
Performance comparison of different convolutional neural

network models and optimizers for dog bread classification

Xinyu Mao1,†, Mingrui Xie2,† and Ruochen Zhu3,4,†

1College of Information Technology, Shanghai Ocean University, Shanghai, 200000,

China
2School of Computer Science, China University of Geosciences, Hubei, Wuhan,

430074, China.
3School of Optoelectronic Science and Engineering, University of Electronic Science

and Technology of China, Chengdu, Sichuan, 611731, China

42020050901028@std.uestc.edu.cn
†These authors contributed equally.

Abstract. This study explores the performance of various deep learning models including

ResNet152, VGG16, VGG19 and ResNet256 on the dog breed classification task. During

training, observe the loss and accuracy trends. The loss gradually decreases, showing that the

model is fitting the training data better. With the improvements of the capacity of the model, the

accuracy trend shows a steady increase. These models converge after about 20 epochs and

fluctuate little after that. The initial learning rate, adjustment factor and patience parameters play

key roles in the convergence process. However, the achieved accuracy is below 90%, suggesting

that further optimization or more complex architectures may be beneficial. Among all models,

ResNet512 has the highest overall accuracy (83%), followed by ResNet256 (83%), VGG19 256

(79%) and VGG16 256 (78%). The ResNet model outperforms the VGG model in most cases,

probably because its network structure reduces computational complexity while maintaining

accuracy. Increasing the input size can improve the accuracy of the same network structure, such

as ResNet 256 and ResNet 512, while modifying the network structure by adding more layers.

Learning rate decay scheduling methods, such as ReduceLROnPlateau and CosineAnnealingLR,

and optimizers such as SGD, Adam, and Adagrad, are explored as well.

Keywords: dog breed classification, convolutional neural network, deep learning.

1. Introduction

Dog breed identification is a challenging task in animal recognition research. Precise identification of

dog breeds helps understand their traits, needs, and behaviors. This leads to better care and reduced harm

to humans. Dog breed identification technology has practical applications in conservation, breeding

programs, veterinary care, legal regulations, genetic research, disease diagnosis, and biodiversity

preservation. However, dog breed classification faces challenges like inconsistent lighting, occlusions,

and differing poses [1,2].

Before deep learning technologies, researchers used traditional image processing techniques and

machine learning algorithms for dog breed classification. They extracted image features like color,

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/16/20230875

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

99

texture, and shape, and used classifiers such as SVM, decision trees, or K-nearest neighbors. These

methods had limitations handling complex image data, resulting in lower classification accuracy. With

deep learning technologies, convolutional neural networks (CNNs) became the leading approach for dog

breed classification. CNNs autonomously extract image features and perform classification, improving

accuracy and generalization compared to conventional methods. Researchers experimented with neural

network architectures like AlexNet, VGG, and ResNet, achieving promising outcomes [3,4].

In dog breed classification research, scholars made significant strides using various neural network

models and optimization strategies. Some studies attained increased classification accuracy on specific

datasets. However, most research focuses on distinct model structures, with less emphasis on different

structures and parameter training optimization methods' effects on outcomes. This study aims to offer

comprehensive guidance for dog breed classification tasks. This paper examines three neural network

models: ResNet152, VGG16 and VGG19, comparing their performance in dog breed classification tasks

by adjusting parameters, optimizers, and learning rates [5,6]. The research uncovers valuable insights

for better understanding and optimization of dog breed classification tasks.

2. Method

2.1. Dataset

This work is conducted on the Stanford Dogs dataset for experiments, which has 20,580 images with

120 various categories of dog [7]. These images are sourced from ImageNet, a large database widely

leveraged for image-based researches [8]. The Stanford Dogs dataset was constructed to solve fine-

grained image classification tasks. In this dataset, each category has a unique label, and each image is

accompanied with the location of the dog, marked by bounding boxs. By using this dataset, this study

can evaluate and compare various model performances on the dog breed classification task. The

diversity and complexity of the Stanford Dogs dataset provides a challenging testing scenario for deep

learning models and helps us gain insight into how various models perform when solving practical

problems.

2.2. Neural network

2.2.1. VGG16. Visual Geometry Group (VGG) is developed by reserachers from the University of

Oxford. It achieved high performance in the 2014 ImageNet image recognition challenge, making it one

of the best-performing image recognition models at that time.

The VGG16 structure has 16 weight layers, 13 of them are convolutional layers and 3 are fully

connected layers, along with 5 max-pooling layers and an output layer. VGG16 gained attention due to

its simple yet effective design. Its main features are three folds. Firstly, small-sized (3x3) convolutional

kernels. The convolutional layers of VGG16 use 3x3 kernels, which decrease the storage consumption

and computational burden compared to other models with larger kernels. The small-sized kernels also

help to learn features at multiple levels. Secondly, multiple layers of network architecture. VGG16 has

a deep network structure that can effectively learn high-level features in images. This depth architecture

achieved a high level of accuracy in image recognition tasks at that time. Thirdly, more convolutional

and fully connected layers. VGG16 uses more layers, which enables the network to learn more complex

features and patterns in images.

VGG16 remains a very classic CNN architecture, broadly used in deep learning research and

education. In the following experiment, the VGG16 model pre-trained on ImageNet was used, and the

classifier 6 fully connected layer was unfrozen. A neural network was constructed with two linear layers

and a ReLU activation function, with 256 output of the first linear layer. After the output of the first

linear layer, a ReLU activation function was used for non-linear transformation. A Dropout layer was

added after ReLU to reduce the risk of overfitting. Finally, a linear layer with 120 elements was used to

represent the output of the neural network and output the predicted class probability.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/16/20230875

100

2.2.2. VGG19. It is another CNN architecture. Similar to VGG16, VGG19 achieved higher performance

on ImageNet classification challenge. The VGG19 structure has 19 weight layers, including 3 fully

connected layers, and 16 convolutional layers, along with 5 max-pooling layers and an output layer. The

main features of VGG19 are similar to those of VGG16, both using small-sized (3x3) convolutional

kernels and deep network architecture. This enables VGG19 to effectively learn high-level features in

images as well.

The main difference between VGG19 and VGG16 lies in the number of convolutional layers, where

VGG19 is deeper. This means that VGG19 has a deeper network compared to VGG16, theoretically

allowing it to extract more descriptive features. However, this increased depth also results in higher

computational complexity and a larger number of parameters. As a result, training and deploying

VGG19 require longer training times and higher computational resources.

2.2.3. ResNet-152. ResNet-152 is a variant of the Residual Network (ResNet) consisting of 152 layers.

ResNet was proposed by Kaiming He and his colleagues in 2015 to address the degradation problem in

deep convolutional neural networks, where the accuracy of the model decreases as the model get deeper.

By introducing residual learning, ResNet successfully solved this problem and achieved outstanding

results in the ImageNet competition.

The main components of ResNet-152 are residual blocks, which enable the transfer of information

across layers. Each block has several convolutions and a "skip connection" that allows the input to

bypass the convolutional layers and directly reach the next layer. This helps to avoid the vanishing

gradient phenomenon, allowing the network to increase its depth while maintaining high accuracy.

ResNet-152 has shown excellent performance, such as in image classification, object detection, and

semantic segmentation. In fact, the ResNet architecture has become one of the cornerstones of the deep

learning field, and many other network architectures have also drawn inspiration from its design. The

last fully connected layer has 256, 512, and more nodes.

2.3. Optimizer

2.3.1. Stochastic gradient descent (SGD). It is a widely used optimization algorithm in deep learning

[9]. It is an iterative method that updates the model's parameters in each iteration using a mini-batch.

SGD aims to minimize the cost function by updating parameters towards the direction of negative

gradient. The learning rate is a hyperparameter that adjusts the length of the steps taken by the optimizer.

