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Abstract. With the continuous development of stochastic gradient descent algorithms, many 

efficient momentum algorithms have appeared. Stochastic gradient descent(SGD) is one of the 

classic algorithms in optimization. Its accelerated version, the SGD algorithm with momentum 

strategy, has been a hot research topic in recent years. Therefore, this paper will analyze and 

summarize these series of algorithms, starting with the classical momentum algorithm, and 

introduce some improved versions of the momentum algorithm. Numerical experiments on real 

problems will also be done to evaluate the performance of these algorithms. It is proved that the 

addition of momentum and adaptive learning rate effectively improve the performance of these 

algorithms. In future research, some cutting-edge momentum algorithms and other basic network 

should be analyzed. 
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1.  Introduction 

Gradient descent is widely used in machine learning, such as minimizing loss functions and determining 

the optimal value of model parameters, etc. However, with the advent of the big data era, some 

shortcomings, such as low computing efficiency and incompatibility with the computing power of 

hardware have gradually appeared. Large-scale datasets bring challenges to the iteration speed and 

computing power of GD. In 1951, the stochastic approximation[1] proposed by Robbins and Monro 

gave an idea for estimating the gradient from part of the training samples. Estimating the gradient on 

minibatch datasets greatly reduces the computational cost of the algorithm. Thus, the stochastic gradient 

descent method (SGD) was born.  

Compared with GD, SGD has the advantages of simple calculation and a fast convergence rate. 

Despite the fact that the mini-batch gradient estimation has noise, the step length needs to decrease with 

the increase of iteration times to ensure the convergence of the algorithm. This will impact the 

convergence speed. Therefore, a series of acceleration algorithms, such as the momentum algorithm and 

the Nesterov algorithm came into being. Besides, since the performance of SGD is also affected by the 

ill-conditioned Hessian matrix of the cost function, the iterative results fluctuate greatly, which is not 

conducive to getting the optimal value of parameters. Because of these issues, the addition of momentum 

can effectively avoid the influence of the ill-conditioned Hessian matrix and variance caused by 

stochastic gradient estimation on the descent speed and efficiency [2]. 

In recent years, research on stochastic gradient descent algorithms has become a popular direction in 

machine learning. Many scholars have improved the original algorithms, promoted convergence, and 

increased the application scenarios of the algorithms. In terms of algorithm evaluation and comparison, 
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Shi, Wang, Shang and Zhang[3] summarized and compared various stochastic gradient descent 

algorithms, but there are still large gaps in related review articles. There are even no scholars that have 

conducted a comprehensive evaluation and analysis of the momentum algorithms’ development in the 

last few years. This paper is based on the above background. The rest of the paper is organized as 

follows: the second part will introduce some fundamental knowledge; the third part will introduce two 

traditional stochastic gradient descent algorithms using momentum strategies; the main content of the 

fourth part is the adaptive learning rate algorithms with momentum; the fifth part will evaluate the 

performance of these algorithms with experiments on classical problems; the last part will summarize 

and prospect the content of the paper. This paper summarizes the current research results in this field. It 

provides help for the selection of optimization algorithms for machine learning problems and for future 

research of momentum algorithms. 

2.  Problem Description and SGD Algorithm 

In machine learning problems, the value of the cost function 𝐽(𝑤) is always need to be minimized, 

where 𝑤 is the parameters that need to be optimized. During the training period, the cost function is 

represented by the expectation of the loss function 𝐿 on training set: 

𝐽(𝒘) =
1

𝑁
∑ 𝐿(𝑓(𝒙𝒊; 𝒘), 𝑦𝑖)

𝑁

𝑖=1

, (1) 

𝑖 = 1, … , 𝑁, 𝒙𝒊 ∈ ℝ𝑛, 𝑦𝑖 ∈ 𝑅, 𝒘 ∈ ℝ𝑑 

In E.q. (1), 𝑁 is the total number of samples in training set, and 𝑥𝑖 denotes the input. 𝑦𝑖 , 𝑓(𝑥𝑖 ; 𝑤) are the real 

output and the predicted output respectively. 

