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Abstract. Federated learning allows you to train machine learning models without sharing your 

local data. Due to the No-iid problem, this paper is based on the Moon algorithm, which can 

have excellent performance in datasets of images with models that use deep learning and 

outperforms FedAvg, FedProx, and other algorithms, with the goal to decrease communication 

costs while enhancing efficiency more effectively. This study optimizes its gradient descent 

technique based on Moon's algorithm by utilizing Adaptive Gradient (AdaGrad) optimizer and 

combining with knowledge distillation to improve Moon's algorithm in order to better reduce 

communication costs and improve efficiency. That is, it reduces the loss and improves the 

accuracy faster and better in local training. In this paper, we experimentally show that the 

optimized moon can better solve the communication cost and improve the accuracy rate. 

Keywords: AdaGrad, moon, federated learning, algorithm optimization. 

1.  Introduction 

In federated learning, the problem of high interaction cost is always one of the challenges faced by 

federated learning. Interaction is expensive because interaction on the network is much slower than local 

computing due to bandwidth, energy, and so on. As a result, this study explores improving interaction 

effectiveness from two perspectives: minimizing interaction rounds or lowering interaction information 

of each round. AdaGrad is suggested as a novel optimizer method in this research, and knowledge 

distillation is utilized for optimizing the global model to limit the quantity of information interaction.  

After the introduction of AdaGrad algorithm, this paper speeds up the convergence rate of the local 

model based on ensuring the accuracy, and greatly improves the overall performance of federated 

learning compared with the SGD (Stochastic Gradient Descent) algorithm. In addition, knowledge can 

be transferred from the complex teacher model to the streamlined and efficient students by using the 

knowledge distillation method. The model enhances the global model's generalization capabilities and 

training speed. To produce better outcomes than the original, the AdaGrad algorithm and knowledge 

distilling are employed in this research to enhance the MOON method, and less communication cycles 

are required.  The communication efficiency is greatly improved and the communication cost is reduced. 

The problem of high communication cost in traditional federal science is optimized. 
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2.  Theoretical basis 

2.1.  Federated learning 

Federated learning is gaining popularity in both industry and academia [1], [2]. Federated learning is an 

artificial intelligence configuration, also known as collaborative learning, in which several clients work 

together to train models beneath the supervision of a single server, while the training data is kept 

decentralized. It may be defined as the utilization of data stored by separate nodes to accomplish 

common modelling and improve the efficacy of AI models while protecting the confidentiality of 

information and adhering to regulatory requirements. Federated learning is based on the concepts of 

centralized data gathering and minimization, which can help to avoid many of the systemic privacy 

issues and costs associated with traditional centralized machine learning and data science methodologies 

[3]. 

As seen in Figure 1, there are four basic phases to federated learning training. In addition to local 

client training, model parameters are downloaded from the server's memory to the client, transferred 

from the client to the server, and aggregated on the server. Until the server's global model convergence 

occurs, this step is repeated [4]. 

 

Figure1. Illustration of the four-step federal learning training process. 

2.2.  MOON algorithm 

Without transferring local data, federated learning empowers several participants to jointly train 

machine learning models. To cope with the variability of local data distribution among the parties, 

however, is a major problem of federation learning. Although numerous studies, including FedAvg [5], 

have been suggested to address this issue. This study concludes that using deep learning models to 

provide outstanding performance in picture datasets is currently not feasible. A straightforward and 

efficient framework for federated learning is MOON. The main principle of MOON is to execute 

comparison learning at the model level by using the similarity across model representations to correct 

the local training of each party. Experiments have shown that the MOON algorithm significantly 

outperforms other federal learning algorithms, and the proposed MOON algorithm effectively solves 

the non-iid problem [6]. 
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2.2.1.  Method. Based on FedAvg, MOON was created as a straightforward and efficient method that 

only included minor, innovative alterations throughout the local training stage. In Figure 2 [6]. The 

FedAvg framework is displayed. MOON seeks to reduce the gap between the representations learned 

by the local model and the global model and to widen the gap between the depictions learned by the 

local model and the representations learned by the previous local model as there is always some drift in 

FedAvg local training and the global model learns a better representation than the local model. That 

example, step 2 of Figure 2 depicts how local training has improved based on the FedAvg framework. 

