
Research on SGD Algorithm Using Momentum Strategy

Liqi Xue

College of Science, Shanghai University, Shanghai, China, 200444

xuelq_vikki@shu.edu.cn

Abstract. With the continuous development of stochastic gradient descent algorithms, many

efficient momentum algorithms have appeared. Stochastic gradient descent(SGD) is one of the

classic algorithms in optimization. Its accelerated version, the SGD algorithm with momentum

strategy, has been a hot research topic in recent years. Therefore, this paper will analyze and

summarize these series of algorithms, starting with the classical momentum algorithm, and

introduce some improved versions of the momentum algorithm. Numerical experiments on real

problems will also be done to evaluate the performance of these algorithms. It is proved that the

addition of momentum and adaptive learning rate effectively improve the performance of these

algorithms. In future research, some cutting-edge momentum algorithms and other basic network

should be analyzed.

Keywords: momentum algorithms, stochastic gradient descent, sgd, machine learning.

1. Introduction

Gradient descent is widely used in machine learning, such as minimizing loss functions and determining

the optimal value of model parameters, etc. However, with the advent of the big data era, some

shortcomings, such as low computing efficiency and incompatibility with the computing power of

hardware have gradually appeared. Large-scale datasets bring challenges to the iteration speed and

computing power of GD. In 1951, the stochastic approximation[1] proposed by Robbins and Monro

gave an idea for estimating the gradient from part of the training samples. Estimating the gradient on

minibatch datasets greatly reduces the computational cost of the algorithm. Thus, the stochastic gradient

descent method (SGD) was born.

Compared with GD, SGD has the advantages of simple calculation and a fast convergence rate.

Despite the fact that the mini-batch gradient estimation has noise, the step length needs to decrease with

the increase of iteration times to ensure the convergence of the algorithm. This will impact the

convergence speed. Therefore, a series of acceleration algorithms, such as the momentum algorithm and

the Nesterov algorithm came into being. Besides, since the performance of SGD is also affected by the

ill-conditioned Hessian matrix of the cost function, the iterative results fluctuate greatly, which is not

conducive to getting the optimal value of parameters. Because of these issues, the addition of momentum

can effectively avoid the influence of the ill-conditioned Hessian matrix and variance caused by

stochastic gradient estimation on the descent speed and efficiency [2].

In recent years, research on stochastic gradient descent algorithms has become a popular direction in

machine learning. Many scholars have improved the original algorithms, promoted convergence, and

increased the application scenarios of the algorithms. In terms of algorithm evaluation and comparison,

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

951

Shi, Wang, Shang and Zhang[3] summarized and compared various stochastic gradient descent

algorithms, but there are still large gaps in related review articles. There are even no scholars that have

conducted a comprehensive evaluation and analysis of the momentum algorithms’ development in the

last few years. This paper is based on the above background. The rest of the paper is organized as

follows: the second part will introduce some fundamental knowledge; the third part will introduce two

traditional stochastic gradient descent algorithms using momentum strategies; the main content of the

fourth part is the adaptive learning rate algorithms with momentum; the fifth part will evaluate the

performance of these algorithms with experiments on classical problems; the last part will summarize

and prospect the content of the paper. This paper summarizes the current research results in this field. It

provides help for the selection of optimization algorithms for machine learning problems and for future

research of momentum algorithms.

2. Problem Description and SGD Algorithm

In machine learning problems, the value of the cost function 𝐽(𝑤) is always need to be minimized,

where 𝑤 is the parameters that need to be optimized. During the training period, the cost function is

represented by the expectation of the loss function 𝐿 on training set:

𝐽(𝒘) =
1

𝑁
∑ 𝐿(𝑓(𝒙𝒊; 𝒘), 𝑦𝑖)

𝑁

𝑖=1

, (1)

𝑖 = 1, … , 𝑁, 𝒙𝒊 ∈ ℝ𝑛, 𝑦𝑖 ∈ 𝑅, 𝒘 ∈ ℝ𝑑

In E.q. (1), 𝑁 is the total number of samples in training set, and 𝑥𝑖 denotes the input. 𝑦𝑖 , 𝑓(𝑥𝑖 ; 𝑤) are the real

output and the predicted output respectively.

