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Abstract. According to the Smithsonian Institution, the art of making music has existed for over
35,000 years. As musical technology has improved, the music of the time has also improved and
adapted to the new technology. In the recent expansion of technology from generative Al, text
and image generation have become not only possible but also competitive with human-created
text and images. As such, the development of Al-generated music is increasingly sparking
considerable interest among musicians and developers alike, raising questions about the potential
of Al to enhance or even replace human musical creativity. This paper will first explore the
advancements of Al-generated music. Next, it will delve into the technologies and
methodologies involved in generating music, as well as its current limitations using a basic
LSTM (Long Short-Term Memory) model. Finally, it will explore the implications of this music
for the whole music industry. By examining these various facets of Al-generated music, this
research provides insights into Al's potential role in shaping the future of music. According to
the analysis, a rudimentary Al model trained on complex music can produce music that is fairly
elementary. Overall, these results shed light on guiding further exploration of the interaction
between artificial intelligence and music.
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1. Introduction

The intersection of music and computing is a fascinating domain, with its origins dating back to the mid-
20th century. This multifaceted field emerged when Australian computer scientist Trevor Pearcey used
CSIRAC (Council for Scientific and Industrial Research Automatic Computer), Australia's first digital
computer, to experiment with music in 1951. This seminal endeavour laid the groundwork for the digital
production of sound, marking the birth of computer music [1, 2]. A significant breakthrough in computer
music occurred in the late 1950s by Max Mathews at Bell Labs in the United States. He developed the
MUSIC series, a collection of programming languages designed to generate music, which ushered in a
new era in this field. MUSIC I, the first software of its kind, produced the inaugural musical note on a
computer, catalysing the development of more sophisticated versions, notably MUSIC IV." The 1960s
saw the emergence of computer music research centres in academic institutions. Prominent examples
include Stanford's CCRMA (Centre for Computer Research in Music and Acoustics) and Princeton's
Composers Inside Electronics. The following decades witnessed the commercialization of computer
music with companies such as Moog and Fairlight introducing synthesizers. The 1980s also brought
forth the Musical Instrument Digital Interface (MIDI), a significant advancement in music technology,
which enabled communication between computers and synthesizers. The 21st century introduced a new
dimension to computer music with the advent of machine learning and artificial intelligence. Algorithms
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capable of autonomously generating music were developed, exemplified by David Cope's "Experiments
in Musical Intelligence" and OpenAl's "MuseNet" [1-3].

From its humble beginnings as an experimental offshoot of computer science and music, computer
music has evolved to become a fundamental aspect of contemporary music production and performance.
It has transcended its academic origins to permeate popular culture and continues to redefine the
boundaries of musical creativity. Despite these advances, the field remains an open canvas for
exploration and innovation, with researchers and artists continually pushing the envelope in terms of its
potential.

Current music generation models use a specific model called Long Short-Term Memory (LSTM) [4,
5]. LSTMs, a type of Recurrent Neural Network (RNN) designed to learn from a long range of
dependencies in sequential data, have shown promise in various applications, including natural language
processing [6]. Several studies have showcased the potential of LSTM networks in generating coherent
and aesthetically pleasing compositions by capturing complex structures and temporal dependencies in
music. Huang et al. have demonstrated the effectiveness of generative adversarial networks (GANs) in
generating multi-track music, provided a comprehensive review of deep learning techniques for music
generation, including LSTMs, GANs, and Variational Autoencoders (VAEs) [7], and discussed the
fundamentals of LSTM networks, highlighting their ability to learn long-range dependencies in
sequential data [8]. Some studies have also applied LSTM networks to generate melodies and piano
music, respectively, showcasing the potential of LSTMs in music generation, and exploring the multi-
modal and hierarchical approaches to improve generated music, with successful applications in
generating polyphonic and harmonically rich music [9]. Evaluating the quality of generated music
remains a challenge, as highlighted by Nakamura et al., who emphasized the importance of combining
quantitative metrics with qualitative listener feedback [10]. Lastly, the ethical and practical implications
of Al-generated music were discussed by Frontiers in Artificial Intelligence, highlighting the need to
consider the impact of Al on human creativity, authorship, and the future of the music industry [11].

In order to showcase the effectiveness and limitations of artificial intelligence and music, this paper
will build upon preexisting models and modify them. To be specific, this study will utilize an LSTM
model that generates music, and modifying it based on specific sets of data to create an experiment to
test similarity. Hence, one will look over existing research, as well as building the own LSTM model to
test the limitations ourselves. The rest part of the paper is organized as follows. Section 2 will be a
description of the data. Section 3 will be the results and a discussion of the results. Section 4 will be
about the limitations and prospects of the research. Finally, Section 5 will be a conclusion that details
the potential implications of this research.