 

Figure 2. FedAvg framework and the four steps of FedAvg training. 

A basic the encoding device (used to obtain illustration directions from the insert), the addition of a 

second projection head (representation mapping to a space with fixed dimensions), and an output layer 

(creating predictions for each class) make up the MOON network architecture. The output layer is used 

to provide projections for each class in the supervised setup study. The layer of output is used to provide 

projections for all the classes in the unsupervised setup study.  For ease of representation, modelling 

weights 𝑤 are used for convenience of representation, 𝐹𝑤(·) is used to symbolize the complete network, 

and 𝑅𝑤(·)  is indicated by the structure of the network before the output layer (i.e.,  𝑅𝑤(𝑥)  is the 

mapping expression vector of input 𝑥). In local training, the local loss function is divided into two 

components. The first component is the standard loss term in learning under supervision. Here the 

SimCLR contrast learning framework is used, denoted as "𝑠𝑢𝑝" [7]. The suggested model contrast loss 

term, designated as"𝑐𝑜𝑛", is the second portion. When training locally, it first receives the global model 

𝑤𝑡  from the server side and then refreshes the model to 𝑤𝑖
𝑡 . The graphical representation of 𝑥  is 

retrieved from the global model 𝑤𝑡 (i.e. 𝑧glob = 𝑅𝑤
𝑡 (𝑥)), the image of 𝑥 from the previous phase  𝑤𝑖

𝑡−1 

(i.e. 𝑧prev = 𝑅𝑤𝑖
𝑡−1(𝑥)), and the symbol of 𝑥 from the local model that is being modified 𝑤𝑖

𝑡 (i.e. 𝑧 =

𝑅𝑤𝑖
𝑡(𝑥)) for the input 𝑥 . Since the global model extracts a better representation, in order to reduce the 

distance between 𝑧 and 𝑧glob and increase the distance between 𝑧 and 𝑧prev , this model contrast loss is 

defined according to NT-Xent loss  as formula 1 [8]. 

 ℓcon = −log 
exp(sim (𝑧,𝑧glob )/𝜏)

exp (sim (𝑧,𝑧glob )/𝜏)+exp (sim (𝑧,𝑧prev )/𝜏)
 (1) 

where 𝜏 is the temperature coefficient and the local loss function is 

 ℓ = ℓsup (𝑤𝑖
𝑡; (𝑥, 𝑦)) + 𝜇ℓcon (𝑤𝑖

𝑡; 𝑤𝑖
𝑡−1; 𝑤𝑡; 𝑥) (2) 
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where  𝜇 is the hyper parameter of the control model contrast loss weight. The local objective is 

minimized as 

 𝑚𝑖𝑛
𝑤𝑖

𝑡
𝔼(𝑥,𝑦)∼𝐷𝑖[ℓ𝑠𝑢𝑝(𝑤𝑖

𝑡; (𝑥, 𝑦)) + 𝜇ℓcon (𝑤𝑖
𝑡; 𝑤𝑖

𝑡−1; 𝑤𝑡; 𝑥) (3) 

2.3.  Challenges 

The current challenges are caused by four main aspects, system inconsistency, data inconsistency issues, 

privacy issues, and interaction overhead [8] (interactions on the network are much slower than local 

computing due to bandwidth, energy, and other issues, so it is important to improve the efficiency of 

interactions, and the two aspects that need to be examined rate are: reducing the number of interaction 

rounds or reducing the information per interaction round apparent). 

3.  Algorithm optimization 

3.1.  AdaGrad optimizer 

SGD (Stochastic Gradient Descent) algorithm is one of the most used optimization algorithms in 

machine learning and deep learning. SGD and AdaGrad are common gradient descent algorithms used 

for optimizing neural networks. The main difference between them lies in how they update the weights. 

