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Abstract. Pre-training allows autonomous learning of samples’ inherent semantics from 

unlabeled data in a large scale, and then obtains a task-independent general representation. 

Furthermore, the generalization of model encoding across different tasks can be improved. 

Inspired by early high-performance pre-trained models for a single modality of text or images, 

scholars began to explore image-text cross-modal pre-training methods, aiming to achieve the 

ability of understanding both visual information and textual semantics separately and achieve 

effective alignment between the two. This paper aims to summarize the development of 

image-text pre-training. Specifically, it summarizes the feature extraction and representation 

methods, pre-training tasks and extended downstream tasks used by various mainstream models. 

This paper also introduces and compares the mainstream models into two types of architectures: 

single-stream and dual-stream. Through the analysis, it can be concluded that the embedding 

representation determines the difficulty and performance of the subsequent fusion process, and 

the two kinds of architectures lead to different levels of fusion capabilities.  

Keywords: cross-modality pre-training, image-text, single-stream, dual-stream.  

1.  Introduction 

Pre-training process has attracted widespread attention due to its powerful generalization and efficient 

utilization of large-scale unlabeled data, and then the significant progress in the field of natural 

language processing (NLP) has further promoted the research of task-independent cross-modal 

pre-training. It is based on self-supervised learning and subsequently fine-tuned, making the model 

have a strong ability to adapt to different cross-modal downstream tasks. At present, the widely 

studied cross-modal pre-training model is the Vision-Language pre-training model (VLP), which 

makes use of the attention mechanism in the transformer architecture to learn the context relationship 

within single modality and the semantic correspondence between the two modalities by performing the 

designed pre-training tasks on large-scale unlabeled image-text pairs. Among them, the pre-processing 

and pre-training methods for text is relatively mature, and from various studies, it can be found that 

the research focus is on image feature representation and the fusion alignment of the two.  

Image-text pairs need to be processed by embedding before entering into the network for learning. 

Due to continuous representation and higher semantics, visual data should be processed by appropriate 

design and requires deeper networks, while discrete text is generally processed by existing mature 

methods. In the early stage, convolutional neural networks (CNNs) for classification tasks are used to 

perform global feature extraction [1]. After that, many models use local features extracted by object 

detectors, such as ViLBERT [2], LXMERT [3], UNITER [4], VL-BERT [5] and so on, and then some 
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models try to build a network based on Transformer to embed images like ViLT [6], MAE [7] and 

ALBEF [8]. With the improvement, their representation capabilities and cost have been improved. For 

learning, it builds association through designed tasks that utilize both text and images. Compared with 

training on target tasks with high-quality annotated datasets, it can learn closer semantic relationship 

between the sample pairs themselves, and the output will not be valid for a specific task. 

This paper introduces the research advance of cross-modal pre-training from feature extraction and 

representation methods (Section2), pre-training tasks (Section3), mainstream model architectures 

(Section4) and downstream tasks (Section5), the details on mainstream models are shown in Table 1, so 

that other researchers can quickly learn mainstream methods and corresponding motivations, research 

priorities and possible future research directions in this field. This paper also explores corresponding 

problems by comparing different models and methods, which enables possible targeted improvement in 

follow-up work. 

Table 1. The summary of mainstream image-text VLP models. 

Model Architectu

re 

Image Pre-Training 

Tasks 

Characteristics 

UNITER [4] Single RoI 
MLM, MRM, 

ITM, WRA 
conditional masking strategy 

VL-BERT 

[5] 
Single RoI 

MLM, MRC be universal to different input 

formats  

Pixel-BERT 

[9] 
Single 

Pixel(CN

N) 

MLM, ITM random pixel sampling 

mechanism 

InterBERT 

[10] 
Single RoI 

MSM, MRM, 

ITM-hn 

keep single-modal’s performance; 

all-attention 

ViLT [6] Single ViT 
MLM, ITM, 

WPA 
lightweight; full-word masking  

MAE [7] Single ViT 
MRFR-hard clever designs of masking and 

embedding 

ViLBERT 

[2] 
Dual RoI 

MLM, MRM, 

ITM 

set extra text transformers before 

fusion 

LXMERT 

[3] 
Dual RoI 

MLM, MRM, 

ITM, VQA 

set different depth layers for both 

modalities 

CLIP [11] Dual CNN/ViT 
ITM achieve zero-shot migration on 

retrieval 

ALBEF [8] Dual ViT 

MLM, ITM, 

ITM-hn 

the MoD improve learning on 

noisy data;  

use the contrast loss before 

interaction 

2.  Feature extraction and representation methods 

Cross-modal pre-training requires an extraction representation method that is effective for the two 

modalities and easy for later-stage integration as a joint input to Transformer. 

