

A verilog design for cascading a large-capacity asynchronous

FIFO with a synchronous FIFO

Keyu Liu

South China University of Technology, Guangzhou, China

202264710491@mail.scut.edu.cn

Abstract. In modern large scale ASIC designs, multiple clock systems are often involved, which

can create problems with data transfer in different clock domains. A practical solution to this

problem is the use of asynchronous FIFOs (First In First Out) for buffering the transfer of data

from different clock domains. A high-capacity asynchronous FIFO cascaded with a synchronous

FIFO is designed based on a conventional asynchronous FIFO using the Verilog language. The

input data is processed across the clock domain by the asynchronous FIFO, and the data output

from the asynchronous FIFO is cached and output again by the synchronous FIFO. The module

increases the FIFO depth while enabling data to be transferred across the clock domain. The

simulation is completed within the Modelsim software which accordingly verifies the two main

roles of the FIFO in processing data, namely the cross-clock domain and the data caching

function. Simulation results show that the asynchronous FIFO data is written and read correctly

and that the empty/full flag signal is correct.

Keywords: asynchronous FIFO, synchronous FIFO, verilog language

1. Introduction

With the rapid development of integrated circuits, a complete system in an ultra-large scale integrated

circuit chip contains multiple clocks, and data can be sub-stable between transmission or storage under

the control of different clock domains [1]. Asynchronous FIFO (Frist Input Frist Output) is one of the

effective methods to solve the sub-stability caused by data transmission and storage across clock

domains [2]. Asynchronous FIFO has a wide range of applications in areas such as radar, signal

processing and multimedia technology., provides authors with most of the formatting specifications

needed for preparing electronic versions of their papers [3].

Large-capacity synchronous FIFOs are implemented using SRAM as the FIFO memory, while large-

capacity asynchronous FIFOs can still be used [4]. In this article, a large-capacity synchronous FIFO

and a small-capacity asynchronous FIFO are cascaded to achieve this. The reason for this is that

asynchronous FIFOs only function to transfer data across clock domains, while synchronous FIFOs are

more suitable for caching data. Therefore, combining the characteristics of these two FIFOs, this article

can cascade them to obtain a high-capacity asynchronous FIFO [5].

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/14/20230754

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

25

2. Key design items

2.1. Differences between asynchronous FIFO and synchronous FIFO

Asynchronous FIFO differs from synchronous FIFO in two main ways: Firstly, Fifo memory operates

in two clock domains. Secondly, wrclk and rdclk work in different clock domains;Read and write

Pointers pass through the two-stage synchronizer with a delay. Asynchronous FIFO can no longer use

the "counter" to produce fifo empty, full signal, the reason is that the counter can not be driven by two

clocks at the same time, only by comparing read, write pointer to produce empty, full signal.

Synchronizing the read pointer to the write clock domain generates a full signal when compared with

the write pointer [6]. Synchronizing the write pointer to the read clock domain produces a null signal

when compared with the read pointer.

Synchronization of read and write Pointers needs to be transmitted across clock domains. Therefore,

it is inefficient to use handshake signals to synchronize Pointers. If the pointer is still "binary coded"

and the pointer is synchronized with a two-stage synchronizer, a metastable state may occur that causes

an error in the pointer used for comparison.

If the pointer goes from "111" to "000" through the two-stage synchronizer, there are 8 possible

results. Each bit may have sampling errors, and the wrong pointer will lead to empty and full fifo signal

abnormalities [7]. If the read pointer is incorrectly synchronized, the full FIFO signal is not stretched

properly. If you continue to write FIFO, the original data will be overwritten, resulting in data

transmission errors. If the synchronization of the write pointer is incorrect, the empty FIFO signal will

be stretched normally. If you continue reading the FIFO, garbage data will be read out, resulting in data

transmission errors.Therefore, pointer synchronization of an asynchronous FIFO should avoid binary

encoding.

2.2. Gray code

One way to achieve asynchronous FIFO pointer synchronization is to use gray codes, which are "unit

spacing codes", i.e., adjacent values differ only by 1bit from each other. Gray code has the following

characteristics: First, unit spacing code, which means only 1bit difference between adjacent values.

Second, centrosymmetric, that is, except MSB, other bits are centrosymmetric [8].

The pointer is counted by gray code, and when the pointer is synchronized with a two-stage

synchronizer, metastable stability rarely occurs. In addition, only 1bit error occurs in the sampled value,

but this error will not affect the correct generation of empty and full signals. Consider the Gray code

read and write pointer sampling error.

