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Abstract. In order to identify effective metrics that can accurately duplicate the probability 

distributions resulting from human classifications, this paper analyzes an improved approach for 

galaxy morphologies classification. At the present stage, this field still faces the problem of 

insufficient quality and quantity of image data, low accuracy of computer recognition and weak 

generalization ability of the model. From the previous research, Convolution Neural Network 

(CNN) can be a valid technique to complete this task but usually spends a large time and space 

complexity. For the purpose of increasing effectiveness, this paper improves EfficientNetV2S to 

construct recognition models and characterize their performance in galaxy recognition. The 

procedure includes data preparation and augmentation, model structure creation, attention 

mechanism addition, fine-tuning, and result visualization. A Fused mobile inverted bottleneck 

convolution (Fuse-MBConv) structure was used to accelerate the model's convergence speed. 

Besides, the Convolutional block attention module (CBAM) was used to improve performance 

and feature representation capabilities. The model in this study can minimize complexity with 

the number of parameters and utilize less memory while maintaining excellent accuracy. This 

research is conducted on the Galaxy10 DECals dataset. Experimental results show that it 

achieves an 87% high precision with 20.6m parameters which is more efficient than models 

currently used in previous research. 

Keywords: efficientNetV2S, fused mobile inverse bottleneck convolution, galaxy classification, 

convolutional block attention module. 

1.  Introduction 

Galaxies are the largest component of the universe, they can be classified into different types based on 

their morphology, such as spiral, elliptical, lenticular, irregular, etc. However, galaxies can have 

complex shapes, orientations, colours, and structures that are affected by various physical processes [1]. 

Galaxy identifying and classifying has been a challenging problem in the field of astronomy for decades 

of years. Moreover, the large amount of galaxy images obtained from modern surveys poses a challenge 

for human experts to manually classify them [2]. 

To address these challenges, original machine learning has been applied to galaxy classification [3]. 

With using of various features extracted from galaxy images, such as shape parameters, colour indices, 

texture descriptors, etc. But these techniques frequently rely on hand-crafted features that might not 

accurately capture the data contained in the galaxy images. Additionally, they may require domain 

knowledge and human intervention [4]. Subsequently, deep learning-based strategies were then put forth 

to increase the recognition's generality and accuracy. In addition, the deep learning-based approach 
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made up for the inability of machine learning schemes to handle the diversity and variability of galaxy 

images. With billions of galaxies observed, the data set is larger than expected. Applying a traditional 

convolutional neural network (CNN) requires enormous computational and time resources. For this 

reason, more efficient models compared to traditional CNN need to be proposed [5-6]. Mingxing Tan 

et. al. developed a brand new convolutional neural network in 2019/5 called EfficientNet [7]. Which 

used the Compound Model Scaling method to scale the model evenly to achieve optimal performance 

and efficiency. Later in 2021/11, Mingxing Tan et. al. upgrade another CNN called EfficientNetV2 then 

was proposed to further catalysing the development of the visual recognition field in terms of efficiency 

[8]. EfficientNetV2 is a more efficient and lightweight model that can achieve high accuracy and speed 

on various tasks and datasets. EfficientNetV2 can also utilize transfer learning and data augmentation 

to improve its performance [9]. 

In order to further balance the speed and recognition efficiency of galaxy recognition. In other words, 

the model needs to ensure relatively high prediction accuracy under the condition of reducing trainable 

parameters. This paper introduces to use of developed EfficientNetV2S, a state-of-the-art efficient 

neural network for the building of the Galaxy Classification model. Specifically, EfficientNetV2S 

employs a rich search space, which incorporates new operations like Fused Mobile Inverted Bottleneck 

Convolution (Fused-MBConv) [10]. These operations have fewer parameters and smaller flops, 

enabling faster training of deep-layer networks. Additionally, a progressive learning method has been 

adopted. This approach gradually adjusts the image resolution and regularization intensity during 

training to enhance the model's generalization ability. To make further improvements, the Convolutional 

Block Attention mechanism (CBAM) is added to enhance the attention of important features while 

reducing the impact of irrelevant ones [11]. Meanwhile, some dropout layers are incorporated to lower 

the risk of model over-fitting. Finally, the model has experimented on a large database of multitudinous 

galaxy images from the Galaxy Zoo project organized by DESI Legacy Imaging Surveys, containing 

labels of different galaxy types provided by human volunteers. Metrics for accuracy and the F1 score 

are used to assess the model's performance on the test set. The experimental results demonstrate that the 

proposed model can outperform earlier approaches in terms of accuracy and speed. In addition, the paper 

analyses the strengths and limitations of EfficientNetV2S in galaxy classification and discusses its 

potential applications and future development. In summary, the proposed model can effectively balance 

the speed and precision of galaxy identification. Meanwhile, this study provides more reliable 

methodology support for astronomical research and contributes to the development of the discipline of 

astronomy. 