SGD (Stochastic gradient descent) is a widely used optimization algorithm in machine learning. It 

uses the small batches {𝑥(1), … , 𝑥(𝑚)} that are randomly selected on training set to estimate the real 

gradient of 𝐽(𝑤) on training set. Therefore, the descent direction E.q. (2) and the 𝑘 th parameter 

updating function E.q. (3) can be given: 

𝒈 =
1

𝑚
∑ ∇𝒘𝐿(𝑓(𝒙𝒊; 𝒘), 𝑦𝑖)

𝑁

𝑖=1

(2) 

𝒘𝑘 ← 𝒘𝑘−1 − 𝜖𝑘𝒈𝑘 (3) 

In E.q. (3), 𝑔𝑘  is the gradient estimation calculated by E.q. (2), and 𝜖𝑘 ∈ ℝ+ is the learning rate of the 𝑘th 

iteration. 

3.  Momentum Algorithms 

3.1.  CM (Classical Momentum) 

The Classical momentum(CM or HB, heavy ball) algorithm[4] was first proposed by Polyak in 1962. It 

adds the impact of the previous gradient in the descent direction of SGD. Its gradient estimation is the 

same as SGD, which is E.q. (2). If 𝑣 denotes the velocity, i.e., the variation of parameters, the iterative 

formula of 𝑣 is: 

𝒗𝑘 = 𝛼𝒗𝑘−1 − 𝜖𝒈𝑘 , (4) 

where 𝛼 ∈ [0,1]，𝜖 ∈ ℝ+are the hyper-parameters. Their values generally change as the number of 

iterations increases. In addition, the effect of the previous gradient  𝑔1, … 𝑔𝑘 on 𝑣 is decreasing during 

the iteration. With the definition of 𝑣, the 𝑘th parameter updating function is shown: 

𝒘𝑘 ← 𝒘𝑘−1 + 𝒗𝑘 (5) 
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While proposing the CM algorithm, Polyak also pointed out that the method can accelerate convergence 

to local minimum values[2]. For large-scale data sets, its number of iterations required for convergence 

is significantly reduced compared with SGD. 

3.2.  Nesterov’s Accelerated Gradient 

Proposed by Nesterov in 1983, the NAG(Nesterov’s accelerated gradient) algorithm[5] is similar to CM. 

While calculating the gradient, NAG considers the impact of present velocity 𝑣 . During the 𝑘 th 

iteration, NAG temporarily updates 𝑤 by present velocity 𝑣𝑘 at first, using the updated parameters to 

calculate current gradient: 

�̃� ← 𝒘𝑘 + 𝛼𝒗𝒌  

𝒈𝑘 =
1

𝑚
∑ ∇�̃�𝐿(𝑓(𝒙𝒊; �̃�), 𝑦𝑖)

𝑁

𝑖=1

 

Then NAG uses the same method E.q. (4) and E.q. (5) as CM to update 𝑤. 

By analyzing the iterative steps, the author find that NAG introduces the effect of the previous 

gradient when calculates the current gradient. This makes the algorithm more accurate in estimating the 

value of the cost function 𝐽(𝑤), and gets the local minimum point effectively. When the function is 

smooth, the global rate of convergence is able to achieve 𝑂(
1

𝑘2), which is faster than SGD. 

4.  Adaptive momentum algorithms 

The value of the learning rate has a great impact on the convergence of the algorithm. Therefore, the 

adaptive algorithm emerges. It adapts the learning rate from model parameters and monitors different 

situations in the running process of the algorithm in real time. In this section, some adaptive momentum 

algorithms will be introduced, including Adam and AMSGrad. 

4.1.  Adam 

Adam is a kind of adaptive momentum algorithm. It calculates first-order and second-order moment 

estimations and corrects them through a correction term. Among these estimations, first-order moment 

estimation is used to get the descent direction and reduce large fluctuations during the updating process. 

Second-order moment estimation calculates the learning rate of different situations.  

During the 𝑘th iteration, Adam uses E.q. (2) to compute the gradient 𝑔𝑘 of current position. Then 

Adam calculates biased first-order estimation s and second-order moment estimation 𝑟 through this 

gradient: 

𝒔𝑘 = 𝜌1𝒔𝑘−1 + (1 − 𝜌1)𝒈𝑘 = (1 − 𝜌1)(𝒈𝑘 + ⋯ + 𝜌1
𝑘−1𝒈1), (6a) 

𝒓𝑘 = 𝜌2𝒓𝑘−1 + (1 − 𝜌2)𝒈𝑘 ⊙ 𝒈𝑘

= (1 − 𝜌2)(𝒈𝑘 ⊙ 𝒈𝑘 + ⋯ + 𝜌2
𝑘−1𝒈𝑘 ⊙ 𝒈𝑘), (6b)

