
 

 

Structural analysis of U-Net and its variants in the field of 

medical image segmentation 

Yanjia Kan 

School of Artificial Intelligence, Xi'an Jiaotong-liverpool University, Suzhou, 215123, 

China  

 

Yanjia.Kan20@student.xjtlu.edu.cn 

Abstract. Medical image segmentation can provide valuable information for doctors, it has 

important research value in the medical field. Meanwhile, U-Net, as the fundamental networks 

for such tasks, brings a substantial improvement in the segmentation performance of traditional 

medical images. With the increasingly widespread use of U-Net, researchers have designed 

various U-Net variants according to different task requirements. However, most of the current 

summaries of U-Net variants are divided according to the direction of network applications, and 

the structural relationship between the variant networks and U-Net is not elaborated. Therefore, 

this paper classifies U-Net variants according to their network framework by elaborating the 

principles of U-Net structure. According to the U-Net network structure, it is divided into three 

main categories: backbone improvement, module addition and cross-network fusion. Further, the 

characteristics, advantages and disadvantages of different categories of variants are introduced, 

and the directions of the variants for U-Net optimization are analyzed. Finally, the article 

summarizes the current development direction of U-Net variants and provides an outlook on the 

future directions that can continue to be optimized. 
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1.  Introduction 

In medical tasks, the main purpose of image segmentation is to segment regions with medical research 

value from images. Medical images are various, such as magnetic resonance images, ultrasound images, 

etc. The segmented regions generally have special features. This feature can assist in clinical diagnosis 

and treatment, as well as provide valid evidence for pathological studies. Therefore, a medical image 

with accurately segmented lesions can greatly improve the accuracy and effectiveness of disease 

treatment in the later stage for medical personnel. However, in practical situations, due to the limitations 

of multiple parties such as acquisition equipment, deterioration of the lesion, and structural peculiarities 

of the organ, the image segmentation is very difficult. Medical images are complex and some images 

lack obvious features, especially in the segmentation edges where discriminative linear features may be 

missing. In addition, medical images are often affected by noise and volume effects, such as uneven 

gray scale and artifacts. Therefore, traditional segmentation tasks often require mature doctors to 

complete. However, human judgment is often influenced by many factors, resulting in fluctuations in 

the accuracy of segmentation. As a result, image segmentation field introduced various segmentation 

algorithms and neural networks, which greatly reduces the consumption of human and material and the 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/15/20230800

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

1



 

 

losses caused by segmentation errors. As of today, neural networks have penetrated many levels of 

medical tasks with remarkable achievements. Meanwhile, with the continuous emergence of new 

technologies, the application of it also has more prospects. 

Convolutional neural networks (CNN) have good feature extraction and generalization abilities, and 

image semantic segmentation is one of the important branches. The vigorous development of semantic 

segmentation is due to the FCN structure proposed by Jonathan Long and others [1]. Compared to CNN, 

FCN discards the structure used as classification output behind it and uses convolutional layer to replace 

its function. In addition, the network adopts a skip connection structure, which realize the conversion of 

network output from probability to image. Inspired by FCN, Ronneberger and others innovatively 

created U-Net based on FCN. As one of the variants of FCN, U-Net designs the network structure as a 

symmetrical network, and the skip connection part uses splicing operations instead of the pixel-by-pixel 

addition method of FCN, thereby greatly improving the network's feature extraction ability [2]. 

Therefore, with its simple and flexible characteristics and excellent segmentation ability, U-Net is 

preferred as the test standard for many segmentation tasks. 

In view of this, this article takes U-Net as the core, introduces its network and typical network 

variants. Subsequently, based on its structure, the variants are divided into three categories (Figure 1). 

By explaining the U-Net variant structure, analyzing its optimization characteristics, and summarizing 

the optimization ideas of the U-Net network. Finally, the problems and challenges faced by U-Net are 

summarized, and the future development direction of the U-Net network is prospected. 

 

 

Figure 1. U-Net taxonomy. 

 

2.  2D U-Net 

U-Net is mainly adopting an encoder-decoder and skip connection structure to achieve fast and accurate 

end-to-end network training even with limited data. The encoder part is responsible for capturing 

contextual information while the decoder part is for mapping features to the required resolution. This 

includes continuous convolutional operations, bottleneck design, 4 downsampling, and 4 upsampling. 