2. Data & method

The LSTM model is an exceptional tool for music generation. LSTM models, with their aptitude for
handling long-range dependencies, can capture patterns from a broad range of time steps. This feature
is particularly advantageous for music generation, where motifs, themes, and harmonic progressions
frequently recur throughout a composition. Therefore, a system that can accurately model these patterns
is crucial. A graphical representation of the LSTM model is provided in Figure 1. Here, xt is the input,
ht-1 is the output of the previous layer, and ct-1 is the previous cell state. The distinguishing feature of
LSTM models is their gating mechanisms which regulate the flow of information, allowing the model
to selectively remember and forget information based on its relevance. Specifically, there are three types
of gates embedded in LSTM models: Input gate, Forget gate, and Output gate. The Input gate decides
which new information will be updated into the cell state. This gate is useful for introducing new
elements into the music, such as changes in pitch, duration, harmony, or other relevant attributes. The
Forget gate, on the other hand, decides which parts of the previous cell state should be discarded. The
Forget gate uses a sigmoid function to look for values to forget. It could be used to forget patterns that
were only prevalent for a short period of time or no longer serve the current musical context. Lastly, the
Output gate decides what information from the cell state should be conveyed as the output of the LSTM
cell. This gate is fundamental in determining which information from the cell state should be used to
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generate the output at the current time step, thus influencing the present moment in the music
composition. In Figure 1, the Input gate corresponds to the leftmost sigmoid layer. It takes in the value
from the previous output ht-1 and a new set of inputs xt, and using these two values, it outputs a number
between 0 and 1 for the values in the previous cell state of Ct-1. The greater the number that is outputted,
the more likely the model will keep that value. Let's assume that the values to be removed will be stored
in a forget gate, denoted as Ft. The purpose of the middle two arrows, the sigmoid and tanh(x) arrows,
is to find what new information should be inputted into the cell state. The sigmoid function is first used
to determine what values should be updated in the cell state, and then the tanh(x) layer will find possible
values that could be added to the state. Then, the model combines these two layers to update the cell
state. Let's denote this combination as Ut. Now that the decision of how to update the cell states with Ft
and Ut is made, the model can start updating the cell state. First, it will multiply the old state Ct-1 by Ft,
and then it will add Ut to the cell state to create the new cell state. Finally, one needs to determine what
the output ht will be in this cell state. First, the cell state will be put into a sigmoid layer to determine
which parts of the cell state will be output, and it will also be separately put into a tanh(x) function,
Then, the model will multiply the outputs of both cell state transformations to determine which parts the
model will output.

LSTM cell
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Figure 1. A sketch of LSTM cell [12].

This study will primarily employ an LSTM-based music generation model. In the application of the
LSTM model, this study plans on utilizing pitch, duration, and step as the primary parameters that the
model will interpret and learn from. With these features, it is hoped that the LSTM model can generate
music that is not only rich in detail but also respects the fundamental elements of musical composition.
The LSTM model will be trained on the Maestro Dataset, a large collection of MIDI and audio files.
Collected from the International Piano-e-Competition and a part of the Magenta research project, these
files are complex piano pieces played by virtuoso pianists.

3. Results & discussion

The results from the experiment offer intriguing insights into the capability of LSTM models for music
generation and contribute to the understanding of the challenges and prospects in this research domain.
As shown in Figure 2, observations from the normalized training loss graph indicate that the model
learned effectively over the training epochs. The loss value gradually decreased and stabilized around
the range of 0.1, signifying that the model was able to generalize well on the training data and minimize
the difference between the actual and predicted sequences. Notably, an abnormal spike was observed at
the 105th epoch, causing a sudden increase in the loss value. However, this spike was temporary and
the loss quickly decreased in subsequent epochs. This spike might be attributed to several factors, such
as learning rate schedules, model instability at that point in training, or potential outliers in the batch of
data used during that epoch.
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Figure 2. Loss as a function of Epoch (Photo/Picture credit: Original).
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Figure 3. Distribution of training (Photo/Picture credit: Original).
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Figure 4. Distribution of testing (Photo/Picture credit: Original).
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Seen from Figure 3, an analysis of the training data from the Maestro dataset reveals a fairly
normalized distribution of pitches. The step and duration characteristics, however, demonstrated a right
skew. This indicates that shorter notes and rests are more prevalent in the training data, which is typical
for many genres of music, particularly those that rely heavily on rhythmic intricacy. In contrast, as
depicted in Figure 4, the pitch distribution of the generated sequences exhibited a bimodal pattern,
clustering at the extreme ends of the pitch ranges. Additionally, the steps and duration characteristics
were left-skewed. The bimodal distribution of the pitch could be attributed to the model's tendency to
simplify complex polyphonic input into the two ends of the spectrum of possible MIDI notes. This
interpretation aligns with the constraints of the LSTM model used, which was designed to handle only
monophonic notes. This simplification by the LSTM model, while potentially a limitation in capturing
the full richness of the input music, provides an interesting insight into how artificial intelligence can
manage complexity. Despite its limitation in handling polyphonic music, the model was still able to
generate musically coherent outputs. This observation opens up exciting avenues for future research,
especially in understanding and improving how LSTM and similar models handle and generate
polyphonic music.
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Figure 5. Output results (Photo/Picture credit: Original).