 

where ⊙ represents the Hadamard product, and it has 𝑔𝑘 ⊙ 𝑔𝑘 ∈ ℝ𝑑. Then these biased estimations 

are amended: 

�̃�𝑘 =
𝒔𝑘

1 − 𝜌1
𝑘  

�̃�𝑘 =
𝒓𝑘

1 − 𝜌2
𝑘  

From the above formulas, the update number of parameters ∆𝑤𝑘  and update parameters can be 

obtained: 
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∆𝒘𝑘 = −𝜖
�̃�𝑘

√�̃�𝑘 + 𝛿
(7) 

𝒘𝑘 ← 𝒘𝑘−1 + ∆𝒘𝑘  

Due to the fact that 𝛿 is a scalar quantity, the computational process of ∆𝑤𝑘  is performing the E.q.(7) 

to every 1-D element in ∆𝑤𝑘. 

In this iteration process, the initial value of 𝑠 and 𝑟 are both 0. At the same time, the initial value 

𝑤0 of the parameters w must be given. Moreover, the learning rate 𝜖, the parameters in estimation 

𝜌1，𝜌2 and 𝛿 are the hyper-parameters, too. Through analyzing the formulas E.q. (6a) and E.q. (6b), 

it can be found that the parameters 𝜌1 and 𝜌2 actually control the disintegration rate of the moment 

estimates in the first 𝑘 − 1 iterations as 𝑘 increases. Further, because the information of 𝑠 in the first 

𝑘 − 1 iterations retain in 𝑠𝑘, Adam can be regarded as an adaptive momentum algorithm. Its iteration 

process has the same principle as CM, like E.q. (4). Some proofs also confirm the efficiency of Adam. 

Its individual convergence rate is similar to CM in the worst case, while it has the lower bound of 

convergence rate[6]. 

4.2. AMSGrad 

Compared with momentum algorithms, Adam performs better in calculating the descent direction and 

automatically updating the learning rate, which is widely used in various non-convex optimization 

problems. However, the convergence proof of Adam[7] is flawed since it is proved that Adam does not 

even convergent when dealing with 1-D convex functions in 2018[8]. Therefore, the improved version 

of Adam, AMSGrad, was proposed.  

The updating formula of AMSGrad is: 

𝒔𝑘 = 𝜌1𝒔𝑘−1 + (1 − 𝜌1)𝒈𝑘  

𝒓𝑘 = 𝜌2𝒓𝑘−1 + (1 − 𝜌2)𝒈𝑘 ⊙ 𝒈𝑘  

where 𝑔𝑘 is the gradient calculated by E.q. (2) of the 𝑘th iteration. Then AMSGrad modifies 𝑟𝑘 as 

follows: 

�̃�𝑘 = max(𝒓𝑘, �̃�𝑘−1) (8) 

Let 𝑅𝑘 = 𝑑𝑖𝑎𝑔(�̃�𝑘), and this paper supposes Ϝ is the space that parameter 𝑤 exists. The temporary 

update of 𝑤 is: 

�̃�𝑘+1 = 𝒘𝑘 − 𝛼𝑘

𝒔𝑘

√𝒓𝑘
 

In the space Ϝ of parameter, the updating formula of 𝑤 is: 

𝒘𝑘+1 ← 𝑚𝑖𝑛𝒘∈Ϝ,   √𝑅𝑘 ‖𝒘 − �̃�𝑘+1‖  

To explain the corrections made by AMSGrad, the original paper[8] establishes a framework of adaptive 

momentum algorithms first. During the 𝑘 th iteration, the algorithm calculates the gradient 𝑔𝑘  of 

current position, and uses the following format to update parameter 𝑤： 

𝒔𝑘 = 𝒇𝑘(𝒈1, … , 𝒈𝑘)  

𝒓𝑘 = 𝒉𝑘(𝒈1, … , 𝒈𝑘)  
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where Ϝ is the space of parameters, 𝑓𝑘: Ϝ𝑘 → ℝ𝑑，𝑑𝑘: Ϝ𝑘 → ℝ𝑑+ . Using these two parameters to 

temporarily update 𝑤: 

�̃�𝑘+1 = 𝒘𝑘 − 𝛼𝑘

𝒔𝑘

√𝒓𝑘
 

Finally, 𝑤 is updated by �̃�𝑘+1: 

𝒘𝑘+1 ← 𝑚𝑖𝑛𝒘∈Ϝ,   √𝒓𝑘 ‖𝒘 − �̃�𝑘+1‖  

Through the framework, it can be found that the Adam actually sets 𝑓𝑘, ℎ𝑘 as follows and lets 𝛼𝑘 ≡
𝛼： 

