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Abstract. Matrix multiplication have become increasingly important nowadays, which is applied 

in many kinds of fields. In this case, the need to improve the speed and efficiency of matrix 

multiplication is increasing. In this paper, the author analyzes some relevant theories about ma-

trix multiplication as well as the advantage and disadvantage of some applications that based on 

matrix multiplication. It turns out that matrix multiplication has a lot of room for development 

in the future cause the current method still has many defects and is not perfect. For example, it 

will still take plenty of time to finish the process of matrix multiplication when the matrices are 

large in size.  However, it’s gratifying that some improvements have been achieved, which can 

help to optimize the efficiency. In addition, some advanced methods start to appear. For instance, 

the method of combining matrix multiplication with AI provides a new direction for future re-

search and development. Consequently, it is predictable that a significant achievement to opti-

mize matrix multiplication will be made in the future. 

Keywords: matrix multiplication, theory, accelerator. 

1.  Introduction 

Matrix multiplication has become increasingly popular nowadays since it is a fundamental and useful 

operation to analyze data, which can be applied in many types of fields. Firstly, it can play an important 

role in machine learning. Many workloads are examined in large-scale distributed cloud computing set-

tings as input dataset sizes grow. Consequently, in order to conduct machine learning tasks in the cloud, 

it is important to understand the features of a distributed matrix multiplication work [1]. Matrix multi-

plication is also a primitive method that can be found in a variety of systems, including neural networks 

and scientific computing procedures. Machine learning-based algorithm discovery offers the potential 

to go above human intuition and outperform the greatest human-designed algorithms currently available 

[2]. 

In addition, it is also helpful to apply matrix multiplication in other fields like scientific computing 

[3]. Therefore, many researchers have become interested in developing matrix computation tasks on 

distributed systems. 

Moreover, matrix multiplication is helpful in both computer science and mathematics. In addition to 

the fact that many computational issues in linear algebra can be solved by computing the product of two 

matrices, matrix multiplication's complexity also arises as an obstruction in a number of other compu-

tational activities [4]. In addition, on high-performance computers, matrix multiplication can serve as 
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portable, effective building blocks for linear algebra algorithms. For instance, BLAS3 operation algo-

rithms that are asymptotically quicker than the standard ones. These methods are based on the fast matrix 

multiplication approach developed by Strassen, which is widely acknowledged to be a useful method 

for real-world applications once matrix dimensions rise above around 100 [5]. Finally, matrix multipli-

cation is also important in deep learning. For example, TensorFlow, Caffe, Torch, and other open-source 

deep learning frameworks are widely used around the world and their acceleration is critical. Convolu-

tion takes a significant amount of computing time on various systems. However, this can be greatly 

improved by changing the matrix multiplication [6].  

Moreover, Most forms of DNNs (deep neural networks) use generalized matrix multiplication 

(GEMM) as the main kernel for both training and inference [7]. However, there exist some bottlenecks 

that can impede people when they try to study this field. Bottleneck caused by the unpredictable latency 

while waiting for the slowest nodes, which is called stragglers, is one of the main difficulties that people 

need to face with [3]. The fact that stragglers act as bottlenecks when the calculation is split over several 

workers is one of the main challenges encountered. Computation replication between workers is a crude 

method of straggler mitigation. This is obviously a waste of resources, and adding redundancy to com-

putational systems requires a methodical approach [8]. In this case, though there are already some ap-

plications of matrix multiplication that have been developed, people are still trying to optimize some 

problems. In general, it is obvious that matrix multiplication is an important method that can be used in 

many advanced fields. In this paper, the author considers some fundamental theorem and provide some 

applications that based on matrix multiplication as well as example of optimization based on it.  

2.  Relevant theories and current situation analysis of matrix multiplication 

2.1.  Theory of matrix multiplication 

2.1.1.  Theory 1: The theory of algorithmic fault-tolerant matrix multiplication. The ability to convert 

most calculations into large matrices is a prerequisite for the high performance of many linear algebraic 

procedures. The cost of moving b × b blocks of operands at the level of the memory hierarchy is pro-

portional to b^2, which must be amortized in O(b^3) [9] calculations. This leads to high performance 

for multiplication of the matrices themselves. This fact relates to algorithmic problems for linear alge-

braic functions which spend most of the time on competing matrices. Therefore, it is important to add 

tolerance to matrix-matrix multiplication while maintaining high performance, so the existence of error-

tolerant matrix-multiplication is an important first step to improve fault-tolerant linear algebra libraries. 

Moreover, crime at the algorithmic level is expected to be important in future computer systems. How-

ever, it is known that in real-world applications, the normal implementation of the break-even method 

(ABFT) cannot protect all elements of floating-point numbers [10].  

