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Abstract. Federated learning, a machine learning technique that enables collaborative model 

training on decentralized data, has gained significant attention in recent years due to its potential 

to address privacy concerns. This paper explores the evolution, applications, and challenges of 

federated learning. The research topic focuses on providing a comprehensive understanding of 

federated learning, its advantages, and limitations. The purpose of the study is to highlight the 

importance of federated learning in preserving data privacy and enabling collaborative model 

training. The study conducted a literature review by systematically analyzing relevant papers 

from peer-reviewed journals, conference proceedings, and reputable sources. The results reveal 

that federated learning offers a promising solution for collaborative machine learning while 

addressing concerns related to data privacy and security. The study emphasizes the need for 

further research in optimizing communication protocols, scalability, and privacy-preserving 

techniques. Overall, this paper contributes to the understanding of federated learning and its 

potential for secure and efficient decentralized learning paradigms. 

Keywords: federated learning, decentralized data, privacy preservation, collaborative model 
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1.  Introduction 

Federated learning (FL) is a machine learning (ML) technique that enables training models on 

decentralized data while preserving data privacy and security. This paper provides a comprehensive 

overview of FL, including its history, current state, and future directions.  

The paper highlights the advantages of FL, its applications in smartphones, healthcare, and the 

Internet of Things (LoT), as well as its challenges and limitations. These challenges include non-IID 

data, systems heterogeneity, and privacy concerns [1]. The research methodology used in this paper is 

a literature review that summarizes and analyzes existing research on FL. This author conducted a 

systematic search of relevant papers published in peer-reviewed journals, conference proceedings, and 

other reputable sources. This author then reviewed and synthesized the findings of these papers to 

provide a comprehensive overview of FL. 

The motivation for this study is to provide researchers with a comprehensive understanding of FL 

and its potential impact on various industries. This paper serves as a starting point for future research 

and a reference for identifying key trends, challenges, and opportunities in the field of FL. Overall, this 

paper provides valuable insights into the past, present, and future of FL and its potential impact on the 

field of ML. 
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2.  Evolution of federated learning 

2.1.  Centralized learning 

Centralized learning refers to the traditional approach of training ML models, where data is collected 

from various sources and then transferred to a central server for analysis and model training. This 

approach has been the dominant method for many years and has led to significant advancements in the 

field of ML. 

The centralized learning model was first introduced in the 1950s, and it was initially used in simple 

tasks such as character recognition. Over time, with the increase in computational power, the centralized 

learning model was used for more complex tasks. 

Despite its successes, centralized learning has several limitations. One of the major shortcomings is 

its dependency on data centralization, which raises concerns about data privacy, ownership, and control. 

Centralized approaches require data to be transferred to a central server, which can be time-consuming 

and costly. Additionally, centralized learning can suffer from performance issues due to high network 

traffic and latency, which can negatively impact the model's accuracy and speed [2]. 

In response to these limitations, researchers have been exploring alternative approaches to ML, such 

as on-site ML. 

2.2.  Distributed on-site learning 

Distributed on-site learning is becoming more popular due to the risks involved in sending private data 

to a centralized entity. This approach involves deploying a pre-trained or generic ML model to each 

device, which can then personalize it by training on its local data, making predictions, or running 

inference computations. This approach offers privacy advantages since data does not leave its host 

device. On-device intelligence has already been used in many applications, including medical 

applications, skin cancer detection, smart classrooms, and neural network-assisted services. However, 

this approach limits the generation of local models to each user's experience without benefiting from the 

data of their peers [3]. To address this, federated learning (FL) has been developed, which allows users' 

computations to be federated while still maintaining privacy. 

2.3.  Federated learning 

2.3.1.  Key concepts. In 2016, FL was introduced by Google researchers as a way to move the training 

task to the device itself while also federating local models and learning. This approach aims to provide 

a privacy-preserving ML framework and has gained momentum in both academia and industry. Unlike 

other approaches that involve sending private data to the server, performing ML tasks on devices without 

peer's data, or precluding direct access to raw data, FL enables on-device ML training while federating 

locally trained ML models [4]. This approach minimizes data communication overhead by keeping raw 

data on the devices and aggregating locally computed model updates, which ensures data privacy. 

2.3.2.  Basic steps. The basic steps of FL involve a series of key processes to enable collaborative model 

training on decentralized data while preserving privacy. These steps can be summarized as follows: 

Initialization: The process begins by initializing a global model either with pre-trained weights or 

random parameters. 

Client Selection: A subset of clients or devices is selected to participate in the training process. This 

selection can be based on various criteria such as device availability, network conditions, or 

representative data. 

