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Abstract. With the increasing demand for intelligent systems capable of comprehending visual 

information, the discipline of image object detection has experienced rapid expansion. Despite 
the fact that numerous methods have been proposed, the existing literature lacks exhaustive 

analyses and summaries of these methods. This paper seeks to address this deficiency by 

providing a thorough overview and analysis of image object detection techniques. This paper 

analyzes and discusses traditional methods and deep learning-based methods, with a focus on 

analyzing the current state and shortcomings of traditional methods. Further discussion is given 

to deep network-based object detection methods, mainly through a comparative analysis of two-

stage and one-stage methods. The basic performance of the You Look Only Once (YOLO) series 

methods is highlighted. The contribution of large-scale datasets and evaluation metrics to the 

advancement of the state of the art is also examined. This comprehensive analysis is a useful 

reference for researchers who aim to contribute to the continual progress of image object 

detection. 
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1.  Introduction 

The demand for intelligent systems capable of comprehending and interpreting visual information has 
fuelled the explosive growth of computer vision over the past several decades. The problem of image 
object detection entails accurately identifying and locating objects within images or sequences of images. 
Object detection is the basis for numerous applications, including autonomous vehicles, robotics, video 

surveillance, medical image analysis, and augmented reality [1]. 
Historically, object detection methods relied on the hand-crafted feature, limiting their robustness, 

scalability, and adaptability to new object classes or diverse environments. Viola-Jones algorithm for 
face detection, Scale-Invariant Feature Transform (SIFT) for key point detection and matching, and 
Histogram of Oriented Gradients (HOG) for person detection are examples of classical object detection 
techniques. While these techniques were instrumental in the early development of object detection, they 
have been vastly eclipsed by more recent techniques based on deep learning. The emergence of deep 

learning and the increasing availability of large-scale annotated datasets have resulted in a significant 
paradigm shift in object detection. Convolutional neural networks (CNNs) have been extensively 
adopted to automatically learn hierarchical feature representations directly from unprocessed pixel 
values, eliminating the need for manual feature engineering. This has led to the creation of a number of 
cutting-edge object detection techniques [2]. 
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Despite the significant advancements made in recent years, numerous obstacles remain in the field 
of image object detection. Researchers continue to contend with issues such as class imbalance, 
detecting small objects, addressing occlusion and clutter, and ensuring domain shift robustness. In 
addition, emerging trends in object detection, such as anchor-free methods, transformer-based 

architectures, and few-shot detection techniques, hold promise for addressing some of these obstacles 
and expanding the field's capabilities. 

Extensive approaches to these problems have been proposed, but comparative analyses and 
summaries of these approaches are lacking in the literature. This article provides a comprehensive 
overview of image object detection techniques, including classical approaches, methods based on deep 
learning, and emerging trends. The role of large-scale datasets, evaluation metrics, and benchmarking 
platforms in advancing the state-of-the-art is investigated. By providing a comprehensive 
comprehension of the current state of image object detection, its challenges, and future directions, we 

hope to provide a valuable resource for researchers who wish to contribute to the continued advancement 
of this rapidly advancing field. 

2.  Classical approaches to object detection  

In the early days of computer vision, object detection relied on classical approaches involving hand-

crafted feature extraction, such as HOG and SIFT, followed by the use of machine learning classifiers 
such as Support Vector Machine (SVM) or Bayesian classifiers for detection. The HOG descriptor is a 
feature extraction method that captures the distribution of gradient orientations in localized regions of 
an image [3] (Figure 1). It divides the image into small cells, computes histograms of gradient 
orientations within each cell, and then normalizes these histograms over larger blocks to account for 
variations in lighting and contrast. The final HOG feature vector is composed of concatenated 
normalized histograms and can be used to train a classifier such as a SVM for object detection. HOG 
has proven especially useful for human detection, as it can capture the shape and structure of human 

silhouettes. 
However, there are limitations to the HOG descriptor. It might not be resistant to changes in object 

appearance, viewpoint, or occlusions. Moreover, the process of hand-crafting features can be time-
consuming and may require significant domain knowledge and experimentation [4]. 

 

Figure 1. HOG feature extraction process. 

In addition to HOG, another classical method that has made a significant impact on object detection 
is SIFT. SIFT is a prominent feature extraction method that identifies and describes the scale and 
rotation-invariant key points within an image. The SIFT algorithm requires the detection of scale-space 

extrema, the assignment of orientations to key points, and the generation of a descriptor for each key 
point based on local image gradients. SIFT descriptors can be matched across multiple images to identify 
corresponding object instances or used to train classifiers for object detection. SIFT has limitations when 
it comes to object appearance, lighting conditions, and affine transformations, despite its resistance to 
changes in scale and rotation. Moreover, its computational complexity can be problematic for real-time 
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applications. There are methods for object detection that combine SIFT and classifiers to enhance 
detection performance. For instance, when SIFT and SVM are combined, SIFT features are extracted 
from the input images and then used to train a SVM classifier. The classifier is then applied to new 
images to detect objects. This combination of SIFT and SVM has been applied to a variety of object 

detection tasks with promising outcomes [5]. 
While SIFT has been a popular choice for object detection, several enhancements and variants have 

been proposed to boost its efficacy. The incorporation of spatial verification techniques to refine object 
localization is one such enhancement. After initial object detection with SIFT key points, additional 
geometric constraints or spatial consistency tests can be used to validate and refine the object's bounding 
box. This serves to reduce false detections and improve object localization precision. Integration of deep 
learning techniques with SIFT constitutes an additional enhancement (Figure 2). Deep learning models, 
such as CNNs, have demonstrated remarkable capabilities for directly learning complex and 

discriminative features from raw pixel data. Combining the descriptive power of CNNs with the 
robustness of SIFT enables more precise and robust object detection. This hybrid strategy exploits the 
complementary advantages of both methods to improve detection performance. Overall, SIFT-based 
object detection methods, whether employed in their traditional form or augmented with additional 
techniques, have proven effective in a variety of object detection applications. They provide a solid 
foundation for feature extraction and classification, paving the way for future advances in object 
detection. 

However, the handcrafted nature of these features and their reliance on engineered representations 
restricted their robustness, scalability, and adaptability to new object classes or different environments. 

 

Figure 2. Flow chart of sift feature extraction. 

3.  Deep learning-based techniques 

Deep learning has revolutionized the field of computer vision by facilitating the extraction of features 
automatically from unprocessed pixel values. This has significantly reduced the need for hand-crafted 
features and engineered representations, resulting in substantial advancements in object detection 
performance. CNNs are the most extensively used deep learning architectures for image object detection, 
as they offer both end-to-end training and hierarchical feature learning [6]. Current approaches can be 
categorized broadly into one-stage and two-stage object detections, which will be elaborated upon in the 
following sections. 

3.1.  Two-stage object detection 
Two-stage object detection techniques are distinguished by the use of region proposition techniques 
followed by CNN feature extraction and classification. Typically, these methods involve three primary 
steps: region proposal generation, feature extraction using CNNs, and object classification using 
classifiers such as SVM. 

The first stage of two-stage object detection entails the generation of a set of region proposals, which 
are possible image object bounding boxes. Different strategies, such as selective search, edge boxes, and 
region proposal networks (RPNs), have been used to generate region proposals. The objective is to 
generate a set of diverse candidate regions that are likely to contain objects of interest. In the second 
phase, a CNN that has been previously trained is used to derive features from the proposed regions. The 
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CNN is typically trained on a large dataset for image classification before being fine-tuned for the 
specific object detection task. The extracted features capture hierarchical and spatial information about 
the objects, providing a comprehensive and discriminative representation for classification. Finally, a 
classifier such as an SVM is applied to the extracted features to determine the object class and refine the 

bounding box coordinates. The classifier is trained using ground-truth annotations of object classes and 
their corresponding bounding boxes in the training images. Some two-stage object detection methods 
replace the SVM classifier with a fully connected layer within the CNN architecture, allowing for end-
to-end training of the entire model. 

Region-based CNN (RCNN)is an example of a two-stage object detection method. R-CNN employs 
a selective search for region proposal generation, extracts CNN features from the proposed regions, and 
then uses an SVM for object classification (Figure 3). This method has demonstrated a substantial 
improvement in object detection performance compared to conventional methods [7]. Fast R-CNN is an 

enhanced variant of the R-CNN algorithm that addresses some of its shortcomings, namely its sluggish 
performance. Fast R-CNN introduces a number of significant enhancements to increase performance 
and effectiveness. Instead of extracting features independently for each proposed region, Fast R-CNN 
extracts features from the entire image only once. This is accomplished through the use of a region of 
interest (RoI) pooling layer, which extracts fixed-size feature maps for each proposed region. Then, 
these feature maps are fed into layers with complete connections for classification and bounding box 
regression. Fast R-CNN considerably accelerates the process in comparison to the original R-CNN by 

sharing convolutional features across all proposals. Mask R-CNN is another example. It expands the 
capabilities of object detection to include instance segmentation, which requires not only the detection 
of objects but also the accurate delineation of their boundaries. Mask R-CNN generates a mask at the 
pixel level for each detected object in addition to predicting object classes and bounding box coordinates. 
This allows for the precise segmentation of image objects. Mask R-CNN accomplishes this by 
augmenting the Fast R-CNN architecture with a parallel mask branch. The mask branch is responsible 
for generating a binary mask that specifies the precise shape and location of each instance of an object. 