In SGD, the same learning rate is used to update the parameters each time, without considering the 

different gradient sizes of each parameter. This means that SGD may encounter situations where the 

gradient changes significantly, leading to an excessively large or small learning rate, which can affect 

the convergence speed and quality of the model. 

AdaGrad, on the other hand, uses an adaptive learning rate by calculating the exponential moving 

average of the square of the gradient for each parameter. Specifically, in each iteration, AdaGrad 

calculates the cumulative sum of the square of the gradient for each parameter and uses it to scale the 

current gradient. As a result, the learning rate of parameters with larger gradients will be reduced, while 

the learning rate of parameters with smaller gradients will be increased. This allows AdaGrad to 

converge faster and adapt to different gradient sizes. 

Therefore, the main difference between SGD and AdaGrad lies in how they update the weights. SGD 

uses a fixed learning rate, while AdaGrad improves performance by deceptively adjusting the learning 

rate. "The learning rate may have very different effects on different parameters. For those parameters 

that are rarely updated, this paper may want to use a relatively large learning rate, while for those that 

are updated frequently, this paper may want to use a relatively small learning rate [9]. 

The core difference between AdaGrad and SGD is the addition of the squared root of the accumulated 

gradient squared sum of the denominator θ_i in computing the update step size. This denominator, which 

can gradually become biased, will cause the update step size to decrease relatively. In the case of sparse 

gradients, the corresponding values in the accumulated denominator will be relatively small, resulting 

in a relatively large update step size. Moreover, even when the susceptibility gap is bounded, if the 

convergence rate is slow, the algorithm may be practically useless [10]. With the AdaGrad algorithm, 

this paper value its convergence speed more. 

3.2.  Knowledge distillation 

In the experiment, this paper aim to optimize the challenge of high interaction cost in federated learning. 

This is one of the main current challenges of federated learning. Interaction on the network is much 

slower than local computation due to bandwidth, energy and other issues, so it is important to improve 

interaction efficiency. 

In order to solve this problem, two aspects need to be considered. The first aspect is to reduce the 

number of rounds of information interaction. In the second aspect, this paper considers reducing the 

amount of information exchanged in each round. Considering the above two aspects, this paper quote 

Knowledge Distillation to solve the problem of high cost of information interaction. 
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The concept of Knowledge Distillation was first proposed by Hinto in his article "Distilling the 

Knowledge in a Neural Network"[9]. This article was originally proposed to enable lightweight 

networks,one of the ways to realize lightweight network is to compress the model, and knowledge 

distillation is one kind of model compression. 

Under normal circumstances, the original model is a large complex model with redundancy, which 

may lead to low efficiency and poor training results if it is directly used. Therefore, this paper hope to 

take the required knowledge from the large model and transfer it on to the small model, and the small 

model can achieve the same effect as the large model, which is the main idea of knowledge distillation 

[11]. 

 

Figure 3. Flow chart of knowledge distillation. 

As the figure3 show that knowledge distillation defines two models, the Teacher Model and the 

Student Model respectively, the Teacher Model is often a complex original model that is distilled to 

remove redundant knowledge and then transfer to a streamlined Student Model. In general, the use of 

Student Model for training has the following advantages over direct use the Teacher Model:  

1. Model compression: With the original model of knowledge distilling to the smaller model, the size 

of the model can be reduced, thus reducing the storage and calculation costs of the model. 

2. Model acceleration: The small model after distillation can achieve faster reasoning speed than the 

original model under the same computing resources, which is very useful for some application scenarios 

with high real-time requirements. 

3. Improve model generalization ability: knowledge distillation can make small models learn the 

"soft" targets in the original model, thus improving the generalization ability and robustness of the model. 

4. Model migration: By distilling the knowledge of one model into another, the training of the other 

model can be accelerated and its performance improved. This is useful for application scenarios such as 

model migration and domain adaptation. 