SGD (Stochastic gradient descent) is a widely used optimization algorithm in machine learning. It

uses the small batches {𝑥(1), … , 𝑥(𝑚)} that are randomly selected on training set to estimate the real

gradient of 𝐽(𝑤) on training set. Therefore, the descent direction E.q. (2) and the 𝑘 th parameter

updating function E.q. (3) can be given:

𝒈 =
1

𝑚
∑ ∇𝒘𝐿(𝑓(𝒙𝒊; 𝒘), 𝑦𝑖)

𝑁

𝑖=1

(2)

𝒘𝑘 ← 𝒘𝑘−1 − 𝜖𝑘𝒈𝑘 (3)

In E.q. (3), 𝑔𝑘 is the gradient estimation calculated by E.q. (2), and 𝜖𝑘 ∈ ℝ+ is the learning rate of the 𝑘th

iteration.

3. Momentum Algorithms

3.1. CM (Classical Momentum)

The Classical momentum(CM or HB, heavy ball) algorithm[4] was first proposed by Polyak in 1962. It

adds the impact of the previous gradient in the descent direction of SGD. Its gradient estimation is the

same as SGD, which is E.q. (2). If 𝑣 denotes the velocity, i.e., the variation of parameters, the iterative

formula of 𝑣 is:

𝒗𝑘 = 𝛼𝒗𝑘−1 − 𝜖𝒈𝑘 , (4)

where 𝛼 ∈ [0,1]，𝜖 ∈ ℝ+are the hyper-parameters. Their values generally change as the number of

iterations increases. In addition, the effect of the previous gradient 𝑔1, … 𝑔𝑘 on 𝑣 is decreasing during

the iteration. With the definition of 𝑣, the 𝑘th parameter updating function is shown:

𝒘𝑘 ← 𝒘𝑘−1 + 𝒗𝑘 (5)

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

952

While proposing the CM algorithm, Polyak also pointed out that the method can accelerate convergence

to local minimum values[2]. For large-scale data sets, its number of iterations required for convergence

is significantly reduced compared with SGD.

3.2. Nesterov’s Accelerated Gradient

Proposed by Nesterov in 1983, the NAG(Nesterov’s accelerated gradient) algorithm[5] is similar to CM.

While calculating the gradient, NAG considers the impact of present velocity 𝑣 . During the 𝑘 th

iteration, NAG temporarily updates 𝑤 by present velocity 𝑣𝑘 at first, using the updated parameters to

calculate current gradient:

�̃� ← 𝒘𝑘 + 𝛼𝒗𝒌

𝒈𝑘 =
1

𝑚
∑ ∇�̃�𝐿(𝑓(𝒙𝒊; �̃�), 𝑦𝑖)

𝑁

𝑖=1

Then NAG uses the same method E.q. (4) and E.q. (5) as CM to update 𝑤.

By analyzing the iterative steps, the author find that NAG introduces the effect of the previous

gradient when calculates the current gradient. This makes the algorithm more accurate in estimating the

value of the cost function 𝐽(𝑤), and gets the local minimum point effectively. When the function is

smooth, the global rate of convergence is able to achieve 𝑂(
1

𝑘2), which is faster than SGD.

4. Adaptive momentum algorithms

The value of the learning rate has a great impact on the convergence of the algorithm. Therefore, the

adaptive algorithm emerges. It adapts the learning rate from model parameters and monitors different

situations in the running process of the algorithm in real time. In this section, some adaptive momentum

algorithms will be introduced, including Adam and AMSGrad.

4.1. Adam

Adam is a kind of adaptive momentum algorithm. It calculates first-order and second-order moment

estimations and corrects them through a correction term. Among these estimations, first-order moment

estimation is used to get the descent direction and reduce large fluctuations during the updating process.

Second-order moment estimation calculates the learning rate of different situations.

During the 𝑘th iteration, Adam uses E.q. (2) to compute the gradient 𝑔𝑘 of current position. Then

Adam calculates biased first-order estimation s and second-order moment estimation 𝑟 through this

gradient:

𝒔𝑘 = 𝜌1𝒔𝑘−1 + (1 − 𝜌1)𝒈𝑘 = (1 − 𝜌1)(𝒈𝑘 + ⋯ + 𝜌1
𝑘−1𝒈1), (6a)

𝒓𝑘 = 𝜌2𝒓𝑘−1 + (1 − 𝜌2)𝒈𝑘 ⊙ 𝒈𝑘

= (1 − 𝜌2)(𝒈𝑘 ⊙ 𝒈𝑘 + ⋯ + 𝜌2
𝑘−1𝒈𝑘 ⊙ 𝒈𝑘), (6b)

where ⊙ represents the Hadamard product, and it has 𝑔𝑘 ⊙ 𝑔𝑘 ∈ ℝ𝑑. Then these biased estimations

are amended:

�̃�𝑘 =
𝒔𝑘

1 − 𝜌1
𝑘

�̃�𝑘 =
𝒓𝑘

1 − 𝜌2
𝑘

From the above formulas, the update number of parameters ∆𝑤𝑘 and update parameters can be

obtained:

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

953

∆𝒘𝑘 = −𝜖
�̃�𝑘

√�̃�𝑘 + 𝛿
(7)

𝒘𝑘 ← 𝒘𝑘−1 + ∆𝒘𝑘

Due to the fact that 𝛿 is a scalar quantity, the computational process of ∆𝑤𝑘 is performing the E.q.(7)

to every 1-D element in ∆𝑤𝑘.

