
Problems, solutions and improvements on federated learning

model

Leqi Huang

Big Bridge Academy, Wuxi, Jiangsu, China, 214000,

lambert_huang1123@163.com

Abstract. The field of machine learning has been stepping forward at a significant pace since

the 21century due to the continuous modifications and improvements on the major underlying

algorithms, particularly the model named federated learning (FL). This paper will specifically

focus on the Partially Distributed and Coordinated Model, one of the major models subject to

federated learning, to provide an analysis of the model’s working algorithms, existing problems

and solutions, and improvements on the original model. The identification of the merits and

drawbacks of each solution will be founded on document analysis, data analysis and contrastive

analysis. The research concluded that both alternative solutions and improvements to the original

model can possess their unique advantage as well as newly-emerged concerns or challenges.

Keywords: machine learning, federated learning, partially distributed and coordinated model,

local epoch adjustment.

1. Introduction

The terminology “Partially Distributed and Coordinated Model” illustrated the characteristics of the

model--some of the tasks are distributed across multiple devices, while others are coordinated centrally.

Current researches and solutions on this particular model’s problems focus mainly on reducing the time

required for accomplishing model updates, leaving relatively little attention on the drawbacks brought

by the improvement of updating speed. This paper therefore will identify several improvements to the

current solutions to give consideration to both time and other concomitant issues. This paper can

contribute to further research and applications in the field of machine learning by clarifying the benefits

and disadvantages of each solution and improvement, making the selection process explicit and

convenient for designers while adopting models to solve problems under real-world circumstances.

2. Model foundations and problems

The partially distributed and coordinated model consists of a centralized cloud server and multiple client

devices. The server will collect data, process information and distribute models to be passed on to clients,

who will execute model training using a local database. As shown in figure 1, When being compared

with a centralized and coordinated model, which refers to the scenario that local devices will send the

raw data, instead of models, to the cloud server for processing, partially distributed model illustrated its

significant improvement on privacy concerns since the server cannot have direct access to raw data,

which are processed locally.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231215

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

183

Figure1. An example of federated model’s application on predicting the next typing word on mobile

phones [1].

However, the problem regarding the time required to complete updates emerged while the privacy

issue is being solved using this model. Since the general update executed in the server will not initiate

until all the local updates have been uploaded, the whole system’s working speed is depending on the

client device that is updating the slowest. Meanwhile, the heterogeneity of devices makes the difference

in processing speed almost unavoidable: The devices’ capabilities of storing, computing and

communicating may vary significantly due to the variability in hardware, like CPU, network conditions

and battery level. For instance, when device failure, a situation when a device fails to accomplish updates

due to Internet malfunctioning or other reasons, occurs, the total training time required to converge to a

global model will be extended. Meanwhile, there are devices underrepresented by the global model

because they seldom participate in the convergence process thanks to their abnormal states like CPU

busy [2].

3. Existing solutions

3.1. Local multiple updates

Given the problems of the crude decentralized and coordinated model, two major solutions have been

provided to shorten the time required for each communication round. The first solution provided a novel

insight into the problem by performing multiple local updates until the overall time for one update is

approximately equal for all clients. In this scenario, while the interval for updating may even be larger

than the original model, the faster devices are able to perform more updates locally instead of merely

waiting for the slowest one to finish a single update. Multiple local updates, when appropriately adopted,

can further enhance the overall performance because of the more accurate models updated to the server.

However, it is also worth mentioning that at the time when local updates are performed at unreasonable

times, the problem of overfitting can emerge to greatly compromise the resulting model concluded by

the server. Overfitting refers to the scenario that the model is overly conformed to the training dataset

and therefore cannot be generalized. And one of the major reasons for the occurrences of overfitting is

that the model is trained on a single sample set of data for an overly long time, resulting in the model’s

absorption of irrelevant information in the database [3].

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231215

184

3.2. Asynchronous simple gradient descent

Another proposed solution is named Asynchronous Simple Gradient Descent (Asynchronous SGD),

which, as illustrated by the name, suggests individual clients update the server once their local

processing course has been concluded. Adopting this strategy enables the devices with higher

computational speed to proceed training without having to wait for the slower ones to complete a global

update. However, another problem identified as update imbalance can be caused by updating models

independently: Since the faster devices are continuously updating models at a speed higher than the

slower ones, the models that cloud server will receive are primarily occupied by models generated by

faster clients. Therefore, the clients with higher computing speed can unconsciously weigh more in the

ultimate general model than those with medium or moderate capabilities, resulting in worse optimization

performance in a system with relatively imbalanced data distribution [4].

4. Improvements to the original algorithm

4.1. Variable workload

As the commonly-adopted solutions mentioned above are possessing both advantages and drawbacks,

improvements on the original algorithm can also be made aiming to achieve efficiency as well as

perfection. The first strategy employs deep reinforcement learning (DRL) network to derive the optimal

policy for local workload adjustments. The only difference is that variable workload allows the server

to distribute data to devices according to their computational power, with faster devices receiving more

data and slower ones bearing less burden. The updates can then be conducted synchronously and

therefore avoid time latency created by the heterogeneity of devices. Also, adjusting the local workload

ruled out the possibility of overfitting when doing local updates and being biased when adopting the

faster devices’ models continuously. But the challenge of accurately predicting the models’ training time

can also arise due to the variation in the number of epochs on each device as well as the heterogeneity

in the structure of the models. A method to predict the training time in accuracy is therefore proposed

by Justus et al., whose fundamental idea for the algorithm is to utilize individual layers as the basic units

for computation of the whole models’ training time. By accumulating the training time, the variation in

epoch quantities and model heterogeneity can be overlooked to a great extent [5].

4.2. Proximal term

Another modification to the original partially distributed and coordinated model is the addition of

proximal terms on the local model training procedure. Scaled by μ, proximal terms are utilized to

mitigate the effects of statistical and system heterogeneity by penalizing divergence from the global

model. As a result, a large μ may hold the possibility to suppress the convergence process by overly

penalizing divergence but a small μ may not be of significant effects. Therefore, an appropriate μ

must be chosen for the specific approximation in order to guarantee convergence given the realistic

environment in which heterogeneities could cause divergence. However, there remains the possibility

for local updating schemes to have a worse performance than distributed simple gradient descent when

the generated data are not identically distributed. Also, the problem regarding state changes of the

devices remains unsolved with the addition of proximal terms. As a result, adding proximal terms to the

original algorithm will not be enough to hold absolute superiority over other algorithms [6].

5. Conclusion

In conclusion, this paper focuses on identifying the merits and drawbacks of different algorithms applied

in a partially distributed and coordinated model and it concluded that the alternative solutions, as well

as improvements on the original algorithm, have respectively their advantages and drawbacks and

therefore should be utilized after consideration and selection. The way of representing the characteristics

can be improved by listing more experimental data for comparison. Future research in this area can be

directed to better resolving the privacy concern by building a communication-efficient system despite

the heterogeneity of devices.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231215

185

References

[1] Tian L., Talwalkar T. (2019). Federated Learning: Challenges, Methods, and Future Directions.

arXiv:1908.07873v1 [cs.LG] 21 Aug 2019

[2] Yang, C., Wang, Q., Xu, M., Chen, Z., Bian, K., Liu, Y., & Liu, X. (2020). Characterizing Impacts

of Heterogeneity in Federated Learning upon Large-Scale Smartphone Data. arXiv preprint

arXiv:2006.06983.

[3] Deshpande, S. (2021, October 5). Overfitting in ML: Avoiding the pitfalls. Towards Data Science.

https://towardsdatascience.com/overfitting-in-ml-avoiding-the-pitfalls-d5225b7118d

[4] Diwangkara, S. S., & Kistijantoro, A. I. (2020). Study of data imbalance and asynchronous

aggregation algorithm on federated learning system.

https://ieeexplore.ieee.org/abstract/document/9264958/authors#authors

[5] Yan Zeng, Xin Wang, Junfeng Yuan, Jilin Zhang, Jian Wan, "Local Epochs Inefficiency Caused

by Device Heterogeneity in Federated Learning", Wireless Communications and Mobile

Computing, vol. 2022, Article ID 6887040, 15 pages, 2022.

https://doi.org/10.1155/2022/6887040

[6] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated

optimization in heterogeneous networks (Version 5) [Preprint]. arXiv.

https://arxiv.org/abs/1812.06127

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231215

186

https://doi.org/10.1155/2022/6887040