In SGD, the learning rate is constant and the same for all parameters, which can be problematic because

it may converge slowly or overshoot the optimal solution.

To mitigate this issue, various modifications to the basic SGD algorithm have been proposed,

including momentum, Nesterov accelerated gradient, and adaptive learning rate methods such as

AdaGrad and RMSProp.

2.3.2. Adaptive moment estimation (Adam). It is an adaptive learning strategy that has gained popularity

in recent years [10]. It is a combination of the ideas behind momentum and RMSProp. Adam maintains

an exponentially decaying average of past gradients and their squares, and uses this information to

adaptively adjust the learning rate. It also incorporates bias correction to account for the initial estimates

of the moments being zero. Adam is well-suited for large-scale, high-dimensional problems with sparse

gradients, such as those encountered in deep learning. However, it has several hyperparameters that need

to be tuned, including the learning rate, the momentum parameters, and the epsilon value.

2.3.3. Adaptive gradient algorithm (Adagrad). Adagrad is another adaptive learning rate. Adagrad has

the advantage of being relatively simple to implement, requiring only a few additional lines of code

compared to basic SGD. However, it has been shown to be less effective than Adam for some problems,

particularly those with large numbers of parameters. Additionally, Adagrad may converge to a

suboptimal solution if the learning rate is not appropriately tuned.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/16/20230875

101

2.4. Learning rate scheduler

2.4.1. ReduceLROnPlateau method. This method dynamically adjusts the learning rate based on the

results of the validation set. When the performance on validation set stop improving for a consecutive

number of epochs, the learning rate will be decreased according to previous configuration. This process

continues until the learning rate reaches a minimum limit. The core idea of this method is to monitor the

validation performances and reduce the learning rate if the model stops improving, to prevent the local

minimum optimization.

2.4.2. CosineAnnealingLR method. This method adjusts the learning rate in the form of a cosine

function to slowly decrease to a minimum value and then gradually increase back up. The method

improves the training effectiveness of the model by gradually decreasing the learning rate during training

and keeps the model from converging to local minimum. Specifically, the learning rate linearly

decreases from the initial value to the minimum value, then gradually increases back up through the

cosine function, with one full cycle lasting for T_max epochs. After the learning rate reaches the

minimum value, CosineAnnealingLR repeats the cycle as needed to further decrease the learning rate.

Both methods adjust the learning rate for increasing the training effectiveness. ReduceLROnPlateau

dynamically adjusts the learning rate based on the validation set results and is suitable for situations

where the learning rate needs to be adjusted dynamically during training. CosineAnnealingLR improves

the training effectiveness of the model by gradually decreasing the learning rate and is suitable for

situations where the training period is relatively long.

3. Result

3.1. Result of convergence

As demonstrated in Figure 1, with the training progressed, the loss decreased gradually, indicating that

the model was learning to fit the training data better.

Figure 1. Loss and accuracy curves.

Regarding accuracy, the trend showed a steady increase during training, indicating that the model

was improving in its ability to classify the data correctly. The accuracy trend was generally more stable

than the loss trend, with no significant fluctuations after convergence. It is worth noting that the accuracy

of the model did not reach an impressive rate (lower than 90%), which may suggest that the model could

still benefit from further optimization or more complex architectures.

In terms of convergence time, the model seemed to reach convergence after approximately 20 epochs,

which is a reasonable number for a deep learning model. The initial learning rate, adjustment factor, and

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/16/20230875

102

patience parameters likely played an important role in achieving this convergence. However, it is

important to note that the exact convergence time may vary from data and model architectures.

In summary, the loss and accuracy trends during training indicate that the model is learning to fit the

data and improving in its ability to classify the data correctly. The model converged after approximately

20 epochs, with no significant fluctuations afterwards. The initial learning rate, adjustment factor, and

patience parameters played an important role in achieving convergence, and further optimization or

more complex architectures may be necessary to improve the model's accuracy.

3.2. Result comparison of different networks

In the results of the VGG16, the top ten data have been selected for analysis in Table 1. The overall

accuracy of VGG16 is 0.78, but its performance is not satisfactory in recognizing certain breeds. For

example, the accuracy of Shih-Tzu recognition is only 0.61, indicating the model could be further

improved in recognizing Shih-Tzu. In addition, the accuracy of VGG16 in recognizing

Rhodesian_ridgeback breeds are also low, at 0.59. VGG16's performance is relatively good in

recognizing other breeds, with accuracy generally above 0.7.

Table 1. Detailed performances of top ten categories generated from VGG16.

 precision recall f1-score support

Chihuahua 0.83 0.63 0.72 38

Japanese_spaniel 0.88 0.84 0.86 45

Maltese_dog 0.73 0.87 0.79 61

Pekinese 0.85 0.77 0.81 44

Shih-Tzu 0.61 0.69 0.65 55

Blenheim_spaniel 0.91 0.94 0.93 53

papillon 0.9 0.96 0.92 45

toy_terrier 0.73 0.65 0.69 49

Rhodesian_ridgeback 0.59 0.68 0.63 38

Afghan_hound 0.93 0.89 0.91 64

As demonstrated in Table 2, the accuracy of VGG19 is 0.79, slightly higher than VGG16. VGG19

performs better than VGG16 in recognizing Shih-Tzu and Rhodesian_ridgeback breeds, with accuracies

of 0.69 and 0.68, respectively. However, VGG19's performance in recognizing other breeds is similar

to that of VGG16.

The overall accuracy of ResNet with different fully connected layer settings are 0.8309 (fully

connected layer is 256), 0.8301 (fully connected layer is 512), and 0.82 (more fully connected layers).

It can be observed that the overall accuracy of ResNet is higher than that of VGG16 and VGG19.

ResNet's performance in recognizing Shih-Tzu and Rhodesian_ridgeback breeds are also better than

that of the VGG series networks. For example, ResNet's accuracy in recognizing Shih-Tzu breeds

reached 0.82, far higher than that of VGG16 and VGG19. Similarly, in recognizing

Rhodesian_ridgeback breeds, ResNet's accuracy also reached 0.78, which is also superior to the VGG

series networks.

Table 2. Result comparison of various models.

 Macro Avg Weighted Avg
ACC

 precision recall f1 precision recall f1

vgg 16

fully connected layer

is 256

0.78 0.78 0.77 0.79 0.78 0.78 0.78

vgg 19

fully connected layer

is 256

0.79 0.79 0.78 0.8 0.79 0.79 0.79

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/16/20230875

103

Table 2. (continued).

resnet 152

fully connected layer

is 256

0.83 0.83 0.82 0.84 0.83 0.83 0.83

resnet 152

fully connected layer

is 512

0.83 0.83 0.83 0.84 0.83 0.83 0.83

resnet 152

more fully connected

layers

0.82 0.82 0.81 0.83 0.82 0.81 0.82

3.3. Result comparison of different optimizers and learning rate schedulers

In the study of dog breed classification based on the ResNet152 model, the author explored the impact

of different optimizers and learning rate scheduling methods on the final evaluation metrics. Six control

experiments were designed in this study, using two learning rate scheduling methods and three types of

optimizers, namely ReduceLROnPlateau (lr_scheduler), CosineAnnealingLR (lr_scheduler), SGD

(optimizer), Adam (optimizer), and Adagrad (optimizer),

Table 3. Results comparison of various learning rate schedulers and optimizers.