In this iteration process, the initial value of 𝑠 and 𝑟 are both 0. At the same time, the initial value

𝑤0 of the parameters w must be given. Moreover, the learning rate 𝜖, the parameters in estimation

𝜌1，𝜌2 and 𝛿 are the hyper-parameters, too. Through analyzing the formulas E.q. (6a) and E.q. (6b),

it can be found that the parameters 𝜌1 and 𝜌2 actually control the disintegration rate of the moment

estimates in the first 𝑘 − 1 iterations as 𝑘 increases. Further, because the information of 𝑠 in the first

𝑘 − 1 iterations retain in 𝑠𝑘, Adam can be regarded as an adaptive momentum algorithm. Its iteration

process has the same principle as CM, like E.q. (4). Some proofs also confirm the efficiency of Adam.

Its individual convergence rate is similar to CM in the worst case, while it has the lower bound of

convergence rate[6].

4.2. AMSGrad

Compared with momentum algorithms, Adam performs better in calculating the descent direction and

automatically updating the learning rate, which is widely used in various non-convex optimization

problems. However, the convergence proof of Adam[7] is flawed since it is proved that Adam does not

even convergent when dealing with 1-D convex functions in 2018[8]. Therefore, the improved version

of Adam, AMSGrad, was proposed.

The updating formula of AMSGrad is:

𝒔𝑘 = 𝜌1𝒔𝑘−1 + (1 − 𝜌1)𝒈𝑘

𝒓𝑘 = 𝜌2𝒓𝑘−1 + (1 − 𝜌2)𝒈𝑘 ⊙ 𝒈𝑘

where 𝑔𝑘 is the gradient calculated by E.q. (2) of the 𝑘th iteration. Then AMSGrad modifies 𝑟𝑘 as

follows:

�̃�𝑘 = max(𝒓𝑘, �̃�𝑘−1) (8)

Let 𝑅𝑘 = 𝑑𝑖𝑎𝑔(�̃�𝑘), and this paper supposes Ϝ is the space that parameter 𝑤 exists. The temporary

update of 𝑤 is:

�̃�𝑘+1 = 𝒘𝑘 − 𝛼𝑘

𝒔𝑘

√𝒓𝑘

In the space Ϝ of parameter, the updating formula of 𝑤 is:

𝒘𝑘+1 ← 𝑚𝑖𝑛𝒘∈Ϝ, √𝑅𝑘 ‖𝒘 − �̃�𝑘+1‖

To explain the corrections made by AMSGrad, the original paper[8] establishes a framework of adaptive

momentum algorithms first. During the 𝑘 th iteration, the algorithm calculates the gradient 𝑔𝑘 of

current position, and uses the following format to update parameter 𝑤：

𝒔𝑘 = 𝒇𝑘(𝒈1, … , 𝒈𝑘)

𝒓𝑘 = 𝒉𝑘(𝒈1, … , 𝒈𝑘)

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

954

where Ϝ is the space of parameters, 𝑓𝑘: Ϝ𝑘 → ℝ𝑑，𝑑𝑘: Ϝ𝑘 → ℝ𝑑+ . Using these two parameters to

temporarily update 𝑤:

�̃�𝑘+1 = 𝒘𝑘 − 𝛼𝑘

𝒔𝑘

√𝒓𝑘

Finally, 𝑤 is updated by �̃�𝑘+1:

𝒘𝑘+1 ← 𝑚𝑖𝑛𝒘∈Ϝ, √𝒓𝑘 ‖𝒘 − �̃�𝑘+1‖

Through the framework, it can be found that the Adam actually sets 𝑓𝑘, ℎ𝑘 as follows and lets 𝛼𝑘 ≡
𝛼：

𝒇𝑘 = (1 − 𝜌1)(𝒈𝑘 + ⋯ + 𝜌1
𝑘−1𝒈1)

𝒉𝑘 = (1 − 𝜌2)(𝒈𝑘 ⊙ 𝒈𝑘 + ⋯ + 𝜌2
𝑘−1𝒈𝑘 ⊙ 𝒈𝑘)