Combining these factors, this paper consider using knowledge distillation method to optimize the 

global model in federated learning to reduce the high interaction cost.Specific to the application method 

of knowledge distillation in federated learning experiments this paper plan to use in these following 

aspects: 

Firstly, send the predicted results of the current global model and the Teacher Model to the selected 

client so that the client can use this information for training of knowledge distillation. Specifically, this 

paper use Teacher Model to predict the current global model and send the result as a soft label to the 

client. 

Secondly this paper use the train () method for each client participating in the training to conduct 

local model training,then receive the model parameters after this round of training from the client 

participating in the training. Finally, all model parameters after this round of training were used to update 

the global model by knowledge distillation. This paper expect to optimize the high interaction cost 

problem in these scenarios. 
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4.  Simulation results and analysis 

4.1.  Experimental procedure 

In this study, the MNIST data-set, encompassing the training and test sets, was utilized. AdaGrad and 

SGD algorithms were adopted as optimization algorithms for local and global training, respectively. 

Local training involved the usage of local data by each device for training, while in global training, all 

device data was pooled on a central server for training. The number of communication rounds was 

established at 10 rounds, implying that 10 communications between devices and servers were carried 

out in each training round. Loss rate and accuracy were employed as performance evaluation metrics to 

assess the efficacy of the algorithms during training. Trend graphs of loss rate and accuracy were 

generated for AdaGrad and stochastic gradient descent (SGD) algorithms in both local and global 

training to compare their performance in different training environments. Comparative analysis of the 

performance of different algorithms in local and global training was conducted, and their underlying 

reasons were analyzed. Based on the experimental results, it was determined that AdaGrad algorithm 

outperformed the SGD algorithm in both local and global training. Moreover, the use of the AdaGrad 

algorithm resulted in improved outcomes with fewer training rounds, thereby reducing communication 

overhead. 

4.2.  Experimental results and analysis 

4.2.1.  Loss performance of SGD and AdaGrad on MINIST data-set. The variation of loss rate on local 

training using SGD and AdaGrad algorithms at communication rounds of 10 respectively is shown in 

Figure 4.  

 

Figure 4. Trend of loss rate in local training with the number of communication rounds. 

The loss rate of both SGD and AdaGrad algorithms gradually decreases as the number of 

communication rounds increases, and it can be concluded that the loss rate of AdaGrad is significantly 

lower than that of SGD at the specified communication rounds. When the first round of training was 

performed the AdaGrad algorithm was able to reduce its loss rate well to 0.2402 while the loss rate of 

the SGD algorithm only reached 0.9643. The loss rate of the AdaGrad algorithm decreased by 75 

percentage points compared to the SGD algorithm. This is because AdaGrad is computationally more 

efficient than the SGD gradient descent algorithm since it only considers the gradient of one sample for 

each parameter update. With the increase of communication rounds, the loss rate of AdaGrad gradually 

levelled off at the communication round of 5 and finally floated around 0.0385. The loss rate of SGD 

1 2 3 4 5 6 7 8 9 10

SGD 0.9543 0.6245 0.4495 0.3512 0.2946 0.2545 0.2236 0.1987 0.1785 0.1617

AdaGrad 0.2402 0.1007 0.0707 0.0543 0.0383 0.0509 0.0484 0.0433 0.02 0.0523
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reached a minimum of 0.1617 at the communication round of 10, but the loss rate was still higher than 

that of AdaGrad by 67 percentage points, which was significantly higher than that of the SGD algorithm. 

This is because the AdaGrad gradient descent algorithm is an adaptive learning rate optimization 

algorithm, which aims to adjust the learning rate based on the historical gradient values of each 

parameter in order to better update the model parameters. In local training, the loss rate of local training 

will be low because the model can be better adapted to the data due to the smaller amount of data, while 

the model may be over-fitted due to the smaller amount of data, resulting in a volatile loss rate. 

The performance of AdaGrad and SGD algorithms in global training is shown in Figure 5.  