𝒇𝑘 = (1 − 𝜌1)(𝒈𝑘 + ⋯ + 𝜌1
𝑘−1𝒈1)  

𝒉𝑘 = (1 − 𝜌2)(𝒈𝑘 ⊙ 𝒈𝑘 + ⋯ + 𝜌2
𝑘−1𝒈𝑘 ⊙ 𝒈𝑘)  

To compare the correctness of AMSGrad, Γ is assumed as the evaluation quantity of the reciprocal 

change of the step length, judging the stability of the algorithm in the later learning iterations. Γ has the 

format: 

Γ𝑘+1 = ∆
√𝒓𝑘

𝛼𝑘

=
√𝒓𝑘+1

𝛼𝑘+1

−
√𝒓𝑘

𝛼𝑘

 

During the descent of Adam, Γ sometimes will be positive and other times will be negative. This 

violates the requirement in the proof of Adam’s convergence that Γ must maintain the property of 

semipositive definite. Therefore, AMSGrad adds the amendment E.q.(8) in the second-order moment 

estimation calculated by Adam, ensuring the non-negativity of Γ . Theoretically, the AMSGrad 

algorithm makes up for the shortcomings of Adam. However, further convergence proof and numerical 

experiments are needed to prove this result. 

5.  Numerical Experiments 

In this section, the above momentum algorithms will be used to optimize some real problems in machine 

learning. Through analyzing the results, the efficiency of these algorithms can be compared. 

5.1.  Experiments for Momentum Algorithms 

To validate the efficiency and availability of the momentum algorithms, these 3 algorithms are applied 

to the fundamental machine learning problems: logistic regression, ridge regression, and LASSO. The 

format of the problems is as follows: 

Logistic regression: min
𝑥

1

𝑁
∑ log(1 + exp(−𝑦𝑖𝑥𝑖

𝑇𝒘)) + 𝜆‖𝒘‖2
2𝑁

𝑖=1  

Ridge regression: min
𝑥

1

2𝑁
∑ (𝑥𝑖

𝑇𝒘 − 𝑦𝑖)2 + 𝜆‖𝒘‖2
2𝑁

𝑖=1  

LASSO: min
𝑥

1

2𝑁
∑ (𝑥𝑖

𝑇𝒘 − 𝑦𝑖)2 + 𝜆‖𝒘‖1
𝑁
𝑖=1  

where (𝑥𝑖, 𝑦𝑖) is the data that need to be classified, i.e., 𝑥𝑖 is the characteristics and 𝑦𝑖 is the label of 

data point. 𝑁 is the number of points in the whole dataset. 𝜆 is the regularization coefficient to prevent 

overfitting, which depends on the specific problem. Four datasets are chosen based on each problem. 

All of them are from the UCI Machine Learning Repository [9], and the details are shown in the 

following table: 
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Table 1. The details of datasets. 

Data set 
Data points 
(𝑁) 

Features 
Model of 
problem 

The value of 
𝜆 

a9a 16281 122 
Logistic 
regression 

1 × 10−2 

Breast 
cancer 

683 10 
Logistic 
regression 

1 × 10−3 

Ionosphere 351 34 LASSO 1 × 10−5 

Heart 270 13 
Ridge 
regression 

1 × 10−5 

 

 
(a) 

 
(b) 
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MATLAB and C language is used for mixed programming in section 5.1. Grid search is applied to 

obtain the most suitable learning rate for each momentum algorithm. The initial values of parameter 𝑤 

are set to 0, and the batch size 𝑚 is set to 10. The results are shown in figure 1. 

Through analyzing the results, the author finds that the efficiency of SGD is worse than CM and 

Nesterov when dealing with logistic regression problems, especially on the a9a dataset. The convergence 

rate of CM and Nesterov is similar, and Nesterov is slightly faster than CM on the a9a dataset. However, 

when dealing with ridge regression and LASSO problems, the convergence rate of these 3 algorithms is 

almost the same. SGD even reduces more function value in the first epoch. This slight difference may 

be caused by the small scale of the dataset. Moreover, it can be concluded that CM and Nesterov perform 

better than SGD in the big dataset. The addition of momentum makes them converge faster and 

approximate the optimal point with fewer iterations. 

 
(c) 

 
(d) 

Figure 1. Performance analysis of momentum algorithms. 
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4.3. Experiments for Adaptive Momentum Algorithms 

The adaptive momentum algorithms are applied to the optimization part of the loss function in 

mainstream neural networks, analyzing the performance of each algorithm. To compare the 

modifications made by adaptive momentum algorithms, momentum algorithms are also added to the 

optimizers. 

This paper compares the efficiency of algorithms in the VGG19 neural network model. VGG 19 is a 

deep convolutional neural network that contains 16 convolution layers and 3 fully connected layers. It 

uses smaller convolution layers to guarantee the depth of the network and get better performance. In the 

experiment, VGG19 is used to classify the CIFAR-100 dataset, which contains 60000 pictures that can 

be sorted into 20 major categories and 100 subcategories. In each subcategory, 50 pictures are randomly 

chosen as the training set. The size of each image is 32 × 32 × 3. Some data augmentation techniques 

are also applied in the training process to improve the robustness of the whole network. 

In this section, the experiment is programmed in Python 3.9 and based on the NVIDIA RTX 2080 

Ti. When training the network, the cross-entropy loss is used as the loss function, and the batch size m 

is set to 128. In addition, the value of learning rate depends on specific optimizers. The experimental 

results of the training phase are shown in the following picture. 

Figure2(a) shows the change of loss function values during the iterations, and Figure2(b) shows the 

time cost of training in each epoch. It can be found that the network that uses SGD has the biggest loss, 

and the loss function also has the slowest rate of descent. This shows that the addition of momentum 

accelerates the convergence of iterations to a certain extent. In addition, the curves of CM and Nesterov 

and the curves of Adam and AMSGrad are almost the same, which means that both algorithms have an 

almost similar convergence rate in this case. In this experiment, the corrections made by AMSGrad are 

minimal in promoting the algorithm’s efficiency. Furthermore, the decline of loss function value is 

relatively gentle for momentum algorithms, whereas the rate of decline is fast in the first 10 epochs and 

then flattens out for adaptive momentum algorithms. The latter is also more efficient than the former, 

meaning that the addition of the moment estimation idea effectively improves the performance of the 

algorithm. Therefore, the adaptive algorithms have better performance than general momentum 

algorithms. Comparing the training time, the single-epoch training time of these algorithms is mainly 

concentrated within 50s-60s. The time cost of Adam fluctuates greatly, which may also be caused by 

the chance of an experiment. From this result, AMSGrad has made some improvements to the instability 

of Adam. SGD also has less training time for each epoch compared to adaptive algorithms. This situation 

shows that the addition of moment estimation increases the computational complexity at the same time. 

For future research, since the stochastic gradient descent algorithms only use the information in the 

first-order gradient, some second-order approximation methods can be added, such as the Newton 

method and quasi-Newton method, to calculate the cost function and improve the processing speed. In 

addition, for some functions with poor properties, such as non-smooth and non-convex functions, the 

iteration will be affected by the saddle points when using these algorithms. The application of these 

kinds of functions is also a worthwhile direction for future research. In terms of adaptive momentum 

algorithms, the convergence proof of Adam and AMSGrad still needs to be improved. At present, some 

scholars believe that the AMSGrad algorithm only performs well on some datasets, but does not solve 

the shortcomings of Adam[10]. Some other revised versions of Adam, such as AdamW[11], 

NAdam[12], etc., have also been proposed, but the performance of these algorithms has not been fully 

Proceedings of  the 4th International  Conference on Computing and Data Science (CONF-CDS 2022) 
DOI:  10.54254/2755-2721/2/20220622 

958 



verified. There is no authoritative mathematical proof of their convergence, which is also one of the key 

points worthy of attention. 

6.  Conclusion 

This paper starts with CM and the Nesterov algorithm, then introduce two adaptive momentum 

algorithms: Adam and AMSGrad. These adaptive algorithms can automatically calculate the learning 

rate according to the current point position and the iteration times, which avoids the oscillation caused 

by the improper value of step length. This enables the algorithm to efficiently converge to the minimum 

point and obtains the optimal value for the parameters. Numerical experiments have proved that the 

 
(a) 

 
(b) 

Figure 2. Performance analysis of algorithms on neural network. 
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addition of momentum and adaptive learning rate effectively improve the efficiency of iteration. Due to 

the fast update speed of related algorithms, this paper dose not consider some cutting-edge algorithms. 

Moreover, the experiment does not add some popular neural network frameworks. In future research, 

these new momentum algorithms and basic network should be analyzed. 
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