By integrating the advantages of object detection and instance segmentation, Mask R-CNN provides 
more detailed and fine-grained object information in an image. This is beneficial in situations where 
objects may overlap or obscure one another. Image segmentation, instance-aware image modification, 
and real-time video object segmentation are examples of applications where Mask R-CNN has proven 
to be highly effective. 

 

Figure 3. R-CNN flowchart. 

However, there are disadvantages to two-stage object detection methods. Due to the separate phases 
of region proposal and feature extraction, they can be computationally expensive, limiting their 
applicability in real-time settings. Furthermore, reliance on region proposal techniques can introduce 
additional hyperparameters and complexity to the overall detection pipeline. 

Two-stage object detection methods attain state-of-the-art performance in object detection by 
combining region proposal generation, CNN feature extraction, and classification. Although these 

approaches have considerably advanced the field, their computational complexity and reliance on region 
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proposal techniques have prompted the development of more efficient alternatives, such as one-stage 
object detection. 

3.2.  One-stage object detection 

The detection process is accelerated in one-stage object detection methods as they predict object classes 
and bounding box coordinates in a single network iteration. This substantially improves computational 
efficiency and enables real-time object detection by eliminating the need for separate stages of region 
proposal generation and classification. Approaching object detection as a regression problem, YOLO is 
a revolutionary one-step approach that divides the input image and predicts the object categories and 
bounding box coordinates for each grid cell. By employing a single network to execute the entire 

detection task, YOLO significantly reduces computation time in comparison to two-stage methods. 
Several enhanced variants of YOLO have been proposed since its inception. Various modifications 

and optimizations have been implemented in these versions to improve detection performance and 
efficiency. The use of anchor boxes, additional convolutional layers, batch normalization, and novel loss 
functions are among the most significant enhancements. In general, each new iteration of YOLO offers 
improved performance and faster inference times than its predecessor, making them more suitable for 
real-time applications. Among the main significant contributions and enhancements of various versions 

of YOLO are: 
YOLOv1: The original version of YOLO introduced the concept of object detection as a regression 

problem using a singular neural network. It utilized a straightforward architecture consisting of 24 
convolutional layers and 2 fully connected layers. In addition, a custom loss function was used to balance 
localization and classification errors. 

YOLOv2: An enhanced version of YOLO that includes performance-enhancing techniques such as 
batch normalization, anchor boxes, multi-scale training, and fine-grained features. In addition, it utilized 
a new architecture with 23 convolutional layers and a passthrough layer that merged features from prior 

layers. At the time, its performance on PASCAL VOC (Pattern Analysis Statistical Modelling and 
Computational Learning, Visual Object Classes) and COCO (Microsoft Common Objects in Context) 
datasets was unparalleled. 

YOLOv4 is an updated version of YOLO that incorporates numerous components from recent studies 
on network design, training strategies, testing techniques, self-adversarial training, and mosaic data 
augmentation [7]. Additionally, a new architecture with weighted residual connections, cross-stage 
partial connections, spatial attention modules, and mish activation functions were implemented. It 

outperformed previous versions on a variety of performance metrics. 
YOLOv5 is a refined version of YOLO that uses the PyTorch framework as opposed to the Darknet 

framework. Additionally, a simplified architecture with fewer layers and parameters was utilized. It 
introduced new models at various grades (S, M, L, X) that combined speed and precision. It evaluated 
its efficiency and effectiveness across multiple datasets utilizing distinct metrics. 

