. In the past decades, tons of data have been generated every single day as people 

increasingly rely on electronic products and networks in their lives. The developments in 

techniques and storage capabilities provide a fundamental condition for analyzing those huge-

volumed data. Each captured feature represents a dimension of the data. So far, high dimensional 

data analysis has become a challenging task in various study fields. Redundant and irrelevant 

features can be removed by using different dimensionality reduction techniques. Effective 

information extraction can be achieved by using the proper method. This paper reviews the most 

widely used dimensionality reduction techniques and their application fields. It can be found that 

though DRTs have been successfully applied to many areas (i.e., image, audio/video data, 

biomedical), DRTs still need to be improved and developed to achieve better classification and 

prediction accuracy. Inter-method combinations will remain the focus of research in the future. 

Computation time and cost may not be a limitation anymore as the computation power of the 

computer is still developing. So, the development of the algorithm is becoming particularly 

important. This study provides a brief introduction to widely used DRTs and their variants, it 

will be helpful for understanding HDD analysis, and more DRTs will be researched in future 

work. 
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1.  Introduction 

Tremendous data has been created and recorded continuously in different application fields during the 

past decades. Meanwhile, the data’s dimensionality, complicacy, and scale are all rising incredibly. High 

Dimensional Data (HDD) has been applied to many different areas including biomedical, genetics, 

education, the internet, etc. [1]. The new evolved formats of a huge amount of HDD have been included 

but not limited to text, speech signals, digital images, and videos. 

When conducting Machine Learning (ML) methods to analyze HDD, the high dimensionality can 

present numerous challenges in accurate classification, pattern recognition, and visualization. Due to 

high computational complexity, a study in dozens or even hundreds of dimensions would be formidable. 

The curse of dimensionality represents increasing dimensionality to a fixed model can lead to overfitting. 

The only solution is to add tremendously new data for each extra dimension [2].  

Feature extraction and feature selection are two ways of reducing high dimensionality. By combining 

the current features, feature extraction produces a subset of new features. The new feature set preserves 
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the original dataset’s information at the maximum level. Feature selection is choosing the most 

instructive feature subset from the data. Applying a proper technique to reduce the dimensions can 

significantly save time and decrease the effort required to extract or select informative features for 

analysis. 

Before applying ML models, Dimensionality Reduction Techniques (DRTs) provide an effective 

solution to cut down on the number of original variables. Numerous DRTs can be used to improve 

resource utilization and reduce computing time. These techniques are applicable to many kinds of data 

[3]. However, since each method was designed to maintain a certain characteristic of the original data, 

implementing DRTs is very challenging. A specific DRT could be problematic for some applications 

and appropriate for others. 

Moreover, the core functionality of the DRT can be changed by modifying the internal parameters. 

This paper provides a basic summary of DRTs and their practical variants. Numerous potential problems 

of DRT have been emphasized. The following sections are organized in this order, Section 2 explores 

three widely used DRTs and their variants, Section 3 presents the common issues of both HDD and 

DRTs, and Section 4 presents a brief discussion. 

2.  Dimensionality reduction techniques 

The number of redundant and unnecessary features can be reduced from the original HDD by using a 

proper DRT. It converts HDD into a dimension-reduced representation while maintaining the original 

features as much as possible. It is simple and effective to process, analyze, and visualize low dimensional 

data. DRT utilization can also speed up computation time and reduce storage requirements. 

Formally, DRT transforms an HDD Y = [y1, y2, y3, ⋯ , ym] ∈ Rm×k having m observations with k 

dimensions can be transformed into a low dimensional data Z = [z1, z2, z3, ⋯ , zm] ∈ Rm×j having m 

observations with j dimensions, where j << k in ideal condition [4]. Table 1 shows some main 

discriminative features of DRTs. 

Table 1. Discriminative features of DRTs. 

Feature Feature Description 

Linear technique 
Low dimension results from a linear combination. 

Simple geometric interpretation and computational efficiency. 

Non-Linear 

technique 

Low dimension result from a nonlinear transformation. 

Dealing with complex non-linear data. Parameters need to be optimized. 

Supervised learning Using labeled input data, therefore knowing output data. 

Unsupervised 

learning 
Using unlabeled input data for discovering patterns. 

2.1.  Principal component analysis 

Pearson first introduced Principal component analysis (PCA). He proposed this method as a discovery 

of the closest-fitting lines and planes to a set of spatial points. Hotelling then developed it independently. 