2.1.  Text feature extraction and representation 

Text processing is based on the same approach in NLP. It applies the WordPiece word segmentation 

method [12] based on probability and a sentence is then represented as a sequence of subwords w =
{w1, … , wT} with a special label [CLS]. Considering the disorder mechanism of self-attention layer, 

which is agnostic to the absolute position index and thus, the embedding that complements target 

position can break this limitation. Many methods project word wi and its absolute position i in the 

sentence into a corresponding vector, and then send it into the norm layer:  
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 ℎ𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑤�̂� + 𝑢�̂�)  (1) 

Some methods also introduce paragraph embedding, which effectively determines the source of 

elements. In addition to providing spatial information, position embedding is also very necessary for 

masked-target prediction tasks and some image question answering tasks. 

2.2.  Image feature extraction and representation 

Compared with discrete text, images are continuous with higher semantics, requiring more complex 

methods to extract features. Initially, models utilize CNNs of classification tasks to globally obtain a 

discretized grid representation [1]. With the introduction of “attention”, many methods use locally 

multi-target region of interest (RoI) features obtained by object detection models. The most commonly 

used detector is Faster R-CNN [13], which has bottom-up attention. For images, location information 

is also considered, and the final representation is represented in combination with RoI features and 

boundary coordinates as 𝑣𝑗，where layer normalization is applied to projected features before 

summing to balance the effects of different types of features: 

 fĵ = LayerNorm(WFfj + bF) 

  pĵ = LayerNorm(WPpj + bP) 

 vj = (fĵ + pĵ)/2 (2) 

Region-based feature extraction leads to some loss of visual semantics, such as specific behaviors of 

the target or the shape of the boundary, and the representation ability is limited to distinguishing given 

categories, where should have a wider range of semantics. To overcome this bias, Pixel-BERT [9] 

enhances the tightness of learning by pixel-level embedding and reduces the cost of bounding box 

labeling. Although the implementation also uses CNNs, it is different from the CNNs for classification 

tasks which directly extract global features, while the computation cost is similar. 

Inspired by Transformer in NLP, pre-training models based on Vision Transformer (ViT) [14] 

directly transform image patches into vectors as visual words. Similar to text, the position information is 

usually added. The advantage of this method is that the image results can be sent directly with text 

representation which has a similar discrete structure to a network for subsequent processing. 

In general, most cross-modal pre-training models take I = {[CLS], w1̂, … , wT̂, [SEP], v1̂, … , vk̂} as 

the input to the Transformer for subsequent fusion. 

3.  Pre-training tasks 

After obtaining inputs, the model also needs to learn semantics and alignment through proper pre 

-training tasks, and the task type and difficulty determine the generalization ability of the final model. 

3.1.  Cross-modal masked model prediction task 

For language, Masked Language Model (MLM) uses a similar setup with BERT [15]. The difference 

is that the model can predict the target through unmasked tokens combining image information, which 

not only effectively learns text representations, but also helps to establish an association from visual to 

text modality. It should be noted that the embedding operation is on text input with masks. Assuming 

that the image sequence is v = {v1, … , vk}, and the text sequence is w = {w1, … , wT}, the task goal is 

to learn by minimizing the negative log-likelihood function based on wm and all image regions v: 

 LMLM(θ) = −E(𝑤,𝑣)\𝑠𝑖𝑚𝐷logPθ(wm|wm, v). (3) 

Masked Region Model (MRM) is similar to MLM. However, it is more difficult to predict masked 

region only based on remaining known image areas, which may cause ambiguity, so it is more 

dependent on text. This task can establish an association from text to visual modality. Unlike discretized 

representation of text, visual features are high-dimensional and continuous, so learning cannot be 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/22/20231223

242



supervised by log-likelihood in MLM tasks, and another loss function is proposed here to guide 

optimization, and the function 𝑓 is different for the following three subtasks: 

 LMRM(θ) = E(w,v)\simDfθ(vm|vm, w).   (4) 

