
  

A review on statistical language and neural network based 

code completion 

Ze Gao 

Christ Church Grammar School, Perth, Australia, 6010 

 

eddiegaoze@gmail.com 

Abstract. Code completion, also referred to as intellisense, is a prevalent feature of Integrated 

Development Environments (IDEs) and code editors. It aids developers by automatically 

recommending and inserting code segments, variable names, and method names, among other 

things. With the accelerated growth of the software industry and the process of digitalization in 

recent years, the demand for software engineers has reached a record-high level. Thus, the 

advancement of code completion is encouraged and has become a popular topic in software 

engineering. This paper examines and summarizes the development of a statistical language and 

neural network-based code completion system. The main contents consist of introducing the 

concepts of code completion system, summarizing the general process of code completion and 

the evaluation metrics used for performance benchmarking, reviewing and summarizing the 

existing work conducted on statistical language approach and neural network approach 

respectively, as well as the limitations and challenges of existing code completion method, and 

finally forecasting the future development of code completion techniques. 

Keywords: code generation, code completion, statistical language model, neural network. 

1.  Introduction  

Since the invention of computer systems, software engineers have been closely tied to tasks involving 

the writing of code. Improving the productivity and quality of software development consequently 

becomes one of the field's most pressing issues. This technology is capable of analyzing developers' 

input and existing code corpus to determine the name of a method, class, or variable. As a result, 

developers can spend less time memorizing unfamiliar method and class names, thereby increasing the 

development efficiency. In the past few decades, code completion has become one of the most popular 

topics in the field. 

Currently, there are three primary forms of code completion: token completion, code snippet 

completion, and keywords/abbreviations completion. 

The application of statistical language models and neural language models to the problem of 

intelligent code completion is investigated in depth. From 2009 to 2022, the most recent research papers 

on code completion from sources such as arXiv, IEEE, Springer, and various ACM conferences. This 

review's primary contribution is a summary of existing research on code completion models using a 

statistical language approach and neural network approach. In addition to examining the limitations of 

these approaches, the review also provides future development prospects. 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231222

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

233



   

2.  Overview 

2.1.  Summary of research on code completion 

Code completion is a problem involving the prediction and recommendation of the following token in 

code statements. The representation of code statements in the model is crucial to a code completion 

system as it affects how the dataset is processed and prepared and how the model is trained.  

In 2012, Hindle et al. published the hypothesis that coding language and natural language share 

repetitive and predictable characteristics [1], allowing them to be predicted by a mathematical model. 

Hindle et al. proposed an N-gram-based statistical language model to predict the next token in a code 

statement [2]. The model outperformed the Eclipse code completion extension, which validates the use 

of statistical language models to represent and predict code statements. 

Bengio et al. trained the statistical language model with a neural network in 2003, paving the way 

for the development of a code completion model [3]. Researchers are able to calculate the probability 

of a code token using neural networks to a greater extent as a result of the increased availability of 

computing power resulting from technological advancements. The statistical language approach and 

neural network approach will be discussed in greater depth in the sections that follow. 

2.2.  The general process of code completion 

Different completion methods have distinct differences in how they represent code and how they 

evaluate its correctness. Both methods share a common structural and operational basis. Figure 5 depicts 

a general overview of the coding-completion process. 

To begin extracting characteristics from the code for both the training and completion processes, the 

computer must first represent the code in a form it can understand. The extraction of data from the code 

and its structural representation constitute the method of code representation.    

After training on the source code dataset, the model can predict and recommend code snippets with 

the highest likelihood and similarity values by comparing the context information of the to-be-completed 

code and other code segments.  

Next, the model excludes the completion results that do not meet the syntax requirements from the 

preliminary code recommendations based on the type of completion and the specific syntax of the coding 

language. 

The model ultimately provides the developers with a pop-up window containing a curated set of code 

recommendations. 

 

Figure 1. General code completion process (original). 

