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Abstract. Galaxy morphology classification is essential for studying the formation and 

evolution of galaxies. However, previous studies based on Convolutional Neural Network 

(CNN) mainly focused on the structure of convolutional layers without exploring the designs 

of fully connected layers. In this regard, this paper trains and compares the performance of 

CNNs with 4 types of fully connected layers on the Galaxy10 DECaLS dataset. Each type of 

the fully connected layers contains one dropout layer, and dropout rates including 0%, 10%, 

20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% are tested in the experiment to investigate 

how dropout rates in fully connected layers can affect the overall performance of CNNs. 

Meanwhile, these models utilize the EfficientNetB0 and DensnNet121 as their feature 

extraction networks. During the training process, feature-wise standardization, morphological 

operations, and data argumentation are used for preprocessing. Technics including class 

weights, exponential learning rate decay, and early stopping are applied to improve model 

performance. Saliency maps and Grad-CAM are also used to interpret model behaviours. 

Results show that the architectures of fully connected layers have a significant effect on models’ 

overall performance. With the same dropout rate and convolutional layers, models using global 

average pooling and an additional dense layer outperform others in most cases. The best model 

obtained an accuracy of 85.23% on test set. Meanwhile, the experimental results on dropout 

indicate that dropout layer can reduce the effect of the architectures of fully connected layers 

on overall performance of some CNNs, leading to better performance with less parameters. 

Keywords: galaxy morphology classification, convolutional neural networks, dropout. 

1.  Introduction 

Galaxies represent massive systems encompassing stellar remnants, interstellar gases, stars, dust and 

dark matter bound together by gravity [1]. These cosmic entities exhibit a non-uniform spatial 

distribution, exhibiting considerable variations in terms of diameter and morphological structure. In 

recent years, large-scale photometric surveys across a wide range of wavelengths have produced great 

quantities of image data of galaxies using various telescopes. For example, the Dark Energy Camera 

on Blanco 4m telescope is highly sensitive and has a wide area of view, making it a perfect choice for 

obtaining photometry in the g, r and z bands. 

In the large-scale study of the universe, classifying galaxies based on their visual morphology is the 

initial stage towards a better understanding of galaxy formation and evolution. The pivotal milestone 
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in this endeavour can be traced back to Edwin Hubble’s seminal work in 1926, wherein he proposed a 

classification system based on the shape of galaxies as observed at optical wavelengths from earth, and 

since then, more and more intricate classification systems have been developed by researchers over 

time [2]. However, the earliest approaches employed for categorizing galaxies in various classes is to 

classify galaxy images manually, resulting in inconsistent standards and lack of efficiency when 

dealing with large volumes of data. In the past 30 years, machine learning algorithms have emerged as 

a pivotal tool in the classification of galaxies [3]. Although these methods can automatically classify a 

large number of data efficiently, most of them are based on analysing physical parameters of the 

galaxies, which requires complex feature engineering and solid background knowledge. Hence, 

researchers have turned their sights to deep learning algorithms, which can utilize massive amount of 

image data to find automated metrics that reproduce the probability distributions derived from human 

classifications. 

Over the past decade, studies in deep learning have experienced remarkable advancements with 

new applications across diverse domains including the healthcare, finance, and many other industries. 

Deep learning models composed of multiple layers can approximate almost any non-linear functions 

either for regression tasks or classification tasks. For image classification, convolutional neural 

network (CNN) has become a commonly used approach owing to its efficiency. With the increasing 

availability of large datasets of galaxy image, some studies on classifying galaxies with CNN have 

yielded good results. For instance, Dieleman et al. developed a CNN with 7 layers for Galaxy Zoo 

Challenge and obtained the highest accuracy in 2015 [4]. In 2017, Aniyan and Thorat proposed 

TOOTHLESS, which is the first CNN to classify radio galaxies based on morphological feature [5]. 

Zhu et al. propose a modified Residual Network (ResNet) to classify galaxies into 5 classes using 

Galaxy Zoo dataset [6]. In 2021, Burger Becker et al. compared the performance of several CNNs for 

radio galaxy morphological classification on multiple metrics [7]. Since then, several new CNNs have 

been developed using transfer learning to classify galaxies [8]. 