Read pointer sampling error: adjacent Gray codes differ only by 1bit. If metastable sampling occurs,

two situations will occur. One is that the sampling value remains unchanged, and the synchronized read

pointer is less than the current real value, fifo_full will be raised in advance, and the overflow will not

appear. Second, the sampled value is successfully sampled, and the synchronized read pointer is equal

to the current real value. Neither result will affect the correct generation of "fifo_full”.

Write pointer sampling error: The same is true for the write pointer. First, if the synchronized write

pointer is less than the current true value, fifo_empty will be raised in advance. Although there is still

data to be read, this will not cause underflow. Second, the synchronous write pointer is equal to the

current true value. Neither result will affect the correct generation of "fifo_empty".

2.3. Effect of synchronization pointer

The purpose of comparing read and write Pointers is to generate empty and full signals of FIFO.

Compared with synchronous FIFO, asynchronous FIFO compares read and write Pointers respectively

in two clock domains, and both read and write Pointers need to go through a two-stage synchronizer.

2.3.1. FIFO's "fake full". Because there is a delay of 2*T_wclk in synchronizing the read pointer to the

write clock domain, the rdclk_sync sampled by the write clock domain is less than or equal to the rd_ptr

of the read clock domain. Wrclk catches up with rdclk (wrclk and rdclk_sync is converted to binary

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/14/20230754

26

code). The highest bit is different, and the rest bits are the same. In fact, there are two address Spaces in

the FIFO where data can be written [9]. This situation is called "false full" of the FIFO. The "false full"

of the FIFO prevents data from being written but has no effect on the accuracy of the data. Overflow

occurs only when the FIFO is actually full but does not prevent data from being written.

2.3.2. FIFO's "fake empty". Because there is a delay of 2*T_rclk in synchronizing the write pointer to

the read clock domain, wr_ptr_sync sampled in the read clock domain is less than or equal to wr_ptr in

the read clock domain. wr_ptr_sync equals rd_ptr (all Pointers are converted to binary code), all bits are

equal, and the fifo_empty signal is raised. Although the "false null" of the FIFO pulls up the null signal

of the FIFO and prevents the data readout when there is actual data, it has no effect on the accuracy of

the data. The null signal of the FIFO will not be pulled down until the change of the write pointer seen

by the read clock domain. The underflow problem occurs only if the read operation is not blocked when

the FIFO is empty.

3. The overall architecture of asynchronous FIFO and synchronous FIFO cascade design

The main architecture schematic for this code design is shown in the Fig.1 and consists mainly of an

asynchronous FIFO module design and a synchronous FIFO module design, as well as a top-level

module that connects the two as shown in the interface schematic [10].

Figure 1. Schematic diagram of the main structure.

The input clock includes two clock frequencies, and this design sets the write clock wrclk to 100MHz

and the read clock rdclk to 50MHz when performing the simulation. The read and write of the

asynchronous FIFO are controlled by wrclk and rdclk respectively, while the read and write clocks of

the synchronous FIFO are both rdclk. Data_in and data_in_en are the input data and enable interface.

The data_out_async read from the asynchronous FIFO is used as the input signal for the synchronous

FIFO, which is again processed in the first level cache, while the output signal of the synchronous FIFO,

data_out_sync, is used directly as the value of the final output signal, data out [6].

4. FIFO verilog design introduction

4.1. Asynchronous FIFO module

The fifo ip core in quartusII is called and instantiated. The FIFO depth is set to 65536 to meet the

system's need for a high-capacity asynchronous FIFO, and separate read and write clocks are chosen at

the bottom of the clock selection to meet the needs of the asynchronous design. As shown in Figure 2.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/14/20230754

27

Figure 2. IP core instantiation settings.

4.2. Synchronous FIFO module

The module also calls the corresponding FIFO ip core, except that the clock selection selects the same

clock for the read and write clocks. The main structure of the code is a state machine structure. When

the input is written, the data is cached into the FIFO and the state machine jumps to the read state, where

the input data is read out in turn until the FIFO is empty, and the state machine returns to the initial idle

state [7].

4.3. Top-level module and simulation incentive module

The top-level module is mainly used to instantiate the above two FIFO design modules and to interface

them accordingly. The simulation excitation module sets rdclk and wrclk to 50MHz and 100MHz

respectively, which is used to write test cases, generate excitation data and instantiate the design module

for the relevant simulation of the designed functional module code. This simulation generates 1-10 data

inputs in turn to test the overall functionality of the code.