Obviously, this approach needs to be expanded to remove bit-flip from all assumptions without add-

ing overhead. So, the main goal of this engine is to detect the biggest errors with the least amount of 

overhead. Best algorithm-based fault tolerance (ABFT) requires adding a small amount of repeated data, 

a checksum, to the input to ensure that the appropriate number of errors has been properly closed. de-

tected and corrected during or after calculation [10] . This approach (algorithm-based fault tolerance) 

has many advantages over others, despite its age. The first is a complete theory that can be used to 

identify faults precisely. Second, it specifically mentions how to distinguish between misguidance and 

injustice [9]. Finally, it confirms that by adding a tolerance to the multiplication of high-performance 

matrices, theoretical results can be achieved without sacrificing high performance. Therefore, ABFT 

overcomes the weakness of the algorithm by adding rows or columns to the matrix which carry statistical 

information. To use ABFT, transactions must have a checksum protector. Most ABFT studies focus on 

failure. In this variation, also known as global ABFT, the checksums are stored in a continuous line and 

sequence for the encoded checksum values [10]. 
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2.1.2.  Theory 2: Theory of group-theoretic algorithms for matrix multiplication. One of the most im-

portant problems in algorithmic linear algebra is matrix multiplication. This is an important task, and 

the number of problems that can occur only serves to show how important the task is. Through some 

modifications, a better bound on the exponential matrix multiplication has been established, which for 

all ε > 0 is the smallest number that can be multiplied by an n × n matrix in the function O(n^(ω+ε)). It 

is recognized that ω is equal to 2, but the most correct answer is ω < 2.38 [11-12]. In fact, ω is an 

important number for understanding algorithmic linear algebra because solving all linear algebra prob-

lems, such as finding determinants, solving systems of equations, and inverting matrices, there are equa-

tions such as matrix multiplication. It also shows that reducing n × n matrix equations to groups of 

algebraic equations is supported by many families of non-abelian groups. Specifically, it includes a 

family of size groups n^(2+O(1)). Although not sufficient, the existence of these families is a prerequi-

site for the group theory process to show that ω = 2 [11]. Therefore, it is necessary to make a new 

approach to frontiers, leaving the problem to group theory and representation theory. Several researchers 

have tried to solve this problem, providing a simple group theory matrix multiplication method with 

O(n^2.9088) direct processing time [11]. In this case, the newly developed group theoretical algorithms 

will be easier to present and understand, because they fit the mathematical process clearly and avoid 

some of the shortcomings of the old algorithms.  

2.1.3.  Theory 3: Algebraic complexity theory of matrix multiplication. The analysis of computation us-

ing algebraic models is known as algebraic complexity theory. The development of techniques to 

demonstrate lower bounds on the computational complexity of actual problems in algebraic models of 

computing has been one of this field's major accomplishments [13]. In this case, it is important to know 

how natural topics in geometry and representation theory are addressed as open questions in algebraic 

complexity theory, which can help us to have a better understanding of matrix multiplication. One of 

the typical examples is Strassen’s algorithm. In this algorithm, each matrix is partitioned into 4 copies, 

and then 10 intermediate matrices are created as follows. 

𝑆1 = 𝐵12 − 𝐵22 

𝑆2 = 𝐴11 + 𝐴12 

𝑆3 = 𝐴21 + 𝐴22 

𝑆4 = 𝐵21 − 𝐵11 

𝑆5 = 𝐴11 + 𝐴22 

   𝑆6 = 𝐵11 + 𝐵22   (1) 

𝑆7 = 𝐴12 − 𝐴22 

𝑆8 = 𝐵21 + 𝐵22 

𝑆9 = 𝐴11 − 𝐴21 

𝑆10 = 𝐵11 + 𝐵12 

Then calculate matrix multiplication for 7 times. 

𝑃1 = 𝐴11 ∗ 𝑆1 

𝑃2 = 𝑆2 ∗ 𝐵22 

𝑃3 = 𝑆3 ∗ 𝐵11 

                   𝑃4 = 𝐴22 ∗ 𝑆4                  (2) 
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𝑃5 = 𝑆5 ∗ 𝑆6 

𝑃6 = 𝑆7 ∗ 𝑆8 

𝑃7 = 𝑆9 ∗ 𝑆10 

Finally, matrix C can be calculated according to these results 

𝐶11 = 𝑃4 + 𝑃5 + 𝑃6 − 𝑃2 

𝐶12 = 𝑃1 + 𝑃2 

                   𝐶21 = 𝑃3 + 𝑃4                  (3) 