Model Distribution: The global model is distributed to the selected clients. Each client receives a 

copy of the model and performs local training using its own data. 

Local Training: Each client independently trains the model using its local data. This training can 

involve multiple iterations and updates to improve the model’s performance. 
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Model Aggregation: After local training, the clients send their model updates, such as gradients or 

weights, to a central server or aggregator. 

Global Model Update: The central server aggregates the received model updates from the clients, 

typically by averaging or weighted averaging, to obtain an updated global model. 

Iteration: Steps from Client Selection to Global Model Update are repeated for multiple iterations to 

further refine the global model collaboratively. 

Model Deployment: Once the desired level of convergence is achieved, the final global model can 

be deployed for inference on new data. 

3.  Applications of federated learning 

3.1.  Smart phones 

FL has found various applications in the context of smartphones, leveraging the power of distributed 

on-device training while preserving user privacy. One prominent example is in the field of next-word 

prediction, which aims to enhance the typing experience on smartphones. By utilizing FL, personalized 

language models can be trained directly on users’ devices, considering their individual writing habits, 

frequently used words, and contextual information [4]. This enables accurate and context-aware next-

word suggestions, improving typing efficiency and user satisfaction. 

Another application of FL on smartphones is face detection. With the increasing demand for facial 

recognition capabilities in mobile applications, FL allows for the development of robust and accurate 

face detection models. By training these models directly on users’ devices using their locally stored 

facial data, privacy concerns associated with uploading sensitive facial information to a central server 

can be mitigated [1]. The aggregated knowledge from these decentralized models can then be utilized 

to enhance face detection algorithms, enabling secure and efficient facial recognition features on 

smartphones. 

3.2.  Organizations: smart healthcare 

FL has significant implications for smart healthcare, revolutionizing the way healthcare services are 

delivered and improving patient outcomes. One notable application is the use of FL to learn from health 

data and facilitate healthcare services, particularly in intelligent imaging for disease detection. By 

leveraging decentralized data from various healthcare providers and devices, FL enables the 

development of robust and accurate imaging models while preserving patient privacy. This allows for 

enhanced diagnostic capabilities, early disease detection, and improved treatment planning [5]. 

In addition, community-based FL algorithms have been employed in healthcare to predict mortality 

and hospital stay time. By federating data from multiple healthcare institutions and leveraging ML 

techniques, predictive models can be trained to identify risk factors and predict patient outcomes. This 

approach enables personalized and proactive care, facilitating timely interventions and resource 

allocation to improve patient prognosis and optimize healthcare delivery [3]. 

To provide high-performance models in smart healthcare, clustering techniques are employed to 

group homogeneous patients with similar characteristics. Each cluster then creates its personalized local 

and global models, allowing for tailored healthcare solutions. This approach ensures that the models are 

more accurate and effective, taking into account the specific needs and characteristics of each patient 

cluster. This personalized FL approach enhances the accuracy of predictions, treatment 

recommendations, and overall healthcare outcomes [3]. 

3.3.  Internet of things: automated vehicles 

FL also holds immense potential in the domain of automated vehicles, revolutionizing transportation 

systems and enhancing safety and efficiency.  

Unmanned aerial vehicles (UAVs) can greatly benefit from FL techniques. By leveraging data 

collected from distributed UAVs, FL enables the development of robust models for navigation, object 

detection, and collision avoidance. The decentralized nature of FL allows UAVs to learn from each 
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other’s experiences and adapt to changing environmental conditions, enhancing their autonomy and 

overall performance [3]. 

In the context of electric vehicles (EVs), FL can be applied to provide effective energy demand 

forecasting services for charging station (CS) providers. By aggregating data from multiple Evs and 

charging stations, FL algorithms can be used to predict and optimize energy demand, ensuring efficient 

utilization of charging infrastructure. This enables CS providers to dynamically manage resources, 

minimize energy wastage, and enhance the overall charging experience for EV users [6]. 

Autonomous vehicles, which are a key component of the future transportation landscape, can benefit 

greatly from FL approaches. By combining data from various vehicles, FL enables the development of 

accurate and robust models for perception, decision-making, and control. This collaborative learning 

approach enhances the safety and reliability of autonomous vehicles by leveraging the collective 

knowledge gained from diverse driving scenarios and environments [6]. 

FL can also play a significant role in the car insurance industry. By leveraging decentralized data 

from various vehicles, FL algorithms can effectively identify risks, predict compensation costs, and 

provide personalized insurance services. This approach allows insurance providers to tailor their 

offerings based on individual driving behavior, leading to fairer pricing, improved risk assessment, and 

enhanced customer satisfaction [6]. 

4.  Challenges of federated learning 

4.1.  Non-IID data 

One of the significant challenges in FL is the presence of non-IID (non-identically distributed) data 

across the participating clients. Non-IID data refers to the scenario where the data distributions among 

the clients are different, leading to variations in the statistical properties of the data [7]. This challenge 

can manifest in various ways: 

Feature distribution skew (covariate shift): Clients may have different feature distributions, meaning 

that the input variables in their datasets exhibit variations. This discrepancy in feature distributions poses 

challenges in building accurate and generalizable models. 

Label distribution skew (prior probability shift): The distribution of labels (target variables) among 

the clients may differ. This can occur when certain classes are overrepresented or underrepresented in 

specific clients’ datasets. This label distribution skew poses challenges in learning unbiased models. 

Same label, different features (concept shift): Clients may have different feature representations for 

the same label. This occurs when different clients use distinct feature engineering techniques or collect 

data from diverse sources. As a result, the features associated with the same label may vary across clients, 

making it challenging to generalize the learned models. 

Same features, different labels: Conversely, clients may have different labels assigned to the same 

set of features. This can occur due to variations in labeling criteria or subjective interpretations of the 

data. Such inconsistencies in label assignments hinder the creation of consistent and accurate models. 

Quantity skew or unbalancedness: The amount of data available to different clients may vary 

significantly. Some clients may have large datasets, while others may have limited data. This quantity 

skew poses challenges in achieving fair and representative model updates across all clients [7]. 

To address non-IID data challenges, several strategies can be employed. Data sharing allows clients 

to share subsets of their data to create a more balanced dataset. Data augmentation techniques can be 

used to artificially expand datasets and introduce diversity [7]. Algorithm-based approaches, like 

Federated Averaging [1], can adaptively weigh client contributions based on their data distributions. 

However, these methods do not solve the problem completely. 

4.2.  Systems heterogeneity 

Systems heterogeneity is a significant challenge in FL, arising from the variability in hardware, network 

connectivity, and power among the participating devices. Clients in an FL setting can differ in terms of 

their hardware capabilities, such as CPU power and memory capacity. Additionally, network 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231177

109



connectivity may vary from 3G, 4G, 5G, or Wi-Fi, leading to differences in communication speed and 

reliability. Furthermore, power availability, influenced by battery levels, adds another dimension of 

heterogeneity [1]. 

The presence of systems heterogeneity poses several challenges in FL. Firstly, the network size and 

systems-related constraints often result in only a small fraction of devices being active at any given time, 

even in large-scale deployments. For instance, in a network of a million devices, only a few hundred 

may be active simultaneously [1]. Moreover, individual devices may exhibit unreliability, leading to 

dropout events during iterations due to connectivity issues or energy constraints. 

To address systems heterogeneity in FL, various techniques can be employed. Asynchronous 

communication allows devices to update models independently, accommodating different connectivity 

and power constraints. Active device sampling selects a subset of responsive devices for model updates. 

Fault tolerance mechanisms ensure continuity in the presence of device failures [1]. These strategies can 

solve part of the problem. 

4.3.  Privacy 

In federated learning, communicating model updates during the training process can inadvertently reveal 

sensitive information, posing a risk to privacy. Despite the use of aggregation techniques, there is a 

possibility of unintentional information leakage. This vulnerability arises because model updates may 

contain implicit details about the data used for training, potentially exposing individual user 

characteristics or sensitive patterns [1]. 

These risks can manifest in different ways. For instance, an adversary with access to the model 

updates could analyze the changes over time and infer specific details about the training data or the users 

involved. Similarly, a compromised central server could gain insights into the private information of the 

participating devices by examining the aggregated updates. 

To mitigate these privacy risks, various methods and techniques are employed. Secure computations, 

such as homomorphic encryption or secure multi-party computation, allow for collaborative model 

training on encrypted data without exposing the underlying information. Additionally, federated 

learning frameworks incorporate mechanisms to reduce the reliance on a trusted central server, 

minimizing the exposure of sensitive data during communication [7]. These methods can solve the 

problem to some extent. 

5.  Conclusion 

In conclusion, this paper has provided an overview of federated learning, exploring its evolution, 

applications, and challenges. Federated learning offers a promising solution for collaborative model 

training while preserving data privacy. The discussed applications highlight their potential in 

smartphones, healthcare, and automated vehicles. Further research can focus on optimizing 

communication protocols, scalability, and privacy-preserving techniques. Future studies may explore 

applications in finance, energy, and social media, as well as integration with technologies like 

blockchain and edge computing. Overall, federated learning has the potential to revolutionize 

collaborative machine learning, and continued research can unlock its full potential for secure and 

efficient decentralized learning paradigms. 
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