 Macro Avg Weighted Avg
ACC

 precision recall f1 precision recall f1

ReduceLROnPlateau

-SGD
0.74 0.69 0.65 0.74 0.69 0.66 0.69

ReduceLROnPlateau

-Adam
0.83 0.83 0.82 0.84 0.83 0.83 0.83

ReduceLROnPlateau

-Adagrad
0.82 0.82 0.82 0.83 0.82 0.82 0.82

CosineAnnealingLR-

Adagrad
0.82 0.82 082 0.83 0.82 0.82 0.82

Table 3 demonstrates the evaluation results of different learning rate scheduling methods on a

classification task. In the comparison, ReduceLROnPlateau-SGD has the lowest accuracy (0.69) and f1-

score (0.66), indicating that it has the worst overall performance. On the other hand,

ReduceLROnPlateau-Adam has the highest accuracy (0.83) and f1-score (0.83), suggesting that it

achieves the best performance among all methods. The results of the other three methods, including

ReduceLROnPlateau-Adagrad, CosineAnnealingLR-Adagrad, and CosineAnnealingLR-Adam, are

relatively similar, with 0.82 accuracy and around 0.82-0.83 f1-score.

In terms of precision and recall, most methods have similar values, with an average of around 0.82-

0.83. However, ReduceLROnPlateau-SGD has relatively low values in both metrics (0.74 and 0.69,

respectively), indicating that it may have difficulty correctly identifying some of the positive samples.

Overall, the results suggest that the choice of learning rate scheduling method can influence the

performance. Among the tested methods, ReduceLROnPlateau-Adam achieves the best overall

performance.

4. Conclusion

This work analyzes in detail the performance of several deep learning models, including ResNet152,

VGG16 and VGG19 in the dog breed classification task. During training, our research observe a gradual

decrease in loss and a steady increase in accuracy, indicating that the model is making progress in

learning to fit the data. The model converges after about 20 epochs, and the initial learning rate,

adjustment factor, and patience parameter play a key role in achieving convergence. However, the

achieved accuracy is lower than 90%, indicating that there is room for improvement, such as further

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/16/20230875

104

optimization or using a more complex network architecture. The results of this study demonstrate that

the ResNet outperforms the VGG in most cases, possibly due to its reduced computational complexity

while maintaining accuracy. At the same time, this study found that increasing the input size can improve

the accuracy rate, but the accuracy may decrease slightly when increasing the number of network layers.

This study also explores learning rate decay scheduling methods and optimizers, such as

ReduceLROnPlateau, CosineAnnealingLR, SGD, Adam, and Adagrad, which may also have an impact

on improving model performance. This study provides valuable insights into the dog breed classification

task, while providing guidance for further improving model performance. Future research can focus on

how to improve existing models, explore novel network architectures, and optimize for specific

categories to achieve better performance in dog breed classification tasks.

References

[1] Ráduly, Z., Sulyok, C., Vadászi, Z., & Zölde, A. (2018). Dog breed identification using deep

learning. In 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics

(SISY), 000271-000276.

[2] Borwarnginn, P., Kusakunniran, W., Karnjanapreechakorn, S., & Thongkanchorn, K. (2021).

Knowing your dog breed: Identifying a dog breed with deep learning. International Journal of

Automation and Computing, 18, 45-54.

[3] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et, al. (2018). Recent advances in

convolutional neural networks. Pattern recognition, 77, 354-377.

[4] Kim, P., & Kim, P. (2017). Convolutional neural network. MATLAB deep learning: with machine

learning, neural networks and artificial intelligence, 121-147.

[5] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.

[6] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., et, al. (2015). Imagenet large scale

visual recognition challenge. International journal of computer vision, 115, 211-252.

[7] Khosla, A., Jayadevaprakash, N., Yao, B., & Li, F. F. (2011). Novel dataset for fine-grained image

categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained visual categorization

(FGVC), 2(1), 1-2.

[8] Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2019). Do imagenet classifiers generalize to

imagenet?. In International conference on machine learning, 5389-5400.

[9] Woodworth, B., Patel, K. K., Stich, S., Dai, Z., Bullins, B., et, al. (2020). Is local SGD better than

minibatch SGD?. In International Conference on Machine Learning, 10334-10343.

[10] Zhang, Z. (2018). Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM 26th

international symposium on quality of service, 1-2.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/16/20230875

105