To compare the correctness of AMSGrad, Γ is assumed as the evaluation quantity of the reciprocal

change of the step length, judging the stability of the algorithm in the later learning iterations. Γ has the

format:

Γ𝑘+1 = ∆
√𝒓𝑘

𝛼𝑘

=
√𝒓𝑘+1

𝛼𝑘+1

−
√𝒓𝑘

𝛼𝑘

During the descent of Adam, Γ sometimes will be positive and other times will be negative. This

violates the requirement in the proof of Adam’s convergence that Γ must maintain the property of

semipositive definite. Therefore, AMSGrad adds the amendment E.q.(8) in the second-order moment

estimation calculated by Adam, ensuring the non-negativity of Γ . Theoretically, the AMSGrad

algorithm makes up for the shortcomings of Adam. However, further convergence proof and numerical

experiments are needed to prove this result.

5. Numerical Experiments

In this section, the above momentum algorithms will be used to optimize some real problems in machine

learning. Through analyzing the results, the efficiency of these algorithms can be compared.

5.1. Experiments for Momentum Algorithms

To validate the efficiency and availability of the momentum algorithms, these 3 algorithms are applied

to the fundamental machine learning problems: logistic regression, ridge regression, and LASSO. The

format of the problems is as follows:

Logistic regression: min
𝑥

1

𝑁
∑ log(1 + exp(−𝑦𝑖𝑥𝑖

𝑇𝒘)) + 𝜆‖𝒘‖2
2𝑁

𝑖=1

Ridge regression: min
𝑥

1

2𝑁
∑ (𝑥𝑖

𝑇𝒘 − 𝑦𝑖)2 + 𝜆‖𝒘‖2
2𝑁

𝑖=1

LASSO: min
𝑥

1

2𝑁
∑ (𝑥𝑖

𝑇𝒘 − 𝑦𝑖)2 + 𝜆‖𝒘‖1
𝑁
𝑖=1

where (𝑥𝑖, 𝑦𝑖) is the data that need to be classified, i.e., 𝑥𝑖 is the characteristics and 𝑦𝑖 is the label of

data point. 𝑁 is the number of points in the whole dataset. 𝜆 is the regularization coefficient to prevent

overfitting, which depends on the specific problem. Four datasets are chosen based on each problem.

All of them are from the UCI Machine Learning Repository [9], and the details are shown in the

following table:

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

955

Table 1. The details of datasets.

Data set
Data points
(𝑁)

Features
Model of
problem

The value of
𝜆

a9a 16281 122
Logistic
regression

1 × 10−2

Breast
cancer

683 10
Logistic
regression

1 × 10−3

Ionosphere 351 34 LASSO 1 × 10−5

Heart 270 13
Ridge
regression

1 × 10−5

(a)

(b)

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

956

MATLAB and C language is used for mixed programming in section 5.1. Grid search is applied to

obtain the most suitable learning rate for each momentum algorithm. The initial values of parameter 𝑤

are set to 0, and the batch size 𝑚 is set to 10. The results are shown in figure 1.

Through analyzing the results, the author finds that the efficiency of SGD is worse than CM and

Nesterov when dealing with logistic regression problems, especially on the a9a dataset. The convergence

rate of CM and Nesterov is similar, and Nesterov is slightly faster than CM on the a9a dataset. However,

when dealing with ridge regression and LASSO problems, the convergence rate of these 3 algorithms is

almost the same. SGD even reduces more function value in the first epoch. This slight difference may

be caused by the small scale of the dataset. Moreover, it can be concluded that CM and Nesterov perform

better than SGD in the big dataset. The addition of momentum makes them converge faster and

approximate the optimal point with fewer iterations.

(c)

(d)

Figure 1. Performance analysis of momentum algorithms.

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

957

4.3. Experiments for Adaptive Momentum Algorithms

The adaptive momentum algorithms are applied to the optimization part of the loss function in

mainstream neural networks, analyzing the performance of each algorithm. To compare the

modifications made by adaptive momentum algorithms, momentum algorithms are also added to the

optimizers.

This paper compares the efficiency of algorithms in the VGG19 neural network model. VGG 19 is a

deep convolutional neural network that contains 16 convolution layers and 3 fully connected layers. It

uses smaller convolution layers to guarantee the depth of the network and get better performance. In the

experiment, VGG19 is used to classify the CIFAR-100 dataset, which contains 60000 pictures that can

be sorted into 20 major categories and 100 subcategories. In each subcategory, 50 pictures are randomly

chosen as the training set. The size of each image is 32 × 32 × 3. Some data augmentation techniques

are also applied in the training process to improve the robustness of the whole network.