Typically, a CNN consists of a feature network composed of convolutional layers and a task 

network composed of dense layers. Although previous studies have achieved satisfactory performance 

on respective datasets, most of these CNNs focus solely on the structures of the convolutional layers 

and only use an average pooling layer followed by an output layer as the final dense layers. A study on 

these CNNs has reported that models overfit quickly when training on a small dataset [7]. However, a 

similar study on automatic modulation classification has reported that by adding dropout after the 

dense layer, the classification results are better than the previous network, with higher convergence 

rate, faster training speed, and more balanced validation performance across categories [9]. 

In this regard, this paper investigated how different dropout rates of four types of fully connected 

layers can affect the overall performance of two types of CNNs on galaxy classification. It used 

17,736 images of galaxy form the Galaxy10 DECaLS dataset, and performed four forms of data 

augmentation to reduce overfitting. The convolutional layers of models were chosen from 2 light-

weighted models: the EfficientNetB0 and DenseNet121. These models utilize pertained weights from 

ImageNet as the initial weights. The dropout rates of each dropout layer were set to 0%, 10%, 20%, 

30%, 40%, 50%, 60%, 70%, 80%, and 90%. Furthermore, after comparing model performances, to 

understand what the CNNs learn, this paper produces salience maps and Grad-CAM to provide 

qualitative analysis. 

2.  Method 

2.1.  Dataset description and preprocessing 

This paper utilized the Galaxy10 DECaLS dataset released by Galaxy Zoo, which is a much-improved 

version of the original Galaxy10 dataset [10]. It contains 17,736 256×256 pixels coloured galaxy 

images (g, r and z bands) separated in 10 classes using volunteer votes. Figure 1 displays several 

images of each class from the Galaxy10 DECaLS dataset. However, as shown in Figure 2, the 
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Galaxy10 DECaLS dataset is highly imbalanced between classes. The class Cigar Shaped Smooth 

Galaxies has only 334 images, which approximately accounts for 1.88% of the total samples. 

 

Figure 1. Example images of each class from the Galaxy10 DECaLS dataset. 

 

 

Figure 2. Samples distribution of classes from the Galaxy10 DECaLS dataset. 

 

In terms of preprocessing, this paper first standardized the image feature-wise using mean and 

standard deviation of the dataset. Standardization of input data has been proven to be effective in 

speeding up model convergence and increasing classification accuracy. Then, the image was resized 

from 256×256 pixels to 224×224 pixels, which is the input dimension for CNNs pre-trained on the 

ImageNet dataset. Subsequently, a Morphological Opening was performed to eliminate noise that 

scattered around the centre of the image and to focus more on the morphological characteristics of 

galaxies. Morphological Opening is a variant form of two basic morphological operators, which 

involves performing an erosion operation followed by a dilation operation [11]. 

Data augmentation is commonly used to prevent overfitting. Therefore, for training and validation 

data, this paper utilized 3 types of data augmentation procedure including random rotation, random 

magnification, and random flipping. During these procedures, to avoid adding more noise to the input, 

points outside the boundaries was filled with a constant value of 0. Figure 3 shows some images 

before and after data augmentation and preprocessing. 
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Figure 3. Example images before and after data augmentation and preprocessing. 

2.2.  CNN-based galaxy classification model 

Convolutional neural network is a prominent variant of artificial neural network extensively employed 

in deep learning [12]. It is widely used for computer vision application [13-15], and is highly efficient 

for automatic image feature extraction. A typical CNN consists of a feature network with several 

convolutional layers and pooling layers, followed by a flatten layer to convert multi-dimensional 

tensor into a single dimensional tensor, and some fully connected layers to provide prediction results 

based on the extracted features. 

The convolutional layers use filters composed of kernels, which are matrixes of learnable weights, 

to process the input and generate feature maps. Then, a non-linear function, usually ReLU, is used for 

activation. The utilization of kernels introduces translational invariance and parameter sharing to 

traditional neural networks. Generally, each convolutional layer learns features of increasing 

complexity. Thus, CNNs learn features in a hierarchical way. The pooling layers are often used after 

convolutional layers to reduce data sizes. They are invariant to small local transitions and has no 

learnable parameters. Max pooling and average pooling are two common choices for pooling layers. 