2.3.  Performance evaluation metrics for the model 

As the code completion model typically suggests the K most probable options to the user, the following 

performance metrics are typically used to evaluate its effectiveness: Mean Reciprocal Rank (MRR), 

Accuracy@K, Precision@K, Recall@K, and F-measure@K, where @K indicates the calculation is 

based on the completion model's top K recommendations. 

Mean Reciprocal Rank (MRR) is commonly employed for benchmarking the efficacy of information 

indexing and recommendation systems. This benchmark establishes the position of the first current 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231222

234



  

answer as the measuring standard; it is calculated as follows: for a code completion recommendation, if 

the position of the correct answer in the list when it appears for the first time is n, then the MRR value 

is 
1

n
. As the MRR approaches one, the correct code completion moves closer to the head of the list of 

recommendations. Consequently, the multiplicative inverse of MRR indicates the average position of 

the correct result in the recommendation list, and MRR is the mean of the reciprocal rankings of results 

for the sample of queries Q. 

 MRR =
1

|Q|
 ∑  

1

ranki

 |Q|
i = 1  (1) 

Accuracy@K is the ratio of the correct code completion recommendations to the top K 

recommendations. 

 Accuracy =
recommendations Correct

recommendations Made
 (2) 

Precision@K is the ratio of the relevant code completion recommendations to the top K 

recommendations. 

 Precision =
recommendations made⋂relevant

recommendations made
 (3) 

Recall@K is the ratio of the relevant code completion recommendations in the top K 

recommendations to the total number of relevant options. 

 Recall =
recommendations made⋂relevant

recommendations relevant
  (4) 

F-measure@K is a customised metrics calculated by precision and recall, which enables research to 

adjust the weights of precision and recall by changing the value of β. 

 F =
(1 + β2) × precision × recall

β2 × precision + recall
 (5) 

2.4.  Validation method of the model 

Typically, the validation method involves dividing the data set into a training set and a validation set in 

a predetermined ratio. K-Fold Cross-Validation, in which the data is divided into more than two 

categories, is one of the most well-known and utilized methods in the field of code completion. In this 

method, 'K' is the number of groups into which the data is divided, one group is set aside as validation 

data, and K-1 groups are used to train the model. Each group is then used to validate the code completion 

model, with the average output of K number of operations serving as the model's evaluation metric. 

3.  Approaches  

3.1.  Statistical language model approach 

This part examines recent advancements in code completion utilizing statistical language models. 

Initially, the code completion problem was raised to reduce the need for developers to remember 

programming language syntax and API (application programming interface); this led to the discovery 

of prospective methods for improving the performance of the completion model. In 2012, Hindle et al. 

drew inspiration from the use of statistical language models in speech recognition and NLP (natural 

language processing) and based their work on the premise that programming languages [1], despite 

being complex and sophisticated, are repetitive and simple in nature due to the fact that they are written 

by humans. Based on a language dataset, their work builds an N-gram language model, allowing them 

to complete code through the calculation of cross-entropy [4]. A year later, Nguyen et al. proposed a 

tool called SLAMC to address the issue of the N-gram model only being able to extract features within 

a range of N elements [5], where it also labeled the code token with data type (i.e. integer) and type (i.e. 

constant) to assist the model in capturing the contextual information of the source code. The SLANG 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231222

235



   

completion utility was developed by Raychev et al. in 2014 [6]. The SLANG tool extracts the sequence 

of API calls from a partial program containing holes and applies them to a statistical language model 

(N-gram, RNN, or a combination of the two) to return the completion with the highest probability that 

also satisfies the constraints imposed by the holes. In ninety percent of instances, the model returns the 

desired candidate among the top three options. 

In 2015, Bettenburg et al. proposed that the datasets obtained from open-source repositories are 

highly variable, which has a negative effect on the validity of the model [7]. They proposed to divide 

the data into smaller, homogenous subsets and train each statistical language model separately. A case 

study of a dataset in the field of software engineering demonstrates that models constructed from local 

datasets outperform traditional models in terms of model fitting and predictive performance. 