5. Simulation verification and analysis

First, after creating a new project in modelsim, add all the above design module verilog code, tb code,

and the corresponding. v files for generating the ip cores to the modelsim project. Afterwards, click on

compile to compile and check the accuracy of the code. Click on simulate and select tb as the top-level

file. Here you need to add the altera_mf_ver wrapper library, which is used to call the ip cores for normal

simulation. Finally, add all the module waveforms to the waveform graph, as shown in Fig. 3, which

shows the simulated waveform graph for all the signals.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/14/20230754

28

Figure 3. Simulated waveforms of all signals.

As can be seen from Fig.4, the ten data are written to the FIFO in turn and then read out in turn at

the clock rate of rdclk, and the asynchronous FIFO emulation functions correctly.

Figure 4. Asynchronous FIFO simulation waveform

From Fig.5, it can be seen that after the data is written to the FIFO sequentially when cstate is in the

write state, the data is read out sequentially in the read state, and the data is maintained correctly, and

the synchronous FIFO simulation functions correctly.

Figure 5. Synchronous FIFO simulation waveform

As can be seen from Fig.6, the initial data entered and the final output data remain the same, the

overall simulation function of the code is correct, and the simulation is complete.

Figure 6. Top-level module simulation waveforms

6. Conclusion

Based on the traditional FIFO architecture, a high-capacity asynchronous FIFO circuit architecture is

proposed by cascading asynchronous FIFOs and synchronous FIFOs. The design was carried out in

Verilog, and the simulation and verification were based on Modelsim software. The simulation results

show that the proposed asynchronous FIFO structure has the advantages of high reliability and large

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/14/20230754

29

capacity. Based on this paper, the reliability of the data transfer performance of the high-capacity FIFO

data cache to the limit can be investigated in the future.

References

[1] Acharya D, Mehta U S. Performance Analysis of RTL to GDS-II Flow in Opensource Tool Qflow

and Commercial Tool Cadence Encounter for Synchronous FIFO[C]//2022 IEEE International

Conference of Electron Devices Society Kolkata Chapter (EDKCON). IEEE, 2022: 199-204.

[2] Kumar P, Moud R. DESIGNING AND VERIFICATION OF ASYNCHRONOUS FIFO[J].

International Journal of Advanced Research in Computer Science, 2022, 13.

[3] Abasaheb S A, Kamatchi S. Design of Mesochronous Dual Clock Fifo Buffer with Modified

Synchronizer Circuit[C]//2022 6th International Conference on Electronics, Communication

and Aerospace Technology. IEEE, 2022: 1-7.

[4] Khosla M. Coverage of Meta-Stability Using Formal Verification in Asynchronous Gray Code

FIFO[C]//2022 2nd International Conference on Intelligent Technologies (CONIT). IEEE,

2022: 1-8.

[5] Khosla M. Coverage of Meta-Stability Using Formal Verification in Asynchronous Gray Code

FIFO[C]//2022 2nd International Conference on Intelligent Technologies (CONIT). IEEE,

2022: 1-8.

[6] Li J, Yang L, Feng X, et al. UART Controller with FIFO Buffer Function Based on APB

Bus[C]//2022 IEEE 16th International Conference on Anti-counterfeiting, Security, and

Identification (ASID). IEEE, 2022: 1-4.

[7] de Castro2 Guowei R A L, Yazicigil Y C J R, Joshi A C V V A. FAB: An FPGA-based

Accelerator for Bootstrappable Fully Homomorphic Encryption[J].

[8] Yamamoto K, Fukuhara A, Nishi H. Hardware Implementation of MQTT Broker and Precise

Time Synchronization Using IoT Devices[J]. IEEJ Transactions on Electrical and Electronic

Engineering, 2022, 17(2): 209-217.

[9] Hsia S C, Wang S H, Kuo T T. VLSI architecture and implementation of HDR camera signal

processor[J]. Journal of Real-Time Image Processing, 2023, 20(1): 6.

[10] Nowosielski A, Reginia P. Digital Wah-Wah Guitar Effect Controlled by Mouth

Movements[C]//Computer Vision and Graphics: Proceedings of the International Conference

on Computer Vision and Graphics ICCVG 2022. Cham: Springer Nature Switzerland, 2023:

31-39.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/14/20230754

30