2.  Methodology 

2.1.  Dataset description and preprocessing 

Galaxy10 DECals Dataset is a dataset for astronomical image classification, which contains about 

210,000 galaxy images and their morphological type labels from the Dark Energy Camera Legacy 

Survey (DECals) [12]. Some examples are shown in Figure 1. This dataset is mainly based on the 

DECals DR7 data release, which covers about 9,000 square degrees of the southern sky, using g, r, z 

band observational data. Each image is 224x224 pixels in size, corresponding to about 1.5x1.5 

arcminutes of sky area. Each image is assigned a morphological type label, which has 10 categories. 

These labels are determined by professional astronomers through manual inspection of the images.  

The training process may be significantly impacted if is attempted to put all of the picture data with 

RGB value tuples into memory. This would place a tremendous strain on the RAM. To avoid large 

memory usage, it is proposed to first extract all the image data from the source documents and iterate 

through them in different sets respectively while using Pillow method to save images into directories of 

their classes.  
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Figure 1. Examples show galaxy from each class randomly, consisting distributed, merging, three kinds 

of round smooth, three kinds of spiral and two kinds of edge-on galaxies (Picture credit: Original). 

2.2.  Proposed approach  

Among all CNN architectures for image classification, most of them are too large and heavy to train on 

personal computers. The model we use is a rather balanced model between efficiency and performance. 

Author adapts the improved EfficientNetV2S pretrained on ImageNet for 10-class classification task, 

and insert a Convolutional block attention layer between convolution layers and dense layers. A Dropout 

layer is used to prevent over-training, as well as a L2 regularizer in the hidden dense layer.  

2.2.1.  Main structure. The steps of the improved EfficientNetV2S are divided into four steps. As shown 

in Figure 2, firstly, the input image (224x224x3) is converted into tensor and standardized rescaling 

processing. Secondly, put into the backbone network, which starts with a 3x3 convolution structure 

comprising SiLU activation and batch normalization layer. Then followed by Fused-MBConv layer, 

which can appreciably lift the speed in the initial shallow layer. After feature map size is decreased while 

the channel count is increased, thirdly, parameters are put into normal MBConv layer. It can shrink a 

mass of parameters and computation complexity while maintaining efficient feature extraction 

capability in deep-wise convolution. Thus, the overall running speed of the model is improved. Last, a 

CBAM attention mechanism is added. Where the model's expressiveness is enhanced by the integration 

of spatial-attention and channel-attention. 

 

Figure 2. Architecture of improved EfficientNetV2. The number of parameters EfficientNetV2S is 

about 20M with 10 percent faster than previous version (Picture credit: Original). 
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2.2.2.  MBConv and Fused-MBConv. The training speed of a traditional CNN is extremely slow when 

the input image's number and scope are relatively large. To accelerate the training speed in deep neural 

network, a depth wise convolution structure is invented, named MBConv. It is a residual block applied 

to image model using an inverted structure to improve efficiency. Originally proposed for lightweight 

CNN architectures such as MobileNetV2, at present it has since been used in a variety of small mobile-

optimized CNNs. A MBConv block generally follows a narrow structure. It first uses a 1x1 convolution 

layer to increase the number of channels, then a 3x3 depth separable convolution layer after can 

significantly lower the number of parameters for feature extraction. Where BN represent batch 

normalization, SE represent squeeze and excitation module. Then finally, the 1x1 convolution layer 

appended to decrease the channels number thus the input and output can be added. 

 

 

Figure 3. MBConv structure (up) and Fused-MBConv structure (down) (Picture credit: Original). 

However, some problems arise from this structure in progressive learning networks, for instance, in 

the shallow layer of the convolution network, the speed of using MBConv will be relatively slow. And 

it is usually not possible to take full advantage of some existing accelerators. In order to address this 

problem, a developed structure has been proposed to make better use of mobile or server accelerators as 

Fused-MBConv. As seen in the Figure 3 and Table 1, the expansion conv1x1 and depth-wise conv3x3 

in the main branch are replaced with an ordinary expansion conv3x3 layer. Recent research shows the 

replacing implementation can significantly improve the training speed in the shallow network structure. 

But substituting more layers with Fused-MBConv will significantly enlarge the parameter amount and 

training FLOPs, and the overall complexity of the model increases. As a result, the optimization for the 

best ratio of combination with MBConv and Fused-MBConv is demanded. 

Table 1. The replacing of Fused-MBConv can accelerate training speed while maintaining accuracy at 

high level. 

 Parameters(M) FLOPs(B) Accuracy 

No fused 19 5 82 

Fused layer 30% 20 8 83 

Fused layer 50% 43 21 83 

Fused layer 80% 148 39 80 

2.2.3.  CBAM. It is an attention mechanism used to improve the capacity of neural networks to represent 

features. It includes two aspects: channel attention part and spatial attention part. 

F′ = Mc(F) ⊗ F, (1) 

F′′ = Ms(F
′) ⊗ F, (2) 

where F is a three-dimensional intermediate feature map, Mc is one-dimensional channel map and Ms is 

two-dimensional spatial map, ⊗ is Hadamard Product. The main goal of the channel attention module 
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is to learn the dependencies between various channels and then assign diffenrent weights to them. It first 

extracts the feature vectors of each channel using global-average-pooling and global-maximum-pooling, 

and then splices them together to get specific weight vector of each channel through a shared full 

connection layer and a Sigmoid activation. Finally, the combined channel attention feature map is 

obtained by multiplying the weight vector by the input feature graph. 

Mc(F) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(F)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(F))) 

= 𝜎 (W1 ∗ W0(Favg
𝐶 ) +W1 ∗ W0(Fmax

𝐶 )) , (3) 

where 𝜎 is sigmoid activation, W0 and W1 is related weights, MLP is multi-layer perception.  

The main idea of spatial attention module is to assign different weights to different positions by 

learning the dependencies between different spatial positions. It first uses a convolution layer and 

sigmoid activation to get the weight matrix for each position. Last, the final feature graph of spatial 

attention is then obtained by multiplying the weight matrix by the previous feature graph processed by 

the channel attention module. 

Ms(F) = 𝜎 (𝑓7×7 ([
𝐴𝑣𝑔𝑃𝑜𝑜𝑙(F)

𝑀𝑎𝑥𝑃𝑜𝑜𝑙(F)
]))

= 𝜎 (𝑓7×7 ([
Favg
s

Fmax
s ])) ,

(4) 

where 𝑓7×7 is a 7x7 filter in convolution. 

In the extended experiment, the classification and detection performance of the improved 

EfficientNetV2S model shows a constant enhancement with the conjunction of CBAM. 

2.3.  Implementation details  

This research is based on cloud computing hardware system: GPU: A100-40GB, CPU: Intel(R) Xeon(R) 

Silver 4210, System RAM: 101G. The overall training takes 40 epochs to converge and terminated by 

callbacks. The new way of invoking large-scale image data saved at least 15GB of GPU RAM. The 

model implements categorical cross entropy function as loss function since the labels are in the form of 

one-hot encoding and the predicted values are in the form of vectors. The calculation formula is as 

follows: 

𝐿(𝑦𝑖 , 𝑝𝑖) = −𝑦𝑖 log 𝑝𝑖(𝑥) , (5) 

where n is the number of categories, y is an n-dimensional vector that represents the one-hot encoding 

of the real tag, and p is an n-dimensional vector representing the probability distribution of the class in 

model output. The model uses Adam as adaptive optimizer with initial learning rate of over 0.01 and set 

decay rate as 0.001 while using general ‘accuracy’ as metrics to estimate the prediction performance. 

The input shape of the model is set to (224,224,3). The adding convolutional block attention with the 

number of channels is 1280, for efficiency reasons. For training parameters, a 64 batch size is applied 

and training epochs is set to 50. The fully connected layers are constructed by 4096 units, ReLU 

activation, l2 regularizer and a dropout layer with dropout rate of 0.4. Adam is used as optimizer, and a 

Keras built-in learning rate decay scheduler is used with decay=0.001. The metrics of loss function is 

basic categorical cross entropy and metric is accuracy. Last, an early-stopping callback monitored 

validation loss with patience of 4 is used during fitting, as well as a tensor board callback which is used 

to record logs for visualization. The data augmentation settings this model used includes random rotation 

20 angles, random shearing and zooming range 30%, random horizontal flip and vertical flip with 50% 

probability. Some examples of training images after data augmentation are shown in the Figure 4. 
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Figure 4. Training images after data augmentation (Picture credit: Original). 