𝐶22 = 𝑃1 + 𝑃5 − 𝑃3 − 𝑃7 

There is a simple example: suppose that there are two 2 × 2matrices A and B 

               𝐴 =
𝑎1
1 𝑎2

1

𝑎1
2 𝑎2

2, 𝐵 =
𝑏1
1 𝑏2

1

𝑏1
2 𝑏2

2                (4) 

According to Strassen’s algorithm, it is obvious that the output matrix of C = A*B is 

           𝐶 =
𝑎1
1 ∗ 𝑏1

1 + 𝑎2
1 ∗ 𝑏1

2 𝑎1
1 ∗ 𝑏2

1 + 𝑎2
1 ∗ 𝑏2

2

𝑎1
2 ∗ 𝑏1

1 + 𝑎2
2 ∗ 𝑏1

2 𝑎1
2 ∗ 𝑏2

1 + 𝑎2
2 ∗ 𝑏2

2             (5) 

However, the disadvantage of this algorithm is that it uses too much arithmetic operations (+, -), or 

many multiplications. The asymptotic results are mostly determined by the number of multiplications 

required, which controls the overall number of arithmetic operations [14]. 

In order to make an improvement, some researchers use tensors to investigate the complexity of 

matrix multiplication in a more geometrical manner [13-14], which is important in some advanced tech-

niques like approximate algorithms [14]. 

2.2.  Current situation analysis 

Matrix multiplication is one of the most basic and universal operations in all of mathematics. Research-

ers have tried to find an effective way to perform matrix multiplication for many years. Many methods 

are created successfully like Strassen’s algorithm.  

Before Strassen’s algorithm was created, it was extremely complex to perform matrix multiplication 

when the matrix is large (like thousands of rows and columns). However, after the invention of Stras-

sen’s algorithm, it is possible to multiply a pair of 2 × 2 matrices in 7 steps instead of 8 multiplication 

steps, at the cost of introducing more addition steps. This algorithm can improve the efficiency of cal-

culation largely when the matrix is large enough cause the elements of a matrix themselves can be ma-

trices. For instance, a 1000 × 1000 matrix can be divided into four 500 × 500 matrices, and so on. 

Strassen’s discovery has encouraged many researchers to study deeper and to find an efficient algorithm 

for matrix multiplication. In this case, two different research directions have produced.  

The first one is how does the number of multiplication steps grow with n in the fastest possible 

algorithm for multiplying two n × n matrices together so that n tends to infinity? Currently, the best 

reduction record is 𝑛2.3728596. 

The second one is the least possible number of multiplication steps. It has been show proved that the 

multiplication steps of a 2 × 2 matrix cannot be less than 7 steps. However, the minimal number of 

necessary multiplications is still unknown for all other matrix sizes. Quick techniques for tiny matrices 

may have a significant impact because, when multiplied by matrices of a reasonable size, they may 

outperform Stratham's approach. Unfortunately, even for 3 × 3 matrices, the number of possible algo-

rithms exceeds the limit of what can be computed.  
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However, researchers have made progress in this field. Recently, in an article published in Nature, a 

team from the artificial intelligence company DeepMind demonstrated how to approach this problem 

from a novel angle. A unique mathematical object called tensor, which is a three-dimensional array of 

numbers, can be used to illustrate the abstract problem of multiplying two matrices. After that, the re-

searcher can break down this tensor into a sum of its basic parts, where each one stands for a distinct 

stage of the associated matrix multiplication process. In this way, the researchers discovered new algo-

rithms, which can help to improve the efficiency. 

The strategy that DeepMind use is based on deep learning algorithm. Neural networks are the foun-

dation of all deep learning techniques: networks of artificial neurons are divided into layers, and the 

strength of the connections can vary, representing the degree of influence each layer has on the neurons 

in the next layer. The strength of these connections is adjusted over multiple iterations of the training 

process, in which the neural network learns to convert each input it receives into an output that helps 

the algorithm achieve its overall goal. 

Consequently, a new algorithm named AlphaTensor have been created by DeepMind. Like all neural 

networks, AlphaTensor requires a large amount of data for training. After training, AlphaTensor redis-

cover Stratham's algorithm. Then, for each matrix size, it has discovered up to hundreds of new algo-

rithms, although the number of multiplication steps is the same. In a few instances, AlphaTensor even 

set new records. The algorithm's most unexpected finding is that it discovers a new method for multi-

plying 4 × 4 matrices in 47 steps rather than the 49 steps needed for Stratham's algorithm. Therefore, it 

shows that the new algorithm (AlphaTensor) has a lot of room for improvement in the future. 

