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Abstract. Transfer learning with pretrained weights is commonly based on the ImageNet dataset. 

However, ImageNet does not contain medical images, leaving the transferability of these 

pretrained weights for medical image classification an open question. The core purpose of this 

study is to investigate the impact of transfer learning on the accuracy of medical image 

classification, utilizing ResNet18, VGG11, AlexNet, and MobileNet, which are four of the most 

widely used neural network models. Specifically, this study aims to determine whether the 

incorporation of transfer learning techniques leads to significant improvements in the 

performance of image classification tasks, as compared to traditional methods that do not utilize 

transfer learning. The dataset consists of approximately 4,000 chest X-ray images with labels of 

healthy, COVID, or Viral Pneumonia. The final layer's output neurons of the network’s 

architecture were revised to three to accommodate the ternary classification task. Preprocessing 

techniques include downsampling and normalization of the pixel values. By maintaining the 

same dataset and preprocessing methods, this study compares the performance of the models 

with and without pretrained weights. The results demonstrate that, compared to not using transfer 

learning, all four network models converge more quickly and achieve higher validation accuracy 

in the initial epochs when transfer learning is employed. Furthermore, the models exhibit higher 

prediction accuracy in the final test set. This study suggests that using transfer learning with 

pretrained weights based on ImageNet can boost the efficiency of medical image classification 

tasks. 
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1.  Introduction  

Pneumonia manifests as a pathological state involving inflammation of alveoli, the tiny air sacs within 

the lungs. Generally, bacterial or viral infections lead to this condition, which can sometimes necessitate 

hospitalization and even result in death. The COVID-19 pandemic, a novel coronavirus disease 

originating from the SARS-CoV-2 virus, has impacted millions of individuals across the globe. 

Presently, COVID-19 pneumonia diagnosis predominantly depends on Reverse Transcription 

Polymerase Chain Reaction (RT-PCR) tests and radiological imaging, including chest X-rays and 

Computed Tomography (CT) scans [1]. Nonetheless, RT-PCR tests can be laborious, time-intensive, 

and produce false-negative outcomes [2]. Additionally, CT scans have limitations, such as delayed 

results, substantial labor expenses, and occasional misdiagnoses [3]. Given the constraints of the present 
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detection approaches, it is imperative to devise a more efficient and precise method for detection in an 

urgent manner, and Artificial Intelligence (AI) methods might offer a potential solution. 

AI, particularly deep learning methodologies, have shown considerable potential in numerous 

medical imaging tasks, including pneumonia diagnosis [4]. Deep learning algorithms like Convolutional 

Neural Networks (CNNs) possesses the capability to significantly augment the pace and accuracy of 

pneumonia detection through automated medical image analysis. By incorporating appropriate 

preprocessing techniques and classifiers, neural networks can exhibit improved disease classification 

performance [5]. This, in turn, could reduce the burden on healthcare professionals and minimize 

misdiagnoses. 

Deep learning has undergone rapid development in recent years, with notable advancements in 

computer vision domains. Among various deep learning architectures, CNNs have been particularly 

successful in image classification tasks due to their ability to capture hierarchical patterns in images [6]. 

Deep learning has been applied to address a broad spectrum of issues in medical imaging, such as tumor 

detection, organ segmentation, and disease diagnosis [7]. The adoption of transfer learning, which 

involves utilizing pre-trained weights from extensive datasets like ImageNet, has been proven to boost 

the accuracy of deep learning models in medical imaging tasks [8]. However, the suitability of using 

ImageNet pre-trained weights for medical image classification remains debatable, as the dataset lacks 

medical images. While several studies have reported favorable outcomes using transfer learning with 

ImageNet pre-trained weights for medical image classification, the fundamental suitability of this 

approach is still uncertain. In a study conducted by Basil Mustafa et al., the authors employed transfer 

learning with ImageNet pre-trained weights to create a deep learning model for mammography and 

dermatology detection [9]. The model achieved remarkable accuracy and surpassed multiple baseline 

models, showcasing the potential advantages of transfer learning in medical imaging tasks. Nonetheless, 

the absence of medical images in the ImageNet dataset raises concerns about the generalizability of this 

approach to other medical image classification tasks, such as pneumonia detection in chest X-rays. 

To address the aforementioned concerns and evaluate the effectiveness of using ImageNet pre-

trained weights for medical image classification such as chest x-rays, this study aims to compare the 

performance of classical deep learning models (i.e., AlexNet, MobileNetV3, VGG11, and ResNet18) 

with and without the application of ImageNet pre-trained weights in the context of pneumonia detection 

from chest X-rays. This study extracted X-ray images from three distinct categories: normal, COVID-

19, and viral pneumonia cases from the COVID-19 Radiography Database on the Kaggle platform [10]. 

Each category was trained using the aforementioned neural network models. The experimental results 

demostrate that using pre-trained weights from ImageNet in transfer learning can enhance the network's 

performance in chest X-ray image classification tasks. Specifically, training with ResNet18 using pre-

trained weights resulted in an increase in the classification accuracy of the test set from 93% to 96%. 