They take the maximum and the average value, respectively, within a sliding window of pixels. 

The DenseNet and EfficientNet are two variants of typical CNNs. As illustrated in Figure 4, the 

DenseNet concatenates the output feature maps of the layer with the incoming feature maps within a 

dense block [16]. This method provides the network with maximum gradient and information flow, 

and resolves the issue of vanishing gradient. As for the EfficientNet, it was originally designed using 

neural architecture search in 2019 [17]. It introduces method called compound scaling, which balances 

the width, depth, and image resolution of the network against the available resources to improve its 

overall performance. Particularly, the baseline network EfficientNetB0 was obtained by performing a 

grid search on 3 dimensions of the network using AutoML [18]. Figure 5 shows the architecture of the 

EfficientNetB0. 

This paper applied transfer learning to the DenseNet121 and EfficientNetB0, both of which utilized 

pretrained weights from ImageNet as the initial weights. These weights were set to trainable, since the 

galaxies images were quite different from the ImageNet data. In the context of galaxy classification, 

the fully connected layers for these CNNs were modified. Global average pooling layer and flatten 

layer were added after the last convolutional layer to convert input dimensions. A final dense layer 

with 10 neurons and SoftMax activation were used for classification. To investigate the effects of 

different dropout rates on models’ overall performance, various combinations of dropout layers and 

dense layers were added between the GAP layer or flatten layer and the final dense layer. Details 

about the abovementioned models are depicted in Table 1. 
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Figure 4. Architecture of a dense block within the DenseNet [16]. 

 

 

Figure 5. Architecture of the EfficientNetB0 [17]. 

 

Table 1. Architectures of CNNs for galaxy classification in this study. 

Model name Pretrained CNN 
GAP or flatten 

layer 

Dense layer 

(ReLU) 
Dropout 

Dense layer 

(SoftMax) 

DenseNet-T0 DenseNet121 GAP - 0.0~0.9 10 neurons 

DenseNet-T1 DenseNet121 GAP 512 neurons 0.0~0.9 10 neurons 

DenseNet-T2 DenseNet121 Flatten - 0.0~0.9 10 neurons 

DenseNet-T3 DenseNet121 Flatten 512 neurons 0.0~0.9 10 neurons 

EffNetB0-T0 EfficientNetB0 GAP - 0.0~0.9 10 neurons 

EffNetB0-T1 EfficientNetB0 GAP 512 neurons 0.0~0.9 10 neurons 

EffNetB0-T2 EfficientNetB0 Flatten - 0.0~0.9 10 neurons 

EffNetB0-T3 EfficientNetB0 Flatten 512 neurons 0.0~0.9 10 neurons 

2.3.  Implementation details 

This implementation is mainly based on TensorFlow, and models were trained with an NVIDIA 

RTX4090 GPU. For this experiment, the original dataset was divided into train, validation, and test 

sets in the ratio of 65:15:20 for ensuring that models can be better compared and validated in unbiased 

situations. For training, models used standard categorical cross-entropy as loss function, and Adam 

was used as the optimizer with a batch size of 64, a Nesterov momentum of 0.9, and a RMSProp ratio 

of 0.99. During training, the learning rate was modified before every epoch, and it followed a schedule 
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of Exponential Decay with an initial value of 0.001 and a decay rate of 0.1. To deal with the 

imbalanced training data, class weights were used to force the models to learn more from the data 

from minority classes. The training process stopped after maximum 60 epochs, and it also utilized 

early stopping technic with a patience of 45 epochs to monitor validation accuracy. 

3.  Results and discussion 

3.1.  Classification performance 

This paper conducted an extensive training process involving a total of 80 models, which can be 

divided into 8 different architectures as depicted in Table 1. For each architecture, 10 models were 

trained with a dropout rate of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%, 

respectively. Due to the excessive number of models trained in the experiment, only the results of 

CNNs with the highest validation accuracy for each architecture are shown in Table 2, and Figure 6 

shows the corresponding training accuracy curve for these models. As shown in Figure 6, most of 

these models converged after training for 40 epochs, and their training accuracy improved smoothly, 

resulting from the learning rate schedule of Exponential Decay during the training process. 