Nonetheless, the clustering algorithm and parameter selection will have detrimental effects on the 

quality of the model. Nguyen et al. proposed a statistical language dubbed AUTOSC that integrates 

program analysis and a statistical language model with the principle of software naturalness to complete 

incomplete code statements [1, 8]. AUTOSC employs the N-gram model to learn the most likely 

candidate templates from code statements that contain a sequence of special annotations called Extended 

Code Tokens. These Extended Code Tokens contain information regarding the token's type and/or data 

type, allowing the language model to anticipate the next token with greater contextual knowledge of the 

code statement. Such a design facilitates AUTOSC obtains 38.1%-41.3% top-1 accuracy and 48.2-50.1% 

top-5 accuracy in statement completion and outperforms a conventional approach from 9X-69X in top-

1 accuracy. 

Code completion models based on statistical language continue to improve performance by 

optimizing the N-gram model; however, the limitations of the N-gram model, namely the difficulty in 

dealing with long-distance relations and code statement regularities, cannot be entirely resolved. The 

Recurrent neural network was then applied to the code completion issue in order to enhance performance. 

3.2.  Neural network model approach 

This section discusses recent developments in code completion utilizing neural network models. 

Various deep learning-based approaches have been proposed to enhance and stabilize the 

performance of code completion with multiple long-range dependency inferences. In 2015, White et al. 

proposed a model based on Recurrent neural network (RNN) and applied deep learning techniques to 

enhance the quality of abstraction of code features and the quality of representation [9], which were key 

factors in determining the quality of code completion. The model extended the neural network model to 

incorporate more long-range dependencies and outperformed the standard N-gram model in terms of 

code completion performance. Bhoopchand et al. created a model based on pointer network with a sparse 

attention mechanism later in 2016 [10,11]. This study compiled a large corpus of Python code 

suggestions and discovered that standard neural networks are constrained by a hidden state bottleneck. 

As all contextual information must be recorded in a fixed-dimensional vector representation, it restricts 

the model to local features of the code corpus and hinders its ability to capture long-range relationships. 

The model maintains a pointer structure to global vocabulary and calculates pseudo-sparse distribution 

to increase token prediction precision by 25%. 

Transformer is the most prevalent state-of-the-art deep neural network architecture, which has lately 

been utilized in the field of code generation and completion. In 2020, Kim et al. proposed a novel 

application of transformers as the neural architecture's backbone [12]. The PathTrans and TravTrans 

models were used to teach the transformer structure the syntactic structure of the source code, allowing 

the work to outperform the accuracy of some state-of-the-art next token prediction models by a 

significant margin of 14% to 18%. The study concludes that transformer outperforms the conventional 

RNN in predicting the token sequence of a given source document. A year later, Matteo et al. utilized 

the Roberta model to evaluate the capabilities of cutting-edge deep learning models in the field of code 

completion at various granularity levels [13]. Roberta (Robustly Optimized BERT Pre-training 

Approach) is a BERT model whose input sentences have been arbitrarily masked out using a special 

MASK> token. Bidirectional Encoder Representations from Transformers is what BERT refers to. The 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231222

236



  

Roberta model was able to predict code token, code construct, and code blocks, but it has the limitation 

that the number of concealed tokens must equal the value of n, which creates an unrealistic scenario in 

which the completion system is informed of the number of tokens to be generated.  

Contrary to some misconceptions, code generation and completion tasks are not limited to text; code 

can be generated from an image, such as a screenshot. Beltramelli et al. proposed the pix2code model 

in 2017 based on CNN (Convolutional neural network) and RNN (Recurrent neural network) [14]. CNN 

was used to transform the image into a fixed-length output vector, which RNN then analyzed to generate 

the code generation output. 

Allamanis et al. proposed that the structure and syntactical information of source code can be 

depicted by a graph [15], and that graph neural network outperforms convolutional neural network in 

variable completion performance. However, the mechanism could only be used to complete variable 

names and could not complete tokens. 

Prediction of Out-of-Vocabulary (OOV) words is presently one of the most significant issues with 

code completion and code generation. Li et al. proposed a pointer network for improved OOV word 

prediction performance [16]. The pointer mixture network can learn to generate within-vocabulary 

words using the RNN component with LSTM or to generate outside-of-vocabulary words using the 

pointer component.  

4.  Limitations and prospects 

In terms of limitations, the first is the model's compatibility with various programming languages. 

Although numerous code completion models have been developed in recent years, the majority of them 

focus on Java and Python. This is not only due to the availability of datasets and the syntax of those 

languages. Java and Python have advantages in terms of code corpus quantity and quality, and they are 

both object-oriented programming languages that, compared to other programming languages (such as 

C or C++), have a more comprehensive library and API (application programming interface) support. 

Recent work on the development of a multilingual code corpus may hold the key to enhancing the 

mobility of the code completion model [17,18]. 

Manually evaluating the performance of the code completion procedure is the second step. As code 

completion technology is developed to aid in the development process, these models must be manually 

evaluated to accurately reflect their performance and contributions to projects. However, the absence of 

a uniform standard for evaluation and the higher costs associated with it have resulted in only a small 

number of works opting for human evaluation [19,20]. 

The third lacks a standardized metric for evaluating model efficacy. Most existing works only use 

one of the commonly used evaluation metrics (i.e., accuracy@K, Recall@K, and MRR) for evaluation, 

making it difficult to compare the performance of models evaluated by different metrics. 

The last one lacks a high-quality, standard-compliant code dataset. Typically, the code corpus used 

to train a code completion model is obtained from open-source repositories or explicitly generated by 

DSL (domain specific language). Code corpora generated by DSL typically have straightforward syntax 

characteristics and shorter statement lengths, and are consequently simpler to train and validate. 

However, models trained on DSL-generated code corpus are frequently incompatible with other 

programming languages. Code corpora obtained from online repositories are more representative of 

actual software development, but neither the quality nor syntax can be guaranteed. Models trained on 

these low-quality code corpora frequently suffer from increased noises that negatively influence the 

model's performance [21,22]. 

Regarding the expectations of this discipline, the vocabulary size must be expanded. Most existing 

works limited vocabulary size to 100k, resulting in insufficient coverage for each token. This increases 

the incidence of out-of-vocabulary (OOV) words and impacts the model's performance. Therefore, a 

larger vocabulary inventory should be utilized for the training of the completion model [23]. 

Moreover, it is an effective method for integrating compiler technology to enhance output quality. 

Existing models frequently do not take into account whether the code snippets they predict correspond 

with the syntax of the programming language, resulting in code that cannot be compiled [24]. By 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231222

237



   

incorporating the syntax requirements of the programming language into the code completion model 

and refining the recommendation output, it is possible to maintain the output's quality and consistency.  

5.  Conclusion 

In this review, code completion tasks using statistical language models and neural network models are 

highlighted. First, code completion system-related concepts are introduced. Then, a summary of the 

general process of code completion and commonly employed evaluation metrics follows. Following a 

review of the extant literature on statistical language approach and neural network approach, the authors 

present their findings. Finally, the system's limitations and future prospects are discussed.  

As for the limitations, the review has relied solely on research papers as its primary source of 

information and has not conducted any interviews with industry developers, making its evaluation of 

performance from the developer's perspective less reflective. Future work will address this issue by 

interviewing and surveying developers currently employed in the software industry regarding their 

experience with the codec completion utility. 

References 

[1] Abram Hindle, E. T. (2012). On the Naturalness of Software. IEEE, In: Proc. of the 2012 34th 

Int’l Conf. on Software Engineering (ICSE). 

[2] Lalit Bahl, F. J. (1983). A maximum likelihood approach to continuous speech recognition. IEEE 

Trans. on Pattern Analysis & Machine Intelligence, 5(2):179−190. 

[3] Yoshua Bengio, R. D. (2003). A Neural Probabilistic Language Model. Journal of Machine 

Learning Research, 3(6):1137−1155. 