Similar improvements in accuracy were observed when using pre-trained weights in three other network 

structures, all of which resulted in a 3-4% increase in accuracy and achieved high accuracy in the first 

few epochs of training. Moreover, from the confusion matrix and ROC curve, it can be observed that 

using pre-trained weights improves the prediction accuracy of each class, with the Area Under the Curve 

(AUC) approaching a value of 1. 

2.  Method 

2.1.  Dataset description and preprocessing 

In this study, dataset was obtained from the COVID-19 Chest X-ray Images and Lung Masks Database 

on Kaggle [10]. It comprises chest X-ray images classified into three distinct categories: COVID-19, 

NORMAL, and Viral Pneumonia. Although additional information is available within this database, this 

study focused solely on the aforementioned categories for the purposes of conducting a multi-class 

classification task.  To ensure a balanced representation of each category, the dataset was modified by 

randomly discarding images from the larger categories until an equal number of images (i.e., 1345) were 
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present in each category.  The images have dimensions of 299×299 and are in RGB format. A sample 

of these images is demonstrated in Figure 1. 

 

Figure 1. A selection of images from the dataset. 

Prior to their utilization within the models, the input underwent a preprocessing stage.  First, the 

image dimensions were resized to 128x128 pixels as well as the conversion of the images into tensors 

for training purposes. Additionally, normalization was employed to improve the contrast and 

distinctness of the features in the images. This involved setting the mean value of each channel to 0.5144 

and the standard deviation to 0.2258, as part of the normalization process. Figure 2 shows some 

visualizations of the image after data normalization. 

 

Figure 2. The preprocessed sample images of the collected dataset. 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/18/20230980

145



2.2.  CNN models 

The Convolutional Neural Network (CNN) has a powerful network architecture, which has made it 

widely used in the field of image classification since its proposal [11]. The number of layers in a CNN 

can be flexibly increased or decreased. In particular, convolutional layers utilize convolutional kernels 

of different sizes to extract features, pooling layers serve to blur the image and reduce computational 

complexity, and fully connected layers connect the preceding network layers to predict outcomes. In 

this study, four classic CNN architectures: AlexNet, MobileNetV3, VGG11, and ResNet18 were 

adopted. 

AlexNet, introduced by Krizhevsky et al. [12], is a CNN architecture that has been demonstrated to 

exhibit excellent performance and high efficiency in image recognition tasks. Five convolutional layers 

are used as the front-end followed by three fully connected layers as the back end in its architecture, and 

it utilizes the ReLU activation function. To reduce spatial dimensions, the model also incorporates max-

pooling layers between certain convolutional layers. 

MobileNetV3, proposed by Howard et al. [13], is designed to be an efficient architecture suitable for 

deployment on mobile and embedded devices. To achieve this, the network incorporates depthwise 

separable convolutions and efficient network blocks, which reduce both computation and memory 

requirements. MobileNetV3 incorporates neural architecture search techniques and hardware-aware 

optimizations for resource-constrained devices. 

VGG11, presented by Simonyan and Zisserman [14], is a variation of the VGG architecture with 11 

weight layers. VGG networks use small (3x3) convolutional filters and multiple stacked convolutional 

layers for efficient feature extraction. Their straightforward design makes them popular for various 

computer vision tasks. 

ResNet18, introduced by Him et al. [15], is a residual learning-based network with 18 layers. ResNet 

architectures use residual connections to learn residual functions and alleviate the vanishing gradient 

problem. These connections allow for accurate gradient flow during backpropagation, enabling the 

training of deeper models and successfully surpassing previous benchmarks and achieving superior 

performance in a wide range of tasks. 

In this study, the CNN models were implemented using the torchvision.models library in PyTorch, 

which provided pre-built versions of AlexNet, MobileNetV3, VGG11, and ResNet18. The pretrained 

parameter was modified to control whether the models used the pre-trained ImageNet weights or were 

trained from scratch. By default, the output layer of these models comprised of 1000 neurons, 

corresponding to the 1000 classes within the ImageNet dataset. Nonetheless, given the three-class 

classification focus of the present study, the output layer was altered to comprise of three neurons to 

appropriately reflect the target classification problem. 

2.3.  Implementation details 

Based on a split ratio of 6:2:2, the dataset was partitioned into training, validation, and test sets. Cross-

Entropy loss was the chosen loss function, which is suitable for classification problems with multiple 

classes. An Adam optimizer was utilized during training, with a learning rate of 0.0001, as it has been 

shown to work well in various deep learning tasks. The batch size was 16, which balances the trade-off 

between computational efficiency and convergence speed. The training process for each network lasted 

for 20 epochs and the performance metrics used to evaluate the models included training and validation 

loss curves for identifying overfitting or underfitting, accuracy on test images to assess correct 

classification proportion, confusion matrix to summarize correct and incorrect classifications, Receiver 

Operating Characteristic Curve (ROC) curves to depict the precision at different thresholds, and Area 

Under the Curve (AUC) as a single value indicating overall classifier performance. 