 

Table 2. Performance of CNNs with the highest validation accuracy for each architecture. Best Epoch 

column indicate the number of epoch when model obtained its best accuracy. 

Model name 
Dropout 

rate 

Best 

epoch 

Training 

loss 

Training 

accuracy (%) 

Validation 

loss 

Validation 

accuracy (%) 

DenseNet-T0 0.2 55 0.1436 94.63 0.4385 86.93 

DenseNet-T1 0.3 31 0.2418 91.25 0.4142 87.14 

DenseNet-T2 0.0 44 0.467 83.64 2.162 75.90 

DenseNet-T3 0.1 53 0.3227 89.42 0.569 83.04 

EffNetB0-T0 0.9 58 0.1868 93.17 0.4615 86.08 

EffNetB0-T1 0.4 52 0.1037 95.87 0.5851 85.51 

EffNetB0-T2 0.7 56 0.2212 91.89 0.5111 85.44 

EffNetB0-T3 0.1 56 0.1346 94.96 0.6681 85.02 

 

 

Figure 6. Training accuracy curve for the CNNs in Table 2. 

 

As presented in Table 2, the DenseNet-T1 with a dropout rate of 0.3 obtained the best performance 

at the 31th epoch, with an accuracy of 87.14% on validation set. For test dataset, this model achieved 

an overall accuracy of 85.23%, and the details of its performance for each class are shown in Table 3. 
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Although the dataset is highly imbalanced between classes, the performance for each class is relatively 

balanced. The class Cigar Shaped Smooth Galaxies, which has the least amount of data, still has an 

F1-score of 79.47%. This is attributed to the utilization of class weights, which improved the 

efficiency of learning from imbalanced data during the training process. 

 

Table 3. Test performance of the DenseNet-T1 (dropout rate 0.3) in test set for each class. 

Class Name Precision (%) Recall (%) F1-score (%) 
Number of 

samples 

Disturbed 62.15 50.23 55.56 219 

Merging 92.53 93.01 92.77 386 

Round Smooth 92.35 93.97 93.15 514 

In-between Round Smooth 87.56 94.12 90.72 374 

Cigar Shaped Smooth 77.92 81.08 79.47 74 

Barred Spiral 85.05 85.65 85.35 425 

Unbarred Tight Spiral 74.29 85.01 79.29 367 

Unbarred Loose Spiral 81.49 67.86 74.05 532 

Edge-on without Bulge 88.27 94.39 91.23 303 

Edge-on with Bulge 92.08 95.20 93.61 354 

 

 

Figure 7. Confusion matrix of the DenseNet-T1 (dropout rate 0.3) on test set. The percentage given in 

each square is the normalized value for each class. 

 

However, this model tends to confuse classes Disturbed Galaxies and Unbarred Loose Spiral 

Galaxies, according to the confusion matrix shown in Figure 7. To interpret what the model had learnt, 

salience maps and Grad-CAM are used to provide qualitative analysis on misclassification. As 

depicted in Figure 8, case 1 and 2 are examples of misclassification, and case 3 and 4 are both 

classified correctly by the model. Label 0 and 7 correspond to Disturbed and Unbarred Loose Spiral 

Galaxies, respectively. The disturbances of disturbed galaxies can take many forms, including warps, 
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tidal tails and asymmetries, making classification for these galaxies more difficult than others. As 

shown in case 1 and 2, the asymmetries in case 1 have similar morphological characters with the 

unbarred spiral arms in case 2, which can be observed in the original images. The Grad-CAM for both 

cases indicate that although the model focused on the correct part of the images, but it paid too much 

attention to the spiral parts in case 1, and failed to pay much attention to the spiral arms in case 2. 

Meanwhile, in case 3 and 4, the morphology of galaxies is less ambiguous. As shown in Grad-CAM, 

the model focused on concentrated areas, which successfully covered the disturbances and spiral arms. 

 

 

Figure 8. Salience maps and Grad-CAM for 4 cases predicted by the DenseNet-T1 (dropout rate 0.3). 

3.2.  Model comparison 

Figure 9 and 10 exhibit boxplots showcasing the best validation accuracy and training accuracy of 

models for each architecture. The green boxes represent the interquartile range of the accuracy for 

each architecture. The blue triangle makers represent the average values of the accuracy for each 

architecture, and the red lines represent the medium values. However, the outliers are not shown in the 

figure. As shown in Figure 9 and Figure 10, the performance of models that utilize the EfficientNetB0 

as pre-trained model are much more consistent than the ones that utilize the DenseNet121. Especially 

with training accuracy, when the designs of fully connected layers are the same, models using the 

EfficientNetB0 have higher medium and maximum values of accuracy. However, models using the 

DenseNet121 and global average pooling outperform other models significantly on validation set, with 

accuracy 1% to 2% higher than others. This may be because the DenseNet121 has much more 

convolutional layers than the EfficientNetB0, thus it can extract features with higher complexity. 

Meanwhile, the EfficientNetB0 may only learn edges and shapes, which can be very similar between 

some classes, leading to more misclassification on validation set. 
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Figure 9. Validation accuracy of models for 

each architecture. 

Figure 10. Training accuracy of models for 

each architecture. 

 

Figure 11 and Figure 12 respectively illustrate how different dropout rates affect the overall 

performance of models using DenseNet121 and models using EfficientNetB0. Comparing these two 

figures, the plots for average validation accuracy fluctuate when the dropout rate is between 0% and 

70%. A sharp drop can be observed in both figures once the dropout rate is increased to 80%. This 

means that in general, an excessive dropout rate in fully connected layers damages the overall 

performance of CNNs, while regular dropout rates cannot efficiently improve model performance 

despite the architecture of the fully connected layers. However, as shown in Figure 12, when the 

dropout rate is between 10% and 70%, the interquartile ranges of accuracy are much narrower than the 

one without dropout. This indicates that for CNNs with lower complexity, dropout in fully connected 

layers can improve consistence and reduce the impact of the design of fully connected layers on the 

overall performance. This may be due to the fact that CNNs with less convolutional layers may learn 

more irrelevant representation and shallow features for classification. Dropout in the fully connected 

layers can force the networks to learn more from extracted features, and automatically function as 

feature selection during the training process, which improves feature utilization and relevance for 

more stable results. 

 

Figure 11. Validation accuracy of models 

using DenseNet121 for each dropout rate. 

Figure 12. Validation accuracy of models 

using EfficientNetB0 for each dropout rate. 

 

Figure 13 illustrates how different dropout rates affect the overall performance of models with 

different architectures for fully connected layers. As shown in Figure 13, models using architecture T0 

and T1 obtained much better accuracy than others. This is because Global Average Pooling can 

represent features better than flattening, and it can reduce model complexity efficiently. Although 

different dropout rates do not seem to improve model performance for architecture T0, T2 and T3, 

however, an increase can be observed for architecture T1 when the dropout rate is between 20% and 

50%, and the maximum value appears at 40%. This indicate that dropout can be used in fully 

connected layers with GAP and complex design. It may improve performance and avoid overfitting. 
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Figure 13. Average validation accuracy of models with different architectures for fully connected 

layers versus dropout rates. 

4.  Conclusion 

This paper compared the performance of different models for galaxy classification and investigated 

how different dropout rates impact the overall performance of the DenseNet121 and EfficentNetB0 

with four types of fully connected layers. Techniques including transfer learning, data argumentation, 

and learning rate decay are utilized to improve the overall performance of CNNs. Saliency maps and 

grad-CAM are used for model interpretation. Experimental results from model comparison show that 

the effect of dropout rates on the overall performance is insignificant comparing to the effect of 

architectures, but an excessive dropout rate in fully connected layers can reduce model performance 

substantially. However, results also indicate that for CNNs with relatively low complexity, the 

utilization of dropout with a proper rate in fully connected layers can increase model consistency and 

robustness, leading to better performance with less parameters. For future works, different learning 

rate schedules should be investigated based on different CNNs, and various CNNs with less 

parameters should be tested to compare the effect of dropout rate on model performance. 
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