 

Figure 5. Trend of loss rate  in global training with the number of communication rounds. 

The loss rate of the AdaGrad algorithm is better than that of SGD only in the first two communication 

rounds and reaches a minimum of 1.1266 at round 2. However, the loss rate of the AdaGrad algorithm 

changes abruptly and gradually becomes larger as the number of communication rounds increases, while 

the loss rate of the SGD algorithm gradually decreases. This is because the AdaGrad is suitable for small 

data sets, and the loss rate becomes higher due to the large amount of data in global training, and the 

overall learning rate becomes smaller and smaller as the algorithm continues to iterate, which also leads 

to a higher loss rate in global training. 

4.2.2.  Accuracy performance of SGD and AdaGrad on MINIST data-set. The variation of accuracy rate 

on local training using SGD and AdaGard algorithms at communication rounds of 10 respectively is 

shown in Figure 6. 

 

Figure 6. Trend of accuracy rate in local training with the number of communication rounds. 

1 2 3 4 5 6 7 8 9 10

SGD 2.2905 1.4463 1.1089 0.9381 0.8487 0.7055 0.7331 0.6075 0.6471 0.612

AdaGrad 2.2905 1.1266 1.2535 1.5111 1.9025 2.1651 2.611 2.5793 2.6465 2.8435
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The accuracy rate of SGD and AdaGard algorithms gradually increases and tends to be stable with 

the increase of the number of communication rounds. The accuracy of AdaGard algorithm is 

significantly higher than that of SGD algorithm in the specified number of communication rounds. 

However, the accuracy of AdaGrad algorithm reached 0.9387 after the first round of training, while the 

SGD algorithm was only 0.7101. In addition, AdaGrad algorithm reached a stable value of 0.9681 after 

the second round of training, but SGD algorithm tended to be stable after the fifth round of training, and 

compared with SGD algorithm, the accuracy of AdaGrad algorithm to get stable was higher in the local 

model. 

The variation of accuracy rate on global training using SGD and AdaGrad algorithms at 

communication rounds of 10 respectively is shown in Figure 7. 

 

Figure 7. Trend of accuracy rate in global training with the number of communication rounds. 

The AdaGrad algorithm has a good performance in the accuracy of global model training.In the 

second round of global model training using AdaGrad algorithm, the accuracy reached 0.8174, while 

the SGD algorithm was only 0.5709, 0.2465 lower than AdaGrad. And in the subsequent training, 

AdaGrad algorithm reached the stable accuracy of 0.848 in the third round, but SGD algorithm reached 

the stable accuracy of 0.8378 after the ninth round of training. 

Therefore, the AdaGard algorithm is undoubtedly batter than the SGD algorithm either in the training 

rounds with stable accuracy or the final accuracy rate, and it is universal in both the local model and the 

global model. 

It can be seen from the above experiments that using AdaGrad algorithm can achieve better results 

with fewer training rounds, which is very helpful for us to reduce the interaction overhead. 

5.  Conclusion 

Federated learning is a distributed machine learning approach that allows multiple clients to train a 

shared model without exchanging their data. However, the performance of federated learning is 

significantly impacted by the efficiency of network communication. Therefore, it is crucial to improve 

communication efficiency by reducing the number of communication rounds or minimizing the amount 

of information exchanged in each round. The AdaGrad algorithm is one of the optimization methods 

that can be utilized to accelerate the convergence rate of the local models and improve the overall 

performance of federated learning. Moreover, the introduction of knowledge distillation can further 

enhance the global model's generalization ability and training speed by transferring knowledge from a 
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larger teacher model to a smaller student model. In this study, we not only present the basic principles 

of federated learning but also propose two novel algorithms that aim to enhance its performance. Our 

experimental results demonstrate that the combined algorithm outperforms the original federated 

learning algorithm in terms of both efficiency and accuracy. These findings suggest that our proposed 

approach can effectively address the challenges associated with network communication in federated 

learning and facilitate the widespread adoption of this approach in real-world applications. 
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