3.  Result and discussion 

The study constructs four sets of distinct network models, and within each network, a comparison is 

conducted between using weights obtained from utilizing pretrained weights from ImageNet and not 

using them According to experiment results, the VGG11 model performs best when given consistent 
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training datasets and training settings, as shown in Table 1. The accuracy achieved with pretrained 

weights is 97.2%, while without pretrained weights, the accuracy is still the highest among the four 

networks at 94.4%. In contrast, MobileNet performs the worst, with accuracies of 95.5% with pretrained 

weights and 91.2% without pretrained weights. 

Table 1. The performance of various models with/without pre-trained weights. 

Performance 

Model 

Pretrained=false Pretrained=true 

Resnet18 Vgg11 Alexnet MobileNet Resnet18 Vgg11 Alexnet MobileNet 

Training loss 

of the first 

epoch 

8.247 12.714 13.879 13.931 4.228 5.056 5.969 8.590 

Validation 

accuracy of 

the first 

epoch 

0.865 0.732 0.749 0.706 0.926 0.933 0.906 0.711 

Training loss 0.001 0.345 1.123 1.452 0.016 0.110 0.205 0.353 

Validation 

loss 
6.688 4.634 5.239 7.418 2.070 2.570 5.0975 2.586 

Highest 

validation 

accuracy 

0.927 0.939 0.915 0.901 0.970 0.968 0.9294 0.964 

Testing 

accuracy 
0.923 0.944 0.933 0.912 0.971 0.972 0.963 0.955 
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Figure 3. The training loss curve for different models, comparing those with and without pre-trained 

weights. 
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Figure 4. The confusion matrix for different models, comparing those with and without pre-trained 

weights. 

 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/18/20230980

149



 

Figure 5. The ROC curve for different models, comparing those with and without pre-trained weights. 

 

In addition to testing accuracy, other evaluation metrics are presented, including loss curves, 

confusion matrices, and ROC curve plots, which encompass the performance of all networks using 

different pre-trained weights, as depicted in Figure 3, Figure 4, and Figure 5. Figure 3 indicates that 

using pretrained weights allows the networks to converge more rapidly, and both ResNet18 and VGG11 

demonstrate superior performance with minimal loss in the first epoch. Figure 4 illustrates that among 

the four networks, the distinction between Viral Pneumonia and the other two conditions is exceptional, 

with high recognition accuracy and low misclassification rates. The differentiation between COVID and 

normal cases is, in comparison, substantially less strong. The VGG11 model attains the highest 

classification accuracy for each category. Finally, Figure 5 reveals that, across any classification 

threshold, the performance of all four networks is better when using pretrained weights compared to not 

using pretrained weights. This phenomenon may be attributed to the presence of image features in 

ImageNet resembling medical images, such as black and white images similar to the X-ray images. 

Furthermore, the features learned from the extensive ImageNet dataset are sufficiently generic, with 

some fundamental features applicable to medical image classification tasks. During ImageNet pre-

training, models learn to recognize various textures, shapes, and patterns found in a wide range of 

images, including medical images. These features provide a robust foundation, enabling improved 

performance when fine-tuned on smaller medical image datasets. By adopting this step, faster 

convergence and superior performance can be attained relative to commencing the training process from 

scratch. 

The better performance achieved by the VGG model might be ascribed to VGG11's deeper 

architecture compared to AlexNet, allowing it to learn more intricate features and hierarchies from chest 

X-ray images. ResNet18's residual connections might not offer significant advantages in this task, while 

MobileNet is designed for resource-constrained environments, trading some accuracy for computational 

efficiency. VGG11's small-sized (3x3) convolutional filters enable learning a richer set of local features, 
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potentially beneficial for chest X-ray images where local patterns and textures are vital for accurate 

classification. 

4.  Conclusion 
This study investigated the transferability of ImageNet pre-trained weights for natural images in medical 

image classification models based on classic networks compared to not using pre-trained weights. 

ResNet18, VGG11, AlexNet, and MobileNet were employed in this research for comparison. All four 

networks utilized the same dataset and hyperparameters, and the performance of each network was 

recorded for both using pre-trained weights and not using initial weights. 

The experimental results demonstrate that using ImageNet pre-trained weights for transfer learning 

in medical image classification indeed enhances the performance of various network models, yielding 

higher classification accuracy and faster convergence. Moreover, among the four networks, VGG11 

exhibited the highest classification performance for this study. While the conclusion supports the 

benefits of using ImageNet weights for medical image training, the underlying reasons warrant further 

exploration and explanation. In the future, efforts will be directed towards elucidating why transferring 

ImageNet weights to medical image classification tasks is helpful and identifying the optimal network 

for medical image classification. 
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