In this section, the experiment is programmed in Python 3.9 and based on the NVIDIA RTX 2080

Ti. When training the network, the cross-entropy loss is used as the loss function, and the batch size m

is set to 128. In addition, the value of learning rate depends on specific optimizers. The experimental

results of the training phase are shown in the following picture.

Figure2(a) shows the change of loss function values during the iterations, and Figure2(b) shows the

time cost of training in each epoch. It can be found that the network that uses SGD has the biggest loss,

and the loss function also has the slowest rate of descent. This shows that the addition of momentum

accelerates the convergence of iterations to a certain extent. In addition, the curves of CM and Nesterov

and the curves of Adam and AMSGrad are almost the same, which means that both algorithms have an

almost similar convergence rate in this case. In this experiment, the corrections made by AMSGrad are

minimal in promoting the algorithm’s efficiency. Furthermore, the decline of loss function value is

relatively gentle for momentum algorithms, whereas the rate of decline is fast in the first 10 epochs and

then flattens out for adaptive momentum algorithms. The latter is also more efficient than the former,

meaning that the addition of the moment estimation idea effectively improves the performance of the

algorithm. Therefore, the adaptive algorithms have better performance than general momentum

algorithms. Comparing the training time, the single-epoch training time of these algorithms is mainly

concentrated within 50s-60s. The time cost of Adam fluctuates greatly, which may also be caused by

the chance of an experiment. From this result, AMSGrad has made some improvements to the instability

of Adam. SGD also has less training time for each epoch compared to adaptive algorithms. This situation

shows that the addition of moment estimation increases the computational complexity at the same time.

For future research, since the stochastic gradient descent algorithms only use the information in the

first-order gradient, some second-order approximation methods can be added, such as the Newton

method and quasi-Newton method, to calculate the cost function and improve the processing speed. In

addition, for some functions with poor properties, such as non-smooth and non-convex functions, the

iteration will be affected by the saddle points when using these algorithms. The application of these

kinds of functions is also a worthwhile direction for future research. In terms of adaptive momentum

algorithms, the convergence proof of Adam and AMSGrad still needs to be improved. At present, some

scholars believe that the AMSGrad algorithm only performs well on some datasets, but does not solve

the shortcomings of Adam[10]. Some other revised versions of Adam, such as AdamW[11],

NAdam[12], etc., have also been proposed, but the performance of these algorithms has not been fully

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

958

verified. There is no authoritative mathematical proof of their convergence, which is also one of the key

points worthy of attention.

6. Conclusion

This paper starts with CM and the Nesterov algorithm, then introduce two adaptive momentum

algorithms: Adam and AMSGrad. These adaptive algorithms can automatically calculate the learning

rate according to the current point position and the iteration times, which avoids the oscillation caused

by the improper value of step length. This enables the algorithm to efficiently converge to the minimum

point and obtains the optimal value for the parameters. Numerical experiments have proved that the

(a)

(b)

Figure 2. Performance analysis of algorithms on neural network.

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

959

addition of momentum and adaptive learning rate effectively improve the efficiency of iteration. Due to

the fast update speed of related algorithms, this paper dose not consider some cutting-edge algorithms.

Moreover, the experiment does not add some popular neural network frameworks. In future research,

these new momentum algorithms and basic network should be analyzed.

References

[1] Robbins, H. , & Monro, S. . A stochastic approximation method. Annals of Mathematical Statistics,

22(3), 400-407. (1951).

[2] Goodfellow, I., Bengio, Y., & Courville, A.Deep learning. Cambridge, MA: MIT press.

(2016).

[3] Jiarong, S., Dan, W., Fanhua, S. & Heyu, Z. Research progress of stochastic gradient descent

algorithm. Acta Automatica Sinica (09), 2103-2119. (2021).

[4] Polyak, B. T. Some methods of speeding up the convergence of iteration methods. Ussr

computational mathematics and mathematical physics, 4(5), 1-17. (1964).

[5] Nesterov, Y. . A method of solving a convex programming problem with convergence rate

$O(1/k^2)$. Soviet Mathematics Doklady. (1983).

[6] Jianzhi, H., Chengcheng, D., Wei, T. & Qing, T. Optimal individual convergence rate of Adam type

algorithm in non-smooth convex case. CAAI Transactions on Intelligent Systems (06), 1140-

1146. (2020).

[7] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. doi:

https://arxiv.org/abs/1412.6980.

[8] Reddi, S. J., Kale, S., & Kumar, