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Abstract. Images of galaxy objects are of great importance to the work of astronomers. 

Nowadays, the task of galaxy classification has been aided by Neural-Network-based 

classification models, who are powerful yet vulnerable to the attack of noisy images. In this 

research, RGB noises and bright spots simulating stars were generated, and a Convolutional-

Neural-Network (CNN) based lightweight denoising image autoencoder was proposed. Firstly, 

a benchmark CNN classifier using DenseNet structure was trained on the Galaxy 10 DECals 

dataset, which consists of over 17, 000 RGB color galaxy images. Then, noisy images were 

generated by adding bright spots of different size and color simulating stars and applying 

gaussian RGB noises over the original images. The CNN autoencoder that consists of 

Convolutional layer in its encoder and Convolution Transpose layers in decoder was trained on 

the raw and noisy training data to learn effective galaxy image denoising. Finally, the effect of 

the autoencoder was evaluated by contrasting the performance of the CNN classifier over the 

noisy and denoised images. In contrast with being evaluated on the raw testing set, the CNN 

classifier’s accuracy dropped by 0.41 when tested on the generated noisy testing images, 

indicating the effectiveness of the attack of image noises. While after denoising with the 

proposed autoencoder, the classifier’s accuracy increased significantly by 0.37. Output denoised 

images also suggest that the autoencoder can effectively remove the applied bright spot and 

gaussian RGB noise, recreating the original shape of the galaxy. 
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1.  Introduction 

Galaxies are systems of stars that are bounded by gravity and visible in space as entities. These celestial 

structures can be furthered separated into various subcategories according to their morphological 

features. The classification of galaxies is also fundamental to the discovery of unknown entities, by 

enabling researchers to learn about a new galaxy object just by observing its morphological features and 

relating to a previously known and well-studied objects of the same category. The pursuit of galaxy 

exploration relies highly on the support of graphics retrieved from telescopes and satellites, as the visual 

appearance of celestial objects carries valuable information about their structure, shape, and internal 

dynamics. Among which, classification of celestial objects by their visual features is of vital importance. 

It provides a systematic approach for researchers to study the properties and behaviors of individual 

objects, and enables astronomers to identify patterns, commonalities, and differences among distinct 

ones. The limitations of the traditional method. 
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In recent years, the field of computer vision witnessed great progresses. As machine-learning/deep-

learning-based models continue to evolve and manifest great capabilities on handling image 

classification tasks. In response to growing demand for automated  classification of newly surveyed 

galaxy objects, some studies looked to implement computer vision models into the field of Astronomy 

and on the task of celestial object classifications. For instance, Kalvankar et al. implemented 

EfficientNet [1], a scaling-up convolutional neural network to classify over 80, 000 galaxy images from 

Galaxy Zoo 2 dataset into 7 classes and managed to achieve 94% accuracy [2]. Cavanagh et al. 

experimented involving multiple convolutional neural network structures, comparing their performance 

on 3-ways and 4-ways morphological galaxy classification tasks [3].  

More recently, Shaiakhmetov et al. proposed SpiralNet [4], a novel framework that effectively 

reduced computational costs while achieving an 82% accuracy on a 10-class task on Galaxy Zoo dataset. 

R. Dagli set a new state-of-the-art baseline with Astroformer [5], a transformer-convolutional hybrid 

model on Galaxy 10 DECals dataset that provides a 10-class classification task. Y. Andrew 

experimented under multiple settings utilizing pretrained Convolutional Neural Network (CNN) models 

including ResNet, VGG, DenseNet, and Xception to test out the influence of choices of color channels 

on the performances of transfer learning models [6].  

However, it is noteworthy to highlight that several of the aforementioned studies did not explicitly 

address the challenges associated with noisy data, which could potentially compromise the performance 

of neural network-based classifiers.  Paranhos da Costa et al. demonstrated that random gaussian and 

Poisson noise can significantly reduce the accuracy of image classifiers trained on clean images [7]. 

Unfortunately, this could always be the case during implementation of classification models in real 

settings, as the observation of the target object could be interfered by unrelated bright cosmic objects 

and disturbed by inevitable noises due to limitations of astronomic instruments.  

To address this problem, denoising algorithms could be implemented to reduce noise level and 

remove irrelevant bright spots in the image of celestial objects. Specifically, denoising autoencoders are 

suitable to work with neural-network-based classifiers. Autoencoders are sets of neural networks that is 

used to learn efficient coding in unsupervised context. A Denoising Autoencoder (DAE) is a kind of 

autoencoders that is trained to effectively remove noise of input, while retaining useful information 

contained in the original input. L. Gondara has shown a CNN based DAE trained on a relatively small 

dataset can effectively remove gaussian and Poisson noise applied to medical images [8]. Bajaj et al. 

proposed a deep CNN DAE that outperforms traditional image processing methods in terms of dealing 

with gaussian noise on STL-10 dataset of color images [9]. Tun et al. also implemented CNN DAE on 

facial images to remove different kinds of noises [10].  

The preceding researches implied the effectiveness of CNN based autoencoders on processing 

images of various types. Nonetheless, the application of DAEs to galaxy images, which exhibit 

substantial dissimilarities from everyday life images, has received limited attention within the existing 

body of research. This research aims to fill this gap by implementing an unsupervised CNN-based 

Denoising Autoencoder trained on galaxy image data and examine its performance when working with 

NN-based galaxy image classifiers. 

2.  Methodology 

2.1.  Dataset introduction 

The dataset employed in this research is Galaxy 10 DECals [11], which consists of 17, 736 256×256 

RGB images of galaxy objects corresponding to 10 categories as shown in Figure 1. The images of the 

dataset are from DESI Legacy Imaging Surveys [12], and its corresponding labels from Galaxy Zoo 

Dataset [2]. 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/21/20231156

268



 

Figure 1. The sample images of Galaxy 10 DECals dataset. 

In terms of the data preprocessing, images are first read from the dataset as a h5 file, and then written 

into jpg format image files locally for saving RAM space. When loading the image file, 

tensorflow.keras.ImageDataGenerator is used to reshape original images to 128x128, and rescale it on 

3 color channels, transforming the original range of 0-255 to a standardized range between 0 and 1. 

To generate the noise needed for training the autoencoder, a two-step noise-adding method using 

OpenCV was designed to work with the ImageDataGenerator. Specifically, the first step is to add 

random bright spots that simulate irrelevant celestial objects around the observed galaxy. The random 

range for size, brightness, RGB values, and blurring kernel size are carefully designed to simulate white, 

blue, and red stars with a proportion of 2:1:1.  

The second step simulates an RGB noise that is always present in astronomical images, a random 

gaussian noise was added after of the original image and randomly simulated stars were merged. Sample 

noisy images and their corresponding raw images are shown in Figure 2. 

 

Figure 2. Sample training images before and after adding noise. 

The dataset is then partitioned into training and testing data with a 8:2 ratio, and the training set is 

further split into training and validation set with a 8:2 ratio for hyperparameter tuning. 

2.2.  Convolutional neural networks 

CNN represents a prominent category of neural networks that are frequently used for analyzing images. 

It typically consists of convolutional layers, pooling layers and fully connected layers. Convolutional 

layers can convolve the input with kernels to extract feature maps and feed to the next layer. Pooling 

layers can effectively reduce the dimension of output of convolution layer by combining outputs of 

several neurons into one input for the next layer, which is conductive to reducing the number of trainable 
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weights involved in the fully connected layers. The fully connected layers  produce the final output 

based on the extracted features from previous layers. 

In this research, a variation of CNN, DenseNet as shown in Figure 3 [13], is trained on Galaxy10 

DECals dataset as classifier. A DenseNet is a CNN that utilizes dense connection between layers through 

Dense Blocks. Under this structure, each layer obtains and concatenates additional inputs from all 

preceding layers and feed its output to all succeeding layers. This allows the model to have fewer 

channels in all of its convolutional layers and can effectively reduce computational and memory 

expenses during training. 

 

Figure 3. Model architecture of DenseNet121 [14]. 

Specifically, the structure of DenseNet 121 that consists of ReLU activation and batch normalization 

in between convolutional layers provided by tensorflow.keras.applications was implemented and an 

additional classification head that consists of 2 fully connected dense layers was added. The output layer 

consists of 10 neurons with softmax activation, outputting the posterior possibility of an observation 

belonging to one of the ten classes.  

2.3.  Autoencoder 

An autoencoder (AE) represents a type of neural network that is specifically designed to learn 

representation of unlabeled data through unsupervised learning. An autoencoder consists of an encoder 

that transforms the input data into a lower dimensional representation, and a decoder that recreates the 

data that has the same shape as the input from the learned representation. A DAE is one that aims to 

reduce noise of the input image by learning a representation and then recreating the image. 

In this research, a light-weight CNN-based DAE was proposed to deal with galaxy denoising task, 

with its architecture shown below. The Encoder consists of 4 convolution – batch normalization blocks, 

and the decoder consists of 4 convolution transpose layers that corresponds to the encoder. The final 

output layer is a convolutional layer with 3 kernels, returning a 128×128 image with three channels 

identical to the input image. The structure is shown in Figure 4. 

 

Figure 4. Architecture of the CNN denoising autoencoder (Photo/Picture credit: Original). 
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2.4.  Training details 

Both trainings of CNN classifier and Autoencoder are conducted with a NVIDIA RTX-3060 graphics 

card. 

2.4.1.  CNN classifier. The DenseNet121 classifier was trained on the training set and evaluated on the 

validation set for 18 epochs before stopping on an early stopping callback. An Adam optimizer with a 

learning rate of 0.001 was used. 

2.4.2.  Autoencoder. The training of the autoencoder based on the training set consists of two parts. 

Initially, the raw training image was given to the autoencoder as both input and target and the 

autoencoder was trained for 20 epochs using Adam optimizer with learning rate of 0.001. This is for the 

autoencoder to learn basic representations of the galaxy image. Furthermore, noisy image was fed as the 

input while the raw image was given as the target, the model is trained on this setting for 60 epochs for 

it to learn how to perform effective denoising.  

3.  Results and discussion 

3.1.  CNN classifier baseline 

On the original Galaxy10 DECals testing set, the trained CNN Classifier can achieve a 0.74 overall 

accuracy, with the performance on each class shown in Table 1. The DenseNet121-based CNN classifier 

exhibits the capability to acquire significant and interpretable representations of the galaxy images for 

the majority of the classes. 

Table 1. Performance of the CNN classifier on original Galaxy10 DECals testing set. 

Class Precision Recall F1-score Support 

0 0.38 0.53 0.44 204 

1 0.79 0.79 0.79 373 

2 0.94 0.76 0.84 529 

3 0.76 0.89 0.82 408 

4 0.58 0.79 0.67 71 

5 0.92 0.65 0.76 436 

6 0.54 0.84 0.66 365 

7 0.66 0.52 0.58 516 

8 0.82 0.94 0.88 283 

9 0.96 0.75 0.84 363 

Overall Accuracy   0.74 3548 

Macro avg 0.73 0.74 0.73 3548 

Weighted avg 0.77 0.74 0.74 3548 

3.2.  CNN performance on noisy images 

In the presence of noise introduced to the testing set, the performance of the CNN classifier deteriorates 

significantly, the performance on the noisy testing set is shown in Table 2. The overall accuracy drops 

from 0.74 to 0.33, and the classifiers’ performance on each class degraded.  

Table 2. Performance of the CNN classifier on testing set with noises applied. 

Class Precision Recall F1-score Support 

0 0.16 0.39 0.23 204 

1 0.43 0.73 0.54 373 

2 0.00 0.00 0.00 529 

3 0.30 0.02 0.04 408 

4 0.16 0.11 0.13 71 
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Table 2. (continued). 