The most recent member of the YOLO family. The YOLOv8 framework is based on the YOLOv5 
framework and includes numerous architectural and developer experience enhancements. It is faster and 
more accurate than YOLOv5, and it provides a unified framework for training object detection, instance 

segmentation, and image classification models [8]. 
As the field of image object detection continues to evolve, there are a number of noteworthy 

emerging trends to consider. These include anchor-free detection methods, transformer architectures, 
and few-shot detection techniques. Anchor-free methods seek to simplify the detection pipeline by 
removing the requirement for anchor boxes, which can introduce additional hyperparameters and 
complexity. Driven by the achievements of transformers in natural language processing, transformer 
architectures employ self-attention mechanisms to model long-range dependencies and capture spatial 

information more effectively. Few-shot detection techniques seek to train models capable of detecting 
novel object classes using only a few annotated examples, thereby addressing the problem of limited 
annotated data for certain object categories. 
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4.  Metrics for evaluation and benchmarking 

4.1.  Measurement criteria 

Several evaluation metrics are frequently employed to assess the effectiveness of object detection 
methods. Intersection over Union (IoU) is a commonly used metric that evaluates the overlap between 
the predicted and actual bounding boxes. Higher IoU values indicate superior performance in 
localization. Additionally, precision, recall, average precision, and average recall are used to evaluate 
the classification performance of the detection methods. In addition, the mean Average Precision (mAP) 
metric integrates precision and recall values across various object classes to provide a single 
performance metric that facilitates method comparison. Besides, the inference speed (frames per second, 

FPS) is also a significant evaluation. The greater the FPS value, the more rapidly the model is detected 
and the more real-time it appears. In general, the performance of the model is determined by combining 
the mean Average Precision and the inference speed. 

4.2.  Comparative analysis 
The table 1 compares the performance of various object detection methods based on the same dataset 

using different evaluation metrics. 

Table 1. Compares the performance of various methods based on different evaluation metrics. 

Category Method Speed 

/(frame·s-1) 

Microsoft Common 

Objects in Context 
(MS COCO) 

(mAP@IoU=0.5:0.95) 

The PASCAL 

VOC Challenge 
2012 

(VOC2012) 
(mAP@IoU=0.5) 

mAP(%) 

Two-
Stage 

R-CNN 0.03 
 

53.3% 58.5 

Fast R-
CNN 

3 19.7% 68.4% 70.0 

Mask R-
CNN 

11 
  

78.2 

Yolo 
series 

YOLO v1 45 
 

57.9% 57.9 

YOLO v2 40 21.6% 73.4% 73.5 

YOLO v3 20 33.0% 
 

57.9 

YOLO v4 33 43.5% 42.1% 43.5 

YOLO 
v5n 

30.826 28.0%   

YOLO 
v6n 

26.55 35.9%   

YOLO v7t 20.006  52.8%  

Deep learning-based techniques typically outperform conventional approaches. This is primarily due 

to the limitations of hand-crafted features, which frequently fail to depict the complex and diverse 
appearance of real-world objects. Moreover, these approaches are sensitive to alterations in object 
appearance, lighting conditions, and affine transformations. Although two-stage methods provide 
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significant performance enhancements over conventional techniques, their inference speeds are typically 
slower. Mask R-CNN obtains the highest performance among two-stage approaches at the expense of 
speed. Methods based on YOLO are designed to detect objects in real-time while preserving competitive 
performance. One-stage methods in the YOLO family allow for a faster processing pace, but in some 

cases may sacrifice precision. 
In conclusion, the selection of an object detection method depends on the application and needs at 

hand. When real-time detection is crucial, YOLO-based methods are preferable due to their rapid 
processing speed. Nonetheless, if precision is the primary concern, a two-stage method such as Mask R-
CNN is preferable. In situations where techniques based on deep learning are impracticable due to 
resource constraints or other constraints, classical methods may still be applicable. 

5.  Conclusions 

This article delves into the analysis and discussion of both traditional methods and deep learning-based 
methods, with a particular focus on examining the current state and limitations of traditional methods. 
The article further explores deep network-based object detection methods, providing a comparative 
analysis of two-stage and one-stage methods. The article also emphasizes the basic performance of the 
YOLO series methods. Additionally, the article examines the contribution of large-scale datasets and 

evaluation metrics to the advancement of the state of the art. In conclusion, traditional object detection 
approaches, such as HOG and SIFT, relied on hand-crafted features, which limited their robustness, 
scalability, and adaptability. With the advent of deep learning, the paradigm for object detection has 
shifted significantly towards automatic feature extraction using CNNs. Two-stage object detection 
methods, characterized by region proposal generation, CNN feature extraction, and classification, have 
shown state-of-the-art performance on a variety of object detection tasks. However, their computational 
complexity and reliance on region proposal techniques have prompted the investigation of more 
effective alternatives, such as one-stage object detection techniques.  

Emerging trends, such as anchor-free detection, transformer architectures, and few-shot detection, 
hold promise for further enhancing the performance of object detection and addressing the limitations 
of current methods. As research in this area continues, we can anticipate the development of more 
sophisticated and robust object detection techniques suited to a broader spectrum of applications, 
including real-time and resource-constrained scenarios. 
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