His derivation model is regarded as a sign of the maturity of PCA. PCA is the oldest and most widely 

used DRT in multivariate analysis. It analyzes data where a few inter-correlated quantitative dependent 

variables are often used to record the observations. The data dimensions can be reduced by various PCA 

strategies while retaining as much data variance as possible [5]. Different algorithms, such as 

eigenvalues, factor analysis, and linear regression can be used to compute PCA. As a fundamental 

mathematical analysis method, PCA is widely used in practical applications such as demography, 

geography, image, speech, visualization, and other disciplines. It aims to pick the most informative 

features out of the original HDD and then represent them as a new collection of independent features 

named principal components (PCs). Normally, the first picked-out principal component occupies the 
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biggest variance of the HDD, and the second picked-out principal component occupies the biggest 

variance of the rest HDD, etc. 

Mathematically, let Y be a data matrix for dimension m × k (rows × columns), which has a column-

wise zero empirical mean. Observation and variables are represented by each row and column. It is 

possible to calculate the PCs zi ∈ Rm as a linear weighted combination of features. 

 𝑍 = 𝑌𝐴               (1) 

With Z = [z1, z2, z3, …, zk] ∈ Rm×k and A = [a1, a2, a3, …, ak] ∈ Rk×k. Generally, only the top j 

dominating PCs are concerned since they account for most of the data variability. So, by easily using 

the Singular Value Decomposition, PCA enables one to effectively reduce the dimensions from k to j. 

The dominating j PCs can be utilized for showing the original data in dimension-reduced space and for 

classification and regression tasks [6]. 

Figure. 1 illustrates the PCA of a dataset symbolized within an elliptical subspace and the separation 

of two major principal components from a set of variables. In the past few decades, PCA has been 

developed into many different variants and applied to various study fields. Some PCA variants will be 

briefly introduced in the following paragraphs. Hubert et al. [7] pointed out the first extracted PCs might 

not fully represent the variance of the original data since classical PCA is particularly sensitive to 

outlying observations. By combining robust scatter matrix estimation with projection pursuit ideas, they 

proposed Robust PCA (ROBPCA), which shows more accuracy in both noncontaminated and 

contaminated data. Serneels and Verdonck [8] developed a new expectation robust (ER) algorithm to 

apply the robust PCA to data that contains missing values. Based on a simulation study, they concluded 

that ER approach performs well on different sizes of datasets. 

 

Figure 1. Analysis of principal component. 

The Generalized PCA (GPCA) problem, the identification of mixtures of subspaces problem, was 

addressed by Vidal et al. [9] in their innovative algebraic geometric proposal. They demonstrated that 

GPCA is comparable to factoring a homogeneous polynomial in the absence of noise, and they also 

came up with a formula for the number of subspaces. Additionally, GPCA was evaluated on fictitious 

data. Several 2D and 3D segmentation applications were shown. Wang et al. [10] proposed a method of 

tracking moving objects from videos. It involves a combination of an incremental 2DPCA object 

characterization and a Maximum Likelihood blob object region tracking. The updated algorithm for the 

projected covariance matrices significantly reduces the computation time. 

PCA methods are not intended for multilevel analysis. For extracting core inter and intra geometric 

components from multilevel data, Di et al. [11] proposed Multilevel Functional PCA, which combines 

standard multilevel mixed models and classical PCA. Multilevel functional PCA enables an effective 

breakdown of the observed functional variability. Years later, Multivariate Functional PCA (MFPCA), 

another novel statistical approach for data on diverse fields that varies in feature, was proposed by Happ 

and Greven [12]. A straightforward theoretical connection between single- and multiple-variable 
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functional PCA was developed. And based on the univariate counterparts, MFPCA provides a simple 

estimate method for multivariate functional principal components. Therefore, it can be used for sparse 

or measurement-erroneous data. 

Metsalu and Vilo [13] presented a web tool ClustVis, which is established on PCA and Heatmap. It 

can show how multivariate data clusters. The potential application fields include but are not limited to 

gene expression study and high-resolution image analysis for cancer prognosis. The outputs from PCA 

and Heatmap can be downloaded in different formats with multiple detail options. Journée et al. [14] 

developed a new approach to Sparse Principal Component Analysis (SPCA). Four novel algorithms are 

included for computing a matrix’s sparse principal components. The search space’ dimension can be 

reduced drastically when the data matrix has much fewer rows than columns. The analysis of pitprops 

data and gene expression data demonstrated Generalized Power approach is performing better than the 

existing method in both the quality of the results and computational efficiency. A method that combined 

feature selection and subspace learning to remove redundant and irrelevant features was introduced by 

Yi et al. [15] named Joint Sparse PCA (JSPCA). Particularly, by applying L2,1-norms to a loss term and 

a regularization term. This method can eliminate pointless variables and lessen the impact of outliers. 