Masked Region Feature Regression (MRFR) is a pixel-level regression task. It applies a fully 

connected (FC) layer to convert transformer’s output into a vector hθ(vm)(i) with same dimension of 

the RoI pooling feature r(vm
(i)

), and then trains with L2 regression function: 

 𝑓θ(vm|vm, w) = ∑ ||hθ (vm
(i)) − r (vm

(i))||
2

2
M
i=1 . (5) 

Masked Region Classification (MRC) predicts the target’s class as a higher-dimensional task. It 

obtains the normalized distribution scores gθ(vm
(i)

) ∈ RK through FC and softmax function. Since there 

is no ground truth, the output of Faster R-CNN with the highest confidence score is used here as a hard 

label in the form of a one-hot vector c(vm
(i)

), then the network is trained by cross-entropy loss: 

 𝑓θ(𝑣𝑚|𝑣𝑚, 𝑤) = ∑ CE(𝑐(𝑣𝑚
(𝑖)) − 𝑔𝜃(𝑣𝑚

(𝑖)))𝑀
𝑖=1 .  (6) 

However, when there are no truly ground-truth labels available, it is inaccurate to select even the 

most likely one. To solve this problem, the improved task with KL divergence (MRC-kl) uses the 

detector’s probability distribution of the regional category ĉ(vm
(i)

) as a soft label: 

 𝑓𝜃(𝑣𝑚|𝑣𝑚, 𝑤) = ∑ 𝐷𝐾𝐿(�̂�(𝑣𝑚
(𝑖))) − 𝑔𝜃(𝑣𝑚

(𝑖)))𝑀
𝑖=1 . (7) 

3.2.  Image-text matching 

Unlike the masked-target prediction tasks, which regard the other modality as extra clues, Image-text 

Matching (ITM) directly establishes the overall alignment of the two modality samples. It creates 

negative samples by randomly replacing the image or text in the original pairs, and then trains a 

classifier to predict whether the sample pairs are homologous as a binary classification problem. It 

uses [CLS] to calculate the matching score sθ(w, v) through the FC layer and sigmoid function. This 

task converges fast, so it has been widely used. Besides, since [CLS] always represents a cross-modal 

union in most downstream tasks, the way of score calculation can alleviate the mismatch between 

pre-training and downstream tasks. During the training process, binary cross-entropy loss is used with 

an equal amount of positive and negative samples to avoid bias caused by sample imbalance: 

  𝐿𝐼𝐿𝑀(θ) = −E(w,v)\simD[ylogsθ(w, v) + (1 − y)log(1 − sθ(w, v))]. (8) 

Word-Region Alignment (WRA) is first proposed by UNITER [4]. ViT-based models also design a 

similar word-patch matching (WPA). It is distinguished from ITM which aligns globally, encouraging 

fine-grained local alignment. WRA optimizes the relationship by learning the transport matrix T with 

the goal of minimizing the cost of transmitting the distribution of one modality to another, which makes 

the alignment robust. Since it is difficult to directly solve the minimization of T, the IPOT algorithm [16] 

is used for estimation. Then the OT distance is used as the loss to update the parameter:   

 𝐿𝑊𝑅𝐴(θ) = Dot(μ, v) = min
T∈Π(a,b)

∑ ∑ 𝑇𝑖𝑗 · 𝑐(𝑤𝑖, 𝑣𝑗)K
j=1

T
i=1 ,  (9) 

where Π(a, b) = {T ∈ R+
T×K|𝑇1𝑚 = 𝑎, 𝑇⊤1𝑛 = 𝑏}，𝑐 is the cosine similarity to assess the cost. 

Besides, InterBERT [10] innovatively proposes two harder versions of MLM and ITM: Masked 

Group Prediction (MGM) and ITM on hard negative samples (ITM-hn). MGM consists of original 

MRM and Masked Segment Prediction Model (MSM), which masks not tokens but continuous 

fragments of text. It can encourage the model to learn semantic interaction. The core of ITM-hn is the 

construction of negative samples. It is not based on random replacing that is easy to distinguish for 
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models, but filters out sentences that overlap more words with different semantics. This task requires the 

model to establish stronger semantic connections, so as to improve the matching ability. 