In addition, to ensure that the network still retains low-level semantic features in deep structures, the 

network uses skip connections (Figure 2). This method combines the semantic features of the decoder 

at the same scale with the encoder’s deep features of to enrich the localization information in the 

mapping. Finally, the network also uses an overlapping tile strategy to solve the boundary information 

loss, uses data augmentation to solve the insufficient training data. 
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Figure 2. The architecture of U-Net [2]. 

U-Net, as an important network structure in the field of medical image semantic segmentation, is 

used to assist in several image analysis tasks. For example, magnetic resonance imaging analysis, 

computed tomography scan analysis, and ultrasound imaging analysis, etc. However, different images 

require different feature extraction methods. Therefore, in recent years, a lot of improved methods have 

been created to make U-Net have highly network suitability for specialized medical images. According 

to the unique network structure of U-Net, common improvement methods generally optimize the 

encoder-decoder structure and skip connection structure, resulting in various U-Net variants. These 

variants can be divided into three categories according to their optimized network positions: backbone 

improvement, module addition, and cross-network fusion. 

3.  Variant classification  

3.1.  Backbone improvements 

In U-Net, the backbone network defines how the layers in the encoder are arranged, and its 

corresponding part is used to describe the architecture of the decoder. Therefore, backbone improvement 

mainly refers to the improvement of the network encoder-decoder part. 

3.1.1.  Dimension increase. U-Net is sometimes referred to as 2D U-Net because the network design is 

based on 2D images as input and output. However, medical images also include a lot of 3D image 

datasets. Traditional methods involve annotating data by slicing 2D images, which results in redundant 

data annotation between adjacent slices, tedious annotation process, huge calculation and other problems. 

Therefore, 3D U-Net, a 3D segmentation method which can converts 2D image operations to 3D image 

operations was proposed [3]. 3D U-Net retains the U-shaped network structure and makes adjustments 

to it. The upsampling and downsampling are set to three times, and the image channel remains the same 

in each deconvolution operation. Changing the channel operation is set in the first convolution after each 
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sampling. Finally, batch normalization is added to accelerate convergence. 3D U-Net learned from 

sparsely annotated 3D images and provided dense 3D segmentation results, which were validated in the 

African clawed frog kidney confocal microscopy dataset with higher accuracy than 2D U-Net. V-Net is 

also used for 3D image segmentation [4]. V-Net replaces the upsampling and downsampling parts in U-

Net with 2×2×2 convolution kernels with a stride of 2. It also restores four upsampling and four 

downsampling operations and changes the number of feature maps during convolution (Figure 3). In 

addition, V-Net introduces residual networks and a new objective function, the dice coefficient, to 

achieve end-to-end training for prostate MRI images. 

 

Figure 3. The architecture of V-Net [4]. 

3.1.2.  Convolutional block improvement. The convolutional block of the U-Net network is also a 

structure that can be optimized. Since the introduction of ResNet, residual blocks have been widely used 

due to their excellent network performance enhancement capabilities. Since the residual block has a 

positive effect on avoiding spatial information loss and improving the accuracy of semantic 

segmentation networks. Therefore, the residual blocks are also used by V-net and ResU-Net to increase 

the extraction effect of features. Among them, ResU-Net, as a 2D network, combines with a weight 

mechanism based on the residual block and performs better than U-Net in solving retina segmentation 

problems (Figure 4) [5]. Ibtehaz further improved on the residual block and designed the MultiResUnet 

[6]. This network has MultiRes Block modules and Res Path modules. The MultiRes Block replaces the 

large convolution kernels, such as 5×5 and 7×7 convolution kernels in traditional residual blocks, with 

continuous 3×3 convolution kernels, and maintains image size by adding 1×1 convolution kernels. This 

reduces the calculation parameters while ensuring feature extraction. In addition, MultiResUnet also 

adds Res Path in the encoder-decoder. In each skip connection, Res Path introduces residual connections 

to connect feature graph to decoder through a convolution chain. This ensures that spatial information 

lost after each encoder is reversed through deconvolution can be transmitted to the decoder, reducing 

the semantic differences between corresponding levels. Compared with U-Net, MultiResUnet has 

significantly improved on challenging datasets, including endoscopic images, skin mirror images, etc. 
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Networks with residual blocks also include RU-Net and R2U-Net, designed by Alom and others [7]. 

