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Abstract. The field of machine learning has been stepping forward at a significant pace since 

the 21century due to the continuous modifications and improvements on the major underlying 

algorithms, particularly the model named federated learning (FL). This paper will specifically 

focus on the Partially Distributed and Coordinated Model, one of the major models subject to 

federated learning, to provide an analysis of the model’s working algorithms, existing problems 

and solutions, and improvements on the original model. The identification of the merits and 

drawbacks of each solution will be founded on document analysis, data analysis and contrastive 

analysis. The research concluded that both alternative solutions and improvements to the original 

model can possess their unique advantage as well as newly-emerged concerns or challenges. 
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1.  Introduction 

The terminology “Partially Distributed and Coordinated Model” illustrated the characteristics of the 

model--some of the tasks are distributed across multiple devices, while others are coordinated centrally. 

Current researches and solutions on this particular model’s problems focus mainly on reducing the time 

required for accomplishing model updates, leaving relatively little attention on the drawbacks brought 

by the improvement of updating speed. This paper therefore will identify several improvements to the 

current solutions to give consideration to both time and other concomitant issues. This paper can 

contribute to further research and applications in the field of machine learning by clarifying the benefits 

and disadvantages of each solution and improvement, making the selection process explicit and 

convenient for designers while adopting models to solve problems under real-world circumstances. 

2.  Model foundations and problems 

The partially distributed and coordinated model consists of a centralized cloud server and multiple client 

devices. The server will collect data, process information and distribute models to be passed on to clients, 

who will execute model training using a local database. As shown in figure 1, When being compared 

with a centralized and coordinated model, which refers to the scenario that local devices will send the 

raw data, instead of models, to the cloud server for processing, partially distributed model illustrated its 

significant improvement on privacy concerns since the server cannot have direct access to raw data, 

which are processed locally.  
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Figure1. An example of federated model’s application on predicting the next typing word on mobile 

phones [1]. 

However, the problem regarding the time required to complete updates emerged while the privacy 

issue is being solved using this model. Since the general update executed in the server will not initiate 

until all the local updates have been uploaded, the whole system’s working speed is depending on the 

client device that is updating the slowest. Meanwhile, the heterogeneity of devices makes the difference 

in processing speed almost unavoidable: The devices’ capabilities of storing, computing and 

communicating may vary significantly due to the variability in hardware, like CPU, network conditions 

and battery level. For instance, when device failure, a situation when a device fails to accomplish updates 

due to Internet malfunctioning or other reasons, occurs, the total training time required to converge to a 

global model will be extended. Meanwhile, there are devices underrepresented by the global model 

because they seldom participate in the convergence process thanks to their abnormal states like CPU 

busy [2]. 

3.  Existing solutions 

3.1.  Local multiple updates 

Given the problems of the crude decentralized and coordinated model, two major solutions have been 

provided to shorten the time required for each communication round. The first solution provided a novel 

insight into the problem by performing multiple local updates until the overall time for one update is 

approximately equal for all clients. In this scenario, while the interval for updating may even be larger 

than the original model, the faster devices are able to perform more updates locally instead of merely 

waiting for the slowest one to finish a single update. Multiple local updates, when appropriately adopted, 

can further enhance the overall performance because of the more accurate models updated to the server. 

However, it is also worth mentioning that at the time when local updates are performed at unreasonable 

times, the problem of overfitting can emerge to greatly compromise the resulting model concluded by 

the server. Overfitting refers to the scenario that the model is overly conformed to the training dataset 

and therefore cannot be generalized. And one of the major reasons for the occurrences of overfitting is 

that the model is trained on a single sample set of data for an overly long time, resulting in the model’s 

absorption of irrelevant information in the database [3]. 
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3.2.  Asynchronous simple gradient descent 

Another proposed solution is named Asynchronous Simple Gradient Descent (Asynchronous SGD), 

which, as illustrated by the name, suggests individual clients update the server once their local 

processing course has been concluded. Adopting this strategy enables the devices with higher 

computational speed to proceed training without having to wait for the slower ones to complete a global 

update. However, another problem identified as update imbalance can be caused by updating models 

independently: Since the faster devices are continuously updating models at a speed higher than the 

slower ones, the models that cloud server will receive are primarily occupied by models generated by 

faster clients. Therefore, the clients with higher computing speed can unconsciously weigh more in the 

ultimate general model than those with medium or moderate capabilities, resulting in worse optimization 

performance in a system with relatively imbalanced data distribution [4]. 

4.  Improvements to the original algorithm 

4.1.  Variable workload 

As the commonly-adopted solutions mentioned above are possessing both advantages and drawbacks, 

improvements on the original algorithm can also be made aiming to achieve efficiency as well as 

perfection. The first strategy employs deep reinforcement learning (DRL) network to derive the optimal 

policy for local workload adjustments. The only difference is that variable workload allows the server 

to distribute data to devices according to their computational power, with faster devices receiving more 

data and slower ones bearing less burden. The updates can then be conducted synchronously and 

therefore avoid time latency created by the heterogeneity of devices. Also, adjusting the local workload 

ruled out the possibility of overfitting when doing local updates and being biased when adopting the 

faster devices’ models continuously. But the challenge of accurately predicting the models’ training time 

can also arise due to the variation in the number of epochs on each device as well as the heterogeneity 

in the structure of the models. A method to predict the training time in accuracy is therefore proposed 

by Justus et al., whose fundamental idea for the algorithm is to utilize individual layers as the basic units 

for computation of the whole models’ training time. By accumulating the training time, the variation in 

epoch quantities and model heterogeneity can be overlooked to a great extent [5]. 

4.2.  Proximal term 

Another modification to the original partially distributed and coordinated model is the addition of 

proximal terms on the local model training procedure. Scaled by μ, proximal terms are utilized to 

mitigate the effects of statistical and system heterogeneity by penalizing divergence from the global 

model. As a result, a large μ may hold the possibility to suppress the convergence process by overly 

penalizing divergence but a small μ may not be of significant effects. Therefore, an appropriate μ 

must be chosen for the specific approximation in order to guarantee convergence given the realistic 

environment in which heterogeneities could cause divergence. However, there remains the possibility 

for local updating schemes to have a worse performance than distributed simple gradient descent when 

the generated data are not identically distributed. Also, the problem regarding state changes of the 

devices remains unsolved with the addition of proximal terms. As a result, adding proximal terms to the 

original algorithm will not be enough to hold absolute superiority over other algorithms [6]. 

5.  Conclusion 

In conclusion, this paper focuses on identifying the merits and drawbacks of different algorithms applied 

in a partially distributed and coordinated model and it concluded that the alternative solutions, as well 

as improvements on the original algorithm, have respectively their advantages and drawbacks and 

therefore should be utilized after consideration and selection. The way of representing the characteristics 

can be improved by listing more experimental data for comparison. Future research in this area can be 

directed to better resolving the privacy concern by building a communication-efficient system despite 

the heterogeneity of devices. 
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