3.3.  Image-text contrast learning 

This task is similar to matching tasks with broader options, requiring models to predict truly matched 

N  positive sample pairs from a larger N × N  sample combination. The two modalities are 

represented by label [CLSV] and label [CLSW], and then the similarity is calculated by the dot 

product operation. The model uses the cross-entropy loss of the two normalized similarities to guide 

the learning process: 

𝐿𝑉𝐿𝐶 =
1

2
E(I,T)∼D[CE(yv2w, pv2w(I)) + CE(yw2v, pw2v(T))],   (10) 

p(·) is similarity, yv2w and 𝑦𝑤2𝑣 are labels based on image-to-text and text-to-image retrieval.  

4.  Model architecture 

4.1.  Single-stream models 

The single-stream models refer to a unified transformer architecture, which can learn the context 

information of one modality and the connection between the two with the attention mechanism. Single 

-stream models are more efficient because the sharing settings of parameters for both modalities. 

UNITER [4] is one early study of the general cross-modal models, which breaks the barrier of 

task-specific. Unlike previous models like ViLBERT [2] and VL-BERT [5] applying a joint random 

mask of the two modalities, UNITER proposes a conditional masking strategy, which limits only one 

modality data to be randomly masked at a time, and then predicts under the complete observation of 

another modality to avoid weak connections caused by the simultaneous absence of important regions. 

Given VQA’s input is <Question, Answer, Image>, while VC’s input is <Caption, Image>, 

VL-BERT [5] solves the input format problem of different cross-modal tasks by designing 

representation, a sum of four embeddings with special settings for images. [𝐼𝑀𝐺] is used as a token part, 

and paragraph embedding sets three flags to distinguish elements. For visual features, non-RoI regions 

are also considered with the use of global features of that area. Finally, position embedding is set the 

same since any permutation of the input sequence should achieve the same result. VL-BERT is also 

pre-trained on text corpus to improve the model’s generalization on long and difficult sentences. 

Pixel-BERT [9] achieves the highest fine-grained alignment learning, establishing a thorough 

connection between images and text pixel by pixel to learn richer visual semantics. Inspired by Dropout 

[17], Pixel-BERT proposes a random pixel sampling mechanism, which only randomly passes some of 

the pixel samples to the cross-modal layer during training to make up for the difficulty of predicting 

pixel-level features as well as reducing operation cost. More importantly, it allows the model to learn 

semantics through incomplete input and thus alleviates the overfitting problem.  

InterBERT [10] ensures stability on both cross-modal and single-modal tasks. The two high-level 

representations generated by independent modules can further form a joint one by feed-forward 

networks. Given ideal attention should focus on the overall situation, it proposes all-attention instead of 

co-attention which only notices the other. The same embedding space facilitates attention on broader 

cross-modal context meanwhile, realizing the combination of self-attention and co-attention. 

ViLT [6] achieves lightweight image embedding based on ViT instead of CNNs, using Transformer 

to encode both rather than different modules to process them separately. Compared with Pixel-BERT, 

ViLT breaks the limitation of regionalized semantic representation alike while greatly reducing 

computational cost. Besides, it proposes a full-word masking setting just like the conditional strategy, 

reducing the dependence of unmasked subwords in order to make full use of visual information. On this 

basis, MAE [7] requires only one percent of the unlabeled data to achieve the same effect. The core idea 

is to randomly mask most image regions rather than the 15% regular setting. Similar to the full-word 

masking idea for text of ViLT, large-scale masking of image patches can also enhance the use of text 

information. In particular, MAE only encodes the visible area, combines visual embeddings with the 
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text features of the masked area together, and finally forms a long vector sequence according to absolute 

position to represent the entire image, which greatly reduces the amount of computation. 

Unlike models that strive to improve versatility, Uni-Perceiver-MoE [18] aims to solve the 

performance degradation on specific tasks due to universal learning. It introduces conditional multi 

-expert models to adjust the shared parameters according to inputs, and solves the inconsistent 

optimization direction of different tasks and modalities. To measure interference, the change of task 𝑖’s 

loss before and after task 𝑗 guiding the optimization of a shared parameter 𝜃 is calculated: 

 Δ𝑗𝐿𝑖(𝑥𝑖) ≐ 𝐸𝑥𝑗
(𝐿𝑖(𝑥𝑖; 𝜃) −  𝐿𝑖(𝑥𝑖; 𝜃 − 𝜆

∇𝜃𝐿𝑗(𝑥𝑗)

||∇𝜃𝐿𝑗(𝑥𝑗)||
))  ≈ λ𝐸𝑥𝑗

(
∇θ𝐿𝑗(𝑥𝑗)

|∇θ𝐿𝑗(𝑥𝑗)|

𝑇

∇θ𝐿𝑖(𝑥𝑖)).  (11) 

Further, the interference of task 𝑗 on task 𝑖 can be quantified as: 

  𝐼𝑖,𝑗 = 𝐸𝑥𝑖
(
ΔjLi(xi)

ΔiLi(xi)
). (12) 

4.2.  Dual-stream models 

Dual-stream models learn intra-modal feature representation through two independent transformers 

without shared parameters, and then use a co-attention mechanism to achieve cross-modal interaction. 

For ViLBERT [2], text is processed additionally before fusion, in view of visual features are already 

extracted high-level features, while words need to be aggregated to express semantics, which is in line 

with our instincts. By stacking multiple cross-modal and single-modal layers, learning within and 

between modalities are continuously optimized. The main difference between LXMERT [3] and 

ViLBERT is that LXMERT has set different depth layers for both modalities for intra-modal learning. 

As one of the most popular models, CLIP [11] use a large amount of raw data to train from scratch. 

Since text has more semantic possibilities, learning from the text associated with images is a good idea. 

Experiments show that CLIP’s zero-shot migration effect on retrieval can even exceeds traditional 

supervised models, while this excellent performance does not guarantee the same effect on other tasks. 

As noises in datasets usually cause overfitting which reduces generality, ALBEF [8] proposes 

momentum distillation (MoD) to generate pseudo-targets with similar semantics as additional 

supervision, so that the target options are more flexible. For alignment, ALBEF also applies the contrast 

loss in CLIP before interaction. On the one hand, it can improve the understanding of single modality. 

On the other hand, it can align ahead of time, which is convenient for further integration. 

5.  Downstream tasks 

Pre-training models need to be migrated to new downstream tasks with little fine-tuning to preserve 

the pre-trained generalization. Some models directly select downstream tasks as pre-training tasks to 

learn representation capabilities that are closer to practical applications. Visual question answering 

(VQA), which requires models to select the correct answer from the answer bank, is a basic 

classification task. Compared with VQA, visual common sense reasoning (VCR) [19] not only selects 

the answer, but also needs to indicate the reason for choosing the answer through semantic reasoning. 

Natural language visual reasoning (NLVR) [20] is a broader task of VCR, which processes long 

difficult text sequences covering various linguistic phenomena, which is much closer to the real world. 

In addition to multiple-choice question answering, there are also tasks of retrievial. Image-text 

retrieval consists of two subtasks: image-retrieval-text (TR) and text-retrieval-image (IR). CLIP is the 

best for the tasks because the consistent objective with contrast learning. For more difficult text tasks 

than matching, the model needs to generate text sentences with appropriate semantics and syntax for a 

given visual sample. Adding explanatory captions requires not only a wealth of linguistic knowledge, 

but also an accurate and consistent understanding of the scenes, entities, and interactions that appear in 

visual inputs. The common difficulty of the above tasks is that the similarity and alignment 

relationship between different modal feature spaces of complex samples cannot be directly measured. 
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6.  Conclusion 

This paper mainly summarizes image-text cross-modal pre-training and some meaningful ideas. It has 

been found that the current field focuses on image embedding and fusion alignment methods. For 

image features, the current performance is better with fine-grained pixel-level embedding, or directly 

using linear projection without CNNs, where the semantic representation is stronger and discretization 

is easy to align with discrete text features. For fusion, dual-stream interaction is generally shallow with 

insufficient fusion, but the exchange of space for time is suitable for timeliness retrieval tasks based on 

similarity. While single-stream models learn in the co-embedding space, building deeper semantic 

relationships. Models use self-attention to learn single-modal semantics, co-attention for cross-modal 

alignment, and all-attention to further breaks the limitation of only focusing on the other modality. 

Some models usually enhance intra-modal learning through self-attention layers after interaction. 

In the future, image-text pre-trainings will be extended to video-audio tasks with a wider range of 

scenarios. For more diverse needs, how to design effective pre-training tasks is worth thinking about. 

It is also challenging to grasp essential semantic information from the added elements such as special 

effects. Besides, current methods have realized fine-grained token-region alignment, while achieving 

effective alignment between words with semantics and objects in images still needs further research. 
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