The authors used recurrent convolutional layers (RCLs) to replace the original function and proposed 

four cell structures. Including the recurrent convolutional module used in RU-Net and the recurrent + 

residual module used in R2U-Net. This network achieves feature accumulation according to different 

strides, ensuring stronger feature representation. It also outperforms traditional U-Net in segmentation 

of multiple image datasets. 

 

Figure 4. The architecture of ResU-Net [5]. 

The introduction of residual blocks greatly enhances the network's feature extraction capabilities, 

enriches the learnable feature quantity of the U-Net, and increases the depth and width of the network, 

improving its expression and accuracy. However, the large number of redundant features brought by 

residual blocks can cause the network to learn too many redundant features, increasing the complexity 

of the network, training burden, and time resource costs. 

3.2.  Module addition With the development of many functional modules, such as dense connection 

modules and attention modules, these modules have been widely used in multiple fields due to their 

outstanding specialty performance and excellent generalization ability. At the same time, skip 

connection modules play an important role in the U-Net network's semantic feature fusion. By adding 

and fusing modules, the U-Net network's feature learning ability can be further enhanced. 

3.2.1.  Increase the number of skip connections. U-Net combines shallow and deep features through skip 

connections, greatly improving the learning ability and the network’s segmentation accuracy. Therefore, 

by increasing skip connections’ number, the model can capture more semantic information and achieve 

better segmentation performance. U-Net++ is another U-Net architecture variant proposed by Zongwei 

et al., inspired by DenseNet, which enhances skip connections (Figure 5) [8]. Its structure reduces the 

semantic gap between corresponding layers. U-Net++ uses a dense skip connection network instead of 

traditional skip connections between U-Net layers. The network consists of multiple skip connection 

nodes and dense connections, and all feature mappings of the previous cell at the same level are received 

by each skip-connected cell after it. Therefore, a dense block can be thought for each layer. The semantic 

information loss in contraction path and expansion path is reduced by preserving feature mapping to a 

maximum extent through dense blocks.  
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Figure 5. The architecture of U-Net++ [8]. 

A similar method is U-Net3+ [9]. It is based on U-Net++ and combines smaller features of the same 

scale retained the decoder's features with larger ones. At the same time, the fine-grained semantics and 

coarse-grained semantics on the complete scale are captured. The dense connection module improves 

the disadvantages of residual blocks to some extent. This optimization solution not only solves the 

limitation of feature fusion at skip connections in U-Net itself but also greatly reduces the network 

parameters by pruning while preserving the maximum features of the network, ensuring learning depth 

and network speed. In addition to the dense connection structure, Bio-Net introduces a reverse skip 

connection structure on the basis of the original forward skip connection [10]. The network establishes 

bidirectional connections to link the encoder and decoder, and recursively implements the feature 

mapping between the encoder and decoder. In addition, Bio-Net does not require additional training 

parameters but its network performance exceeds that of traditional U-Net. 

3.2.2.  Strengthen feature mapping. In optimizing the skip connection process of the network, variants 

introduce specific functions modules to enhance feature mapping in skip connections. The common 

additions are the function of attention module. Attention U-Net introduces an Attention Gate module 

[11]. This module multiplies the coarse-grained information extracted by the network and the attention 

coefficients and then fuses the output with the upsampled feature map (Figure 6). This enables the 

network to learn images of different sizes and shapes, calculate feature importance for each pixel, and 

suppress invalid information while highlighting prominent features of specified targets. A similar 

network with a similar function is BCDU-Net proposed by Azad et al [12]. The network also adopts the 

idea of dense connections to let the network learn more features but also references a new extension 

module, LSTM module. This module controls feature transmission through gate states and preserves 

feature data that is significant for segmentation. The network strengthens feature mapping and effective 

information preservation by combining feature maps with the nonlinear function in the bidirectional 

Convolutional LSTM module. The network has also demonstrated its excellent network performance in 

several segmentation tasks. 
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Figure 6. The architecture of Attention Gate [11]. 

Attention mechanism is also one of the methods to reduce network redundant features. This 

optimization approach simulates the process of human visual recognition of object features and focuses 

on enabling the network to make conditional choices to improve its accuracy. In addition, the parallel 

processing approach in the attention mechanism makes it not only has fewer parameters and better 

network performance, but also achieves a certain improvement in speed. 

3.3.  Cross-Network fusion 

As one of the fundamental infrastructures of images semantic segmentation, the structure of U-Net has 

been used by researchers for feature processing of medical images. However, some U-Net variants 

introduce new network structures by applying other networks used in different fields to the U-Net. 

3.3.1.  Cascaded network. For tasks that require more processing or are more computationally 

demanding, a single U-Net network structure is often not enough. Therefore, DoubleU-Net was 

proposed (Figure 7) [13]. The module combines two U-Net structures, with the first one using VGG-19 

as an encoder and both U-Nets using ASPP to capture contextual information. Due to VGG-19's lighter 

weight and compatibility with U-Net, the authors chose to incorporate VGG-19 into the network. 

Additionally, since deep networks can achieve more accurate segmentation, the authors added another 

U-Net to receive the results from the first network's feature output. The DoubleU-Net aims to solve 

challenging medical image segmentation problems, for which the authors used several datasets to test 

the network performance. A variety of medical imaging modalities such as colonoscopy, dermoscopy 

and microscopy are included and demonstrate the excellent network performance of DoubleU-Net. 

Similarly, the parallel U-Net was designed to better delineate the focal sites of ischemic stroke variant 

symptoms [14]. This network combines four 2D U-Nets and from CBV, CBF, MTT, and Tmax images 

extract valuable information about stroke lesion locations. Then, the U-Net probability map is used to 

determine the extent of the lesion at the pixel level to achieve accurate segmentation. 
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Figure 7. The architecture of DoubleU-Net [13]. 

3.3.2.  Fusion network. In addition to using multiple parallel networks for image segmentation, specific 

networks with unique structures and functions can be decomposed and reconnected with U-Net's 

encoder-decoder parts to form a composite network composed of different network structures. 

TransUNet adopted the Transformer structure based on CNN features in the encoder part [15]. Since 

CNN can extract local details effectively and the Transformer structure can perceive global information 

well, Chen et al. combined them to design a fusion network. TransUNet introduces the Vision 

Transformer (ViT) and successfully applies it to full-size images (Figure 8). The network transforms 

images into sequences and then encodes global information, making effective use of shallow features to 

achieve high-precision image feature segmentation. Another example of network fusion is the 

Generative Adversarial U-Net [16]. The network addressed the issue of limited medical image labeling 

by introduced the Generative Adversarial Network (GAN) structure and designed a domain-impartial 

model that could be applied to various medical images. The network separates the U-Net generator parts 

and encoder, makes the overall network have the function of image generation by combining the 

generator and GAN. Moreover, the network optimizes the image generation process using conditional 

GANs and Wasserstein GANs. And it also achieves broad applicability to images with insufficient data. 
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Figure 8. The architecture of TransUNet [15]. 

Cross-network fusion is a new optimization strategy proposed in recent years for U-Net networks. 

Technologies in the fields of CNN, RNN, and others are constantly innovating with the times. This 

optimization strategy is a practical approach to the network's flexibility and generalization. "Taking the 

strengths and weaknesses" into account not only solves the problems of the U-Net network itself but 

also extends its capabilities. 

4.  Conclusion 

As an extremely important network in medical image segmentation, U-Net achieves its flexibility and 

generalization through its unique encoder-decoder structure and skip connections. Based on the demand 

for different medical image tasks, researchers have optimized the performance of U-Net networks in 

many directions, resulting in multiple U-Net variant networks. This article divides them into three 

categories based on the optimized structural parts: backbone improvement based on encoder-decoder 

structure, module addition based on skip connection structure, and cross-network fusion based on the 

entire network's functional structure. By discussing the network structures, the optimization strategies 

of U-Net variant networks are summarized. 

It can be seen from the article that there is a demand for residual blocks, dense connections, and 

attention mechanisms in the future optimization and development of U-Net networks. These methods 

have an excellent effect on feature extraction and network learning capabilities. However, there is still 

room for development. While dense connections reduce the burden of network training to a certain 

extent compared to residual blocks, it still cannot achieve a balance between network training speed and 

performance. Therefore, how to solve the balance problem to achieve better optimization is a direction 

for development. Additionally, the effectiveness of the attention mechanism requires a large amount of 

data as a basis. At the same time, as the demand for segmentation networks in medical field increases, 

the attention features of some tasks will change due to factors such as time and space. Therefore, the 

controllability of attention mechanisms in terms of time and space is another area for optimization. In 

the end, multi-domain network fusion is a new direction for the development of U-Net variants. With 

the gradual complexity of image segmentation tasks in the medical field, the development of 

multifunctional composite networks will have extremely broad application prospects. 
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