[4] Christopher Manning, H. S. (1999). Foundations of Statistical Natural Language Processing. The 

MIT Press. 

[5] Nguyen, T. T. (2013). A statistical semantic language model for source code. ESEC/FSE. 

[6] Raychev V, V. M. (2014). Code completion with statistical language models. ACM SIGPLAN 

Notices, 49(6):419−428. 

[7] Nicolas Bettenburg, M. N. (2015). Towards improving statistical modeling of software 

engineering data: think locally, act globally! Empir Software Eng, 20:294–335. 

[8] Son Nguyen, T. N. (2019). Combining Program Analysis and Statistical Language Model for 

Code Statement Completion. Proceedings of the 34th IEEE/ACM International Conference on 

Automated Software Engineering Conference (ASE 2019). 

[9] Martin White, C. V.-V. (2015). Toward Deep Learning Software Repositories. 2015 IEEE/ACM 

12th Working Conference on Mining Software Repositories (MSR), IEEE. 

[10] Oriol Vinyals, M. F. (2015). Pointer Networks. Advances in Neural Information Processing 

Systems 28 (NIPS 2015). 

[11] Avishkar Bhoopchand, T. R. (2016). LEARNING PYTHON CODE SUGGESTION WITH A 

SPARSE POINTER NETWORK. arXiv:1611.08307. 

[12] Seohyun Kim, J. Z. (2021). Code Prediction by Feeding Trees to Transformers. IEEE, In 2021 

IEEE/ACM 43rd International Conference on Software Engineering (ICSE) (pp. 150-162). 

[13] Matteo Ciniselli, N. C. (2021). An Empirical Study on the Usage of BERT Models for Code 

Completion. IEEE, In 2021 IEEE/ACM 43rd International Conference on Software 

Engineering (ICSE) (pp. 150-162). 

[14] Tony Beltramelli. (2017). pix2code: Generating Code from a Graphical User Interface Screenshot. 

arXiv:1705.07962. 

[15] Miltiadis Allamanis, M. B. (2017). Learning to represent programs with graphs. arXiv preprint 

arXiv:1711.00740. 

[16] Jian Li, Y. W. (2018). Code Completion with Neural Attention and Pointer Networks. 

arXiv:1711.09573v2. 

[17] Georgios Nikitopoulos, K. D. (2021). CrossVul: A Cross-Language Vulnerability Dataset with 

Commit Data. ESEC/FSE2021. 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231222

238



  

[18] Tao Yu, R. Z. (2018). Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-

Domain Semantic Parsing and Text-to-SQL Task. arXiv:1809.08887v5 cnncs.CL]. 

[19] Frank F. Xu, B. V. (2022). In-IDE Code Generation from Natural Language: Promise and 

Challenges. ACM Trans. Softw.Eng. Methodol, vol. 31, no. 2, pp. 29:1–29:47. 

[20] Eman Abdullah AlOmar, A. I. (2021). AntiCopyPaster: Extracting Code Duplicates As Soon As 

They Are Introduced in the IDE. arXiv:2112.15230v2 [cs.SE]. 

[21] Pengcheng Yin, G. N. (2017). A Syntactic Neural Model for General-Purpose Code Generation. 

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 

pages 440–450. 

[22] Pengcheng Yin, G. N. (2018). TRANX: A Transition-based Neural Abstract Syntax Parser for 

Semantic Parsing and Code Generation. Proceedings of the 2018 Conference on Empirical 

Methods in Natural Language Processing (System Demonstrations), pages 7-12. 

[23] Maxim Rabinovich, M. S. (2017). Abstract Syntax Networks for Code Generation and Semantic 

Parsing. Proceedings of the 55th Annual Meeting of the Association for Computational 

Linguistics, pages 1139–1149. 

[24] Ashish Vaswani, N. S. (2017). Attention is all you need. Advances in neural information 

processing systems, vol. 30. 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231222

239