Despite the odd distributions of pitches, steps, and duration in the generated notes, as illustrated in
Figure 5, the piano roll shows that the track itself has varied pitches, steps, and duration, showing how
despite the bimodal nature of the output, the output itself is still varied and unique. In summary, the
LSTM model demonstrated promising results in generating music, successfully learning from the
training data, and synthesizing new musical sequences. However, the model's tendency to simplify
complex inputs, evident in the pitch distributions of the generated sequences, poses a challenge that
future research in this field should aim to overcome.

4. Limitations & prospects
The present research has sought to leverage the power of LSTM models for the generation of music.
While the study has achieved several significant findings, it has also faced a set of limitations that pave
the way for future research opportunities. One notable constraint was the computational power available
for the project. LSTM models, being recurrent neural networks, are computationally intensive due to
their inherent sequential nature. Unfortunately, the lack of substantial GPU resources imposed a
considerable limitation on the research. GPU acceleration is essential for training deep learning models,
as it significantly reduces the time required for the training process. The lack of such computational
power resulted in a compromise to the complexity of the music generation process. As a workaround,
the research employed monotonous eclements of MIDI songs to reduce the complexity and
dimensionality of the input data. While this approach allowed the LSTM model to function within the
available computational constraints, it inevitably reduced the variation and richness of the generated
music. Essentially, the simplification of input might have led to an oversimplification of the model's
understanding of music, reducing its capacity to generate music with complex patterns and structures.
Interestingly, the unique constraint that was intentionally introduced to the model involved training
it with complex polyphonic music, while the LSTM model was geared to handle only monophonic notes.
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This approach intended to observe how the Al could simplify the computational process, and although
it might initially appear as a limitation, it was indeed a key research point. In effect, the model had to
learn to distil the complexity of polyphonic music down to a single melodic line, which was an
interesting method for assessing the model's capability to handle complex musical structures.

Despite these limitations, the study has promising prospects. With advancements in technology and
more accessible computational resources, future research could overcome the constraints faced by the
present study. Increased computational power would allow for the training of more complex LSTM
models capable of understanding and generating music with higher variation and intricacy. Moreover,
it would permit the utilization of more complex and nuanced MIDI song elements, capturing more
intricate patterns and generating richer music.

The present research can be further expanded in several ways. Future studies could investigate the
integration of other music-related parameters, such as tempo, dynamics, and articulation, which would
provide a more comprehensive musical understanding of the model. In addition, future research could
explore the fusion of different architectures or the use of more recent models, such as Transformer or
Capsule Networks, to see whether they can improve performance and generate more musically coherent
output. Lastly, the use of ensemble methods and the introduction of various forms of regularization
could also be looked into for better model performance. Overall, while the limitations of the current
project are clear, they open a wide range of exciting opportunities for future research in music generation
using deep learning.

5. Conclusion

This study delved into the fascinating realm of music generation using deep learning, specifically
leveraging the power of Long Short-Term Memory (LSTM) models. The experiment demonstrated the
ability of LSTM models to learn from complex sequential data, as evidenced by the training loss graph,
and successfully generate musically coherent sequences. However, the generated output, especially the
pitch distributions, underscored the model's inherent limitations, particularly its propensity to simplify
complex polyphonic input into more manageable monophonic output.

Despite these limitations, the findings provide invaluable insights into how artificial intelligence
navigates complexity. The process of simplification carried out by the LSTM model, while limiting in
some respects, illustrates a unique mechanism through which Al can manage intricate structures. This
discovery opens the door to myriad research opportunities, particularly aimed at enhancing how LSTM
and similar models process and generate polyphonic music. The observation that Al can simplify
complex polyphonic music into more manageable patterns has significant applications for music
composers and producers. They could utilize Al algorithms as a tool to generate foundational structures,
melodies, or chord progressions, thus expediting the composition process and allowing more time for
creative exploration in other musical dimensions. Such a development could democratize music
production, empowering individuals with limited technical training to craft complex musical pieces.
Moreover, the implications of Al in music generation extend to music pedagogy. As Al models advance
and become more accessible, they could be incorporated into music curricula, providing learners with
experiential knowledge at the intersection of technology and music, and preparing future musicians for
the evolving demands of the music industry.

Nevertheless, the advent of Al in music brings to the forefront ethical and copyright considerations.
As Al algorithms begin to produce music akin to human compositions, questions of authorship and
royalty rights are likely to become increasingly pertinent. This necessitates a rigorous dialogue among
policymakers, legal experts, and industry stakeholders to frame appropriate regulatory measures. While
some may perceive the emergence of Al-generated music as a threat to traditional musicianship, it
should be seen as an opportunity for musicians to harness new creative frontiers. Rather than supplanting
human creativity, Al can serve as a complementary tool to stimulate musical imagination, enabling
artists to traverse novel musical landscapes.

To sum up, while there are hurdles to overcome, the realm of music generation using deep learning
exhibits immense potential. This study represents a small step in an exciting journey toward the
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harmonious merger of technology and art, where creativity can be expressed and explored in entirely
new dimensions. The quest to refine the use of Al in music will undeniably continue to be a fascinating
and transformative journey, offering novel ways to understand and appreciate the universal language of

music.
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