5 0.29 0.55 0.38 436 

6 0.47 0.29 0.36 365 

7 0.25 0.46 0.32 516 

8 0.64 0.46 0.54 283 

9 0.81 0.20 0.32 363 

Overall Accuracy   0.33 3548 

Macro avg 0.35 0.32 0.29 3548 

Weighted avg 0.35 0.33 0.28 3548 

3.3.  CNN performance on the denoised images 

The CNN classifier was then evaluated on noisy images processed by the denoising autoencoder, the 

performance significantly improved in comparison with the result evaluated directly on the noisy images, 

and was comparable with its performance on the raw testing set. The classifier’s performance on the 

denoised testing set is shown in Table 3. 

Table 3. Performance of the CNN classifier on the denoised testing set. 

Class Precision Recall F1-score Support 

0 0.40 0.48 0.43 204 

1 0.80 0.74 0.77 373 

2 0.93 0.73 0.82 529 

3 0.77 0.80 0.78 408 

4 0.49 0.82 0.61 71 

5 0.84 0.61 0.71 436 

6 0.46 0.86 0.60 365 

7 0.59 0.47 0.52 516 

8 0.79 0.93 0.85 283 

9 0.96 0.68 0.79 363 

Overall Accuracy   0.70 3548 

Macro avg 0.70 0.71 0.69 3548 

Weighted avg 0.74 0.70 0.70 3548 

3.4.  Denoised sample images 

Samples of the output of the denoising autoencoder, i.e., the denoised testing images, are shown in 

Figure 5. The DAE effectively removed gaussian RGB noises and some of the added bright spots in the 

noisy image, recreating the original shape of the galaxy object. However, the processed images are 

blurred noticeably in comparison with the raw image. 

 

Figure 5. Sample noisy and denoised testing images. 
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3.5.  Discussion 

The experiments suggested that added RGB noises and bright spots simulating irrelevant celestial 

objects can significantly perturb the decision of the classification model, suggesting the vulnerability of 

a CNN classifier trained on clean images to the attack of noises. The denoising autoencoder, on the other 

hand, can effectively remove the added noise and reconstruct the original shape of the galaxy, although 

blurred. The experiments demonstrated that a light-weight CNN DAE could already in some sense 

defend against the attack of noisy images and facilitating the receipt of input images that closely 

resemble the corresponding training data, and therefore boost the performance of the model when 

dealing with noisy images. 

It is noticeable, however, the autoencoder exhibited limitations in effectively removing some of the 

irrelevant stars that are originally in the raw image. An explanation could be that the morphological and 

color distribution of these stars are slightly different than the generated bright spots, making the 

autoencoder distinguish them during training. Future experiments can focus on simulating with a 

distribution extracted from the original images, or try to quantify the morphological and color feature of 

the stars originally in the raw image more precisely. Furthermore, it should also be acknowledged that 

the denoised images produced by CNN-based autoencoders inherently suffer from blurring. A more 

intricated model such as Generative Adversarial Network could potentially output a clearer denoised 

image, while being more computationally expensive and requires more training data for better results 

should be considered in the future. 

4.  Conclusion 

In this research, a light-weight CNN autoencoder was proposed for denoising galaxy image data. 

Initially, a baseline CNN classifier on galaxy image data was trained. Subsequently, noisy image data 

with RGB noises and bright spots simulating stars were generated. A light-weight CNN based 

autoencoder was trained to learn effective denoising for galaxy images. Additionally, the effectiveness 

of denoising was evaluated by contrasting the performance of the CNN classifier on noisy and denoised 

testing images. The denoising autoencoder managed to boost the overall accuracy of the classifier on 

noisy testing set by 0.37, by effectively removing both types of noises applied. This research 

demonstrated the effectiveness of light-weight CNN denoising autoencoder on dealing with galaxy 

images, which are significantly different than images in daily life. A limitation of this study is that the 

simulated stars are still not identical in distribution compared with the stars captured in the original 

astronomical images, and the denoised images being slightly blurred. Future investigations can focus on 

simulating stars with a more finessed distribution, or exploring more complicated models for more 

effective denoising. 
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