3.  Result and discussion 

The loss and accuracy of the training and validation data on Galaxy10 DECals are illustrated in Figure 

5. The Validation loss typically converges around 0.5, with some oscillation, while the Training loss 

converges at above 0.2. Training Accuracy increases steadily until it reaches 94.3%. The Validation 

Accuracy then converges at a value of roughly 84.5%. 

 

Figure 5. The curve of the Model Training and validation on improved EfficientNetV2 (Picture credit: 

Original). 

The comparison table 2 and figure 6 show that most of original model perform not so good on galaxy 

classification tasks. Some of them have numerous parameters and requires long time for training, some 

other model’s accuracy is not high enough. ResNet50 model has a similar performance with improved 

EfficientNetV2S, but apparently the latter can achieve much higher accuracy on validation sets while 

the convergence rate difference is not significant. This means that improved EfficientNetV2S has 

stronger generalization ability and can be applied in more complex and diverse researches. Here is the 

general comparison of other networks with EfficientNetV2. 
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Table 2. Performance comparison of improved EfficientNetV2S with variety previous models. 

 MobileNetV2 ResNet50 VGG-16 Inception-ResNet Improved EfficientNetV2S 

Top Acc 78.4% 90.9% 81.7% 65.7% 94.3% 

Parameter

s 
6.9M 25.6M 138M 55.8M 20.6M 

 

Figure 6. General trend comparison graphic of above models (Accuracy vs Epoch) (Picture credit: 

Original). 

The Confusion Matrix about the model's categorization after training is complete is shown in Figure 

7. The matrix's diagonal elements show how many forecasts about galaxies were accurate. In general, 

the model performs recognition fairly accurately. However, the model's predictions were substantially 

more errors for some specific types of galaxies than for others. For instance, it is more difficult to 

accurately recognize the Round Smooth Galaxy. As a result, it requires more focused training. 

 

Figure 7. The general confusion matrix of prediction by improved EfficientNetV2S (Picture credit: 

Original). 
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To display the feature maps created by improved EfficientV2S model with the highest f1-score. 

Figure 8 (left) shows the saliency maps superimposed over the original images of 9 example figures. 

The feature pixels can be apparently identified over the centre area of each galaxy. Based on the 

Gradient-weighted Class Activation Mapping (Grad-CAM), it generates a class differentiated heat map 

highlighting areas of the image that are most important to model prediction shows in Figure 8 (right). 

 

 

Figure 8. The Saliency map and Grad-CAM map of feature pixels on Unbarred Loss Spiral galaxies 

(Picture credit: Original). 

In addition, the proposed model has shortcomings to be improved. Its network structure is complex 

and uses a variety of convolution operations and fusion methods, which may not be easy to understand 

and explain. Its generalization ability may need to be improved, and it may not be robust and stable 

enough for some counter samples or noise interference. 

There are also some aspects of the speculated improvements in the future: 

(1) The structure of the model can be further optimized to improve the training speed and reduce the 

complexity. 

(2) Implement more advanced data enhancement methods, such as Mixup, CutMix, RandAugment, 

etc., to increase the model's robustness and generalizability.  

(3) More efficient attention mechanisms, such as GAM, BAM, and ECA, may be used to enhance 

the capability in feature extraction of the model. 

4.  Conclusion 

This paper focuses on presenting an improved EfficientNetV2S model to optimize the balance of 

accuracy vs speed during galaxy classification and recognition tasks. The method for accelerating speed 

is proposed by modifying the structure and number of MBConv as well as Fused-MBConv layers. The 

addition of Fused-MBConv can shorten the training period and resource consumption in the early stage 

of the neural network. The added structure of CBAM with two dimensions of attention gives better 

training efficiency and model prediction performance. Extensive experiments were carried out to gauge 

the effectiveness of the proposed approach. A perfect trade-off between resource occupancy and 

recognition accuracy is guaranteed by the improved model presented which effectively recognizes 

galaxies with fuzzy Morphology. The improved EfficientNetV2S achieve a 94.3% on training accuracy 

with an average of 87% predict precision in a 20.6m parameters model. In the future, the research will 

focus on further increasing prediction accuracy with generalization ability and also reducing the network 

complexity as much as possible.  
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