The experimental results showed that JSPCA has better feasibility and effectiveness than other PCA 

variants. 

2.2.  Linear discriminant analysis 

In general, the linear discriminant function presented by Fisher was thought to be the earliest version of 

Linear Discriminant Analysis (LDA). It involves the methods that are used in Statistics. LDA seeks to 

define or differentiate two categories of objects or occurrences by finding a linear combination of their 

features. To reduce the dimension for further classification. The resultant combination can be employed 

as a linear classifier. Concretely, it ensures the greatest amount of class separability [16]. Some of the 

applications of LDA include face recognition, voice recognition, credit card fraud detection, tumors 

distinguishing between known classes, and so on. 

The original data matrix is intended to be mapped onto a dimension-reduced space via LDA. It 

requires calculating the maximum degree of separation between different classes, the minimum 

difference between samples and the mean of each class, represented by SB and SW, respectively. The 

dimension-reduced space is generated by the transformation matrix (Wmax) [17]. 

Mathematically, W ∈ Rm×j ( j << k ) is a linear transformation matrix. It will be used for mapping 

HDD Y ∈ Rm×k onto a dimension-reduced data Z ∈ Rm×j. 

 𝑍 = 𝑌𝑊𝑇      (2) 

The transformation matrix (W) can be computed as in Equation. 3 [17]. 

 𝑊𝑚𝑎𝑥 =
𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑊𝑊
                  (3) 

Where SB and SW can be computed as in Equation. 1 and 2 [17]. 

𝑆𝐵 =
1

𝑚
∑ 𝑚𝑗(𝑥𝑗̅ − 𝑥̅)𝐶
𝑗=1 (𝑥𝑗̅ − 𝑥̅)

𝑇
      (4)  

𝑆𝑊 =
1

𝑚
∑ ∑ (𝑥𝑗̅ − 𝑥̅)

𝑚𝑗

𝑘=1
𝐶
𝑗=1 (𝑥𝑗̅ − 𝑥̅)

𝑇
        (5)  

Figure 2. shows two possible lower dimensional projected spaces of a group of data. Projection on 

LD1space satisfies the requirements of maximizing SB and minimizing SW. 

During the past decades, numerous discriminant analysis techniques have been put out, each aimed 

at a particular data distribution type. However, in most cases, the distribution type is usually unclear, 

and researchers cannot guarantee the best algorithm is selected to analyze data. A method that aims to 

apply to a broad range of sample distributions was introduced by Zhu et al. [18] named Subclass 

Discriminant Analysis (SDA). Two criteria were derived to determine the practical partition of each 

class into a collection of subclasses. Additionally, this made it possible for them to identify the best 

subspace representation. Subsequently, a new scatter matrix of between-subclass can be defined. 
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Figure 2. Analysis of Linear Discriminant. 

Gkalelis et al. [19] proposed Mixture Subclass Discriminant Analysis (MSDA) years later. In their 

study, two shortcomings were pointed out when using SDA to analyze Gaussian homoscedastic subclass 

structured data. By modifying the objective function of SDA, MSDA showed higher classification 

performance. The within-class variance in LDA is typically singular since the number of dimensions is 

often significantly bigger than the number of observations. 2-Dimensional Linear Discriminant Analysis 

(2DLDA), a new LDA approach was proposed by Ye et al. [20]. The data represented type is the primary 

distinction between classical LDA and 2DLDA. The classical LDA uses a vectorized representation, 

while 2DLDA uses a matrix representation. Smaller-sized matrices are produced because of the eigen 

decomposition. Therefore, the computational time of 2DLDA is less required than classical LDA. 

Experimental results showed that 2DLDA performs better in classification tasks. According to Li et al. 

[21], though 2DLDA alleviates the singularity problem under some satisfying conditions, it might still 

run into the same problem. The test data generalizability is not considered either by LDA or 2DLDA, 

and the lack of a control term on the confidence interval might lead to an over-fitting problem. To 

address these problems, a novel generalized Lp-norm (p>0) 2-dimension LDA (G2DLDA) framework 

was introduced by Li et al. [21]. Moreover, to achieve robustness, a proper “p” can be selected. In 

addition, the introduced regularization term can avoid singularity and over-fitting problems. 

Experimental results showed that G2DLDA performs better in terms of generalization. 

Furthermore, Ran et al. [22] presented an efficient Generalization of Exponential Discriminant 

Analysis (GEDA), which replaced the Euler matrix exponential function with a general exponential 

function. Due to the property difference between these two functions, samples from distinct classes are 

separated at a greater distance by using GEDA. Sharma et al. [23] proposed the Improved Regularized 

LDA (IRLDA). It is a feature selection technique for gene study. The improvement lies in IRLDA is 

that the regularization parameter α can be determined without using any heuristic approach. The 

proposed method is further used to analyze gene expression datasets. Experimental results showed that 

IRLDA performs better in gene classification studies with limited samples. Robust Sparse LDA 

(RSLDA) was introduced by Wen et al. [24]. It is an effective feature extraction method that uses the 

L2,1-norm to restrict the projected matrix. To increase the resistance to noise and ensure the extracted 

features maintain the important information, both sparse norm matrix and orthogonal matrix are included. 

RSLDA showed great performance on image classification tasks. 

2.3.  Locally linear embedding 

An unsupervised non-linear DRT was introduced by Roweis and Saul [25] named Locally Linear 

Embedding (LLE). LLE researches the local symmetries of linear reconstructions for discovering non-

linear structures in HDD. Moreover, the local data’s structure is maintained in the embedding space. To 

put it simply, if the points in HDD input are close to each other, they ought to be adjacent neighbors in 

embedding space too. When performing the non-linear dimension reduction procedure, LLE can 
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successfully discover manifold structures by employing the eigen vector technique. The efficiency of 

LLE can be significantly improved if more local weight vectors are involved in calculating the optimal 

projected weight Wij. 

In terms of the algorithm [26], let Xi be one of the M real-valued vectors of data with D dimensionality, 

and each data point’s K nearest neighbors can be identified by Euclidean distance or other methods. The 

cost function then measures reconstruction errors: 

 𝜀(𝑊) = ∑ ‖𝑋𝑖 − ∑ 𝑊𝑖𝑗∈𝐴𝑖𝑋𝑗∈𝐴𝑖
𝐾
𝑗=1 ‖

2𝑁
𝑖=1           (6) 

As in Equation. 1 [26].  

The cost function is minimized while keeping two limitations in mind. Firstly, for any data point Xi, 

if Xj is not belonging to the neighbor group of point Xi, then Wij = 0. Secondly, the sum of the weight 

matrix’s rows should be equal to one, that is ΣjWij = 1. Then as expected, once the reconstruction weights 

Wij are computed, they will be used to project every single vector Xi to a dimension-reduced vector Yi. 

This process can be done by choosing coordinates Yi in d-dimension to minimize the embedding cost 

function: 

 𝛿(𝑌) = ∑ ‖𝑌𝑖 − ∑ 𝑊𝑖𝑗∈𝐴𝑖𝑌𝑗∈𝐴𝑖
𝐾
𝑗=1 ‖

2𝑁
𝑖=1               (7) 

As in Equation. 2 [26]. 

Figure 3. shows steps in locally linear embedding: (1) identify point Xi’s K nearest neighbors. (2) 

reconstruct linear relationship and obtain reconstruction weights Wij (3) Compute low dimensional 

embedding vector Yi. 

Kouropteva et al. [27] proposed Supervised LLE (SLLE), which uses class labels to perform 

dimensionality reduction. And whether a data point belongs to another’s K nearest neighbors depends 

on its membership information. Two variants of SLLE are proposed that only modify the method used 

to identify each point’s K nearest neighbors. Experiments on handwritten digit recognition demonstrated 

that both variants yield the best accuracy. Hettiarachchi and Peters [28] proposed Multiple Manifold 

LLE (MMLLE). It is designed for learning multiple manifolds in data with various classes. The nearness 

of manifolds is used as a metric to explore the most suitable dimension-reduced embedding space. In 

multiple manifold spaces, MMLLE is trying to maintain the remoteness and structure of each manifold. 

Experimental results showed that MMLLE is performing well in object recognition and classification. 

LLE and its variants have also played a significant role in gene study. A method for the gene 

classification task was introduced by Lang et al. [29]. It uses a Signal-to-Noise Ratio (SNR) to remove 

noisy genes, followed by using LLE to project gene data into low dimensional space. The gene subset 

is constructed next by using SNR again. Experimental results showed the method could be applied to 

identify the difference between differentially expressed genes. Min et al. [30] proposed the Relevant 

Component LLE (RLLE). The core idea of RLLE is that it changes the represented data’s feature space 

by assigning different weights to relevant and irrelevant dimensions. The ReliefF algorithm is being 

used to achieve this goal. After removing irrelevant attributes, the distance between the samples is 

computed. Then K nearest neighbor points of each sample are obtained, and the locally linear embedding 

is calculated. Experimental results on analyzing various DNA microarray data showed that the proposed 

method is highly effective in classifying different expressed gene classes. In recent years, gene selection 

and classification methods have been developed. A technique that combines LLE and Neighborhood 

Rough Set (NRS) was proposed by Sun et al. [31]. The irrelevant genes were dropped by measuring the 

separability between each class. The redundant genes were dropped by comparing the correlation 

coefficient. The noise was also removed by using wavelet analysis. In the tumor gene categorization 

study the proposed LLE_NRS showed great feasibility and effectiveness. Xu et al. [32] proposed a 

supervised LLE and Spearmen’s rank correlation coefficient (SLLE-SC2), which can be used for feature 

selection. In particular, the co-expression genes were removed by using the SC2 approach. Experimental 

results showed that SLLE-SC2 has great potential applicability to specific tumor problems. 
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Figure 3. Analysis of Locally Linear Embedding. 

3.  Comparative study 

3.1.  Issues of HDD 

Normally, outliers, noise, missing values, and small-sample-size are the most common issues of HDD. 

Respectively, outliers have much bigger or smaller values than all other values in the dataset. Outliers 

are outside of the normal distribution usually, so that is challenging to analyze a specific group of values 

when there are outliers. Similarly, it is hard to identify noise from actual data. Noise can either mask 

outliers or interfere with the detection of deviance. Data with missing values is hard to get accurate 

results after processing. Finally, a small-sample-size issue can cause an over-fitting problem. TABLE 2 

shows a list of typical HDD issues with the DRTs that can be used to address each issue. 

Table 2. Common HDD issues and corresponding available solution DRTs. 

HDD Issues Solution DRTs References 

Multi-variate MFPCA [12] 

Outliers ER-PCA, JSPCA [8], [15] 

Response Time 2D-PCA [10] 

Singularity 2DLDA, G2DLDA [20], [21] 

Small sample size GEDA [22] 

Sparsity SPCA, JSPCA [14], [15] 

Unknown subspace GPCA [9] 

3.2.  Issues of DRTs 

Unfortunately, there is no guidance for selecting a certain appropriate DRT according to the type of 

HDD, and researchers may have to spend lots of time trying to find a suitable one. How to select a DRT 

correctly and effectively is a significant problem that requires more attention. Another issue is the 

identification of the redundancy level of redundant features and then removing some of them from the 

original HDD. Occasionally, some features may be essential for next-step analysis but are identified as 

redundant or irrelevant. Information is potentially lost when mapping low dimensional data. In addition, 
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many DRTs are sensitive to noise, and the existence of noise can have an immediate impact on DRTs’ 

performance. Lastly, incorrect classification or predictions may result from extreme values of a certain 

variable. 

Some common problems may arise while applying DRTs to real-life data. Identifying the nature of 

data and features for analysis always requires professional knowledge and relevant research experience. 

Hard to interpret the analysis results is one of the reasons hindering DRTs’ application since it is not 

possible to keep all the original information after processing dimensionality reduction. 

4.  Discussion 

DRTs have drawn greater attention in recent decades for use in gene expression research, face 

recognition, image classification, and other tasks. This study covers the most widely used methods, PCA, 

LDA, and LLE. The functionalities and available variants of each method are discussed. Due to its 

simplicity and effectiveness, PCA and its different variants are still widely used, but the existence of 

outliers might negatively impact PCA’s performance. LDA and its different variants are widely used for 

pattern classification and feature extraction tasks on picture, text, and gene data. Moreover, G2DLDA 

resolves the classical LDA’s singularity problem, while EDA and GEDA can solve the SSS problem. 

LLE and its different variants are widely used for image recognition and classification task. Gene 

expression studies also use LLE variants for selecting significant genes for a certain disease. 

Furthermore, LLE is only working for manifolds that have been well-sampled. It can retain the HDD’s 

local structure in dimension-reduced space. 
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