3.  Applications 

3.1.  Example 1: Photonic matrix multiplication – photonic accelerator 

The increasing global demand for artificial intelligence has led to a very high demand for computing 

power and memory. In addition, it is increasingly difficult to rely on semiconductor technology to im-

prove computing performance and energy efficiency. However, it is recognized that optical devices can 

have very large bandwidths and low power consumption because the quantum state of light has many 

frequencies and many degrees of freedom, making it a broad area of research. In recent years, photonic 

matrix multiplication has developed rapidly and is widely used in photonic acceleration fields such as 

optical signal processing, artificial intelligence and photonic neural networks. The use of matrix multi-

plication based refers to the great potential of the photonic accelerator and various applications. In this 

regard, some researchers are increasingly focusing on photonic matrix research, and it turns out that this 

method has a bright future. 

Most of the computational overhead in generating flow signals and intelligence algorithms is aided 

by matrix computation, an important form of information creation in science and technology. To meet 

the increasing demand for cost-effectiveness and capacity, photonic accelerators are designed to increase 

the objective to evolve, and artificial intelligence can benefit from the superior capabilities of photonic 

matrix multiplication. Recent advances in photonic matrix research will make it possible to develop 

applications that are not currently possible for conventional electronic computers [15]. 

The great potential for optical data processing and the speed of intelligence is demonstrated by pho-

tonic matrix multiplication. Power consumption and signal delay can be reduced. Future photonic matrix 

nuclei will be more complete and more capable. In conclusion, photonic matrix multiplication has been 

used in many fields, such as AI accelerators and optical signal processing in optical communications.  

3.2.  Example 2: Sparse-sparse matrix multiplication accelerator 

A sparse matrix is a matrix that has a large percentage of zeros. Various formats have been developed 

to efficiently remove matrices from memory by eliminating zero points. Compressed Sparse Row (CSR) 

or Com-pressed Sparse Column (CSC) is one of the most commonly used six-mats [16]. Sparse matrix-

matrix multiplication (SpGEMM) is an important computational basis in several important applications, 

such as graph analytics, machine learning, and scientific computing. More specifically, SpGEMM is 
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part of many graph algorithms. SpGEMM calculations have additional hardware components that are 

provided to support different functions. Hardware accelerators are used specifically to solve this prob-

lem with energy efficiency. However, there are some challenges that scientists must overcome when 

building a new accelerator. In addition, since the number of non-zero elements in the output of 

SpGEMM is not known in advance, synchronization is necessary to show the corresponding data for 

different rows and columns computed simultaneously [17]. 

Recently, several researchers have proposed a new SpGEMM-based accelerator called MatRaptor, 

which has the best power and performance compared to the newest accelerator OuterSPACE [17]. This 

was achieved by the development of a new small data file called a row-sparse cyclic channel (C2𝑆𝑅), 

which can provide multiple channels for similar access to large memory. 

Several other researchers have developed another accelerator called InnerSP, which is also based on 

SpGEMM. The construction of InnerSP is based on extensive analysis of 755 sparse matrices, which 

shows how big the problem is in memory. After that, scientists came up with a fix to reverse this prob-

lem. Consequently, the product-InnerSP-does not require more memory than the two input and one out-

put matrices [16]. According to this study, it is better to achieve unit efficiency when using the space in 

the equation matrix equation and not using the chips involved in the previous message. It turns out that 

the memory-efficient acceleration of domestic products can be a good substitute for external production. 

4.  Conclusion 

In general, matrix multiplication is an advanced method that can be applied in many fields with high 

efficiency, despite that there are still some problems to be solved. It seems that matrix multiplication 

can become much more important and powerful in the future, with the combination of AI. So, it’s obvi-

ous that matrix multiplication has a wide range of development prospects. In this paper, the author firstly 

discusses the background and significance of the study of matrix multiplication, like its contribution to 

machine learning. Then, the author reveals some theories about matrix multiplication, which contains 

fault-tolerant matrix-matrix multiplication, group-theoretic matrix multiplication and algebraic com-

plexity theory of matrix multiplication. In addition, current status of matrix multiplication is also dis-

cussed. Finally, some applications that based on matrix multiplication are listed and discussed, like pho-

tonic accelerator and Sparse-Sparse Matrix Multiplication Accelerator, which might play an important 

role in the future. However, there are still some researches that people need to do. For instance, how to 

accelerate complex matrix multiplication faster and more efficiently still needs to be studied in depth by 

researchers, although some progresses have been achieved. Moreover, boosting the speed of matrix 

multiplication can be guaranteed by combining matrix multiplication with AI, which can be used to 

solve a broader range of mathematical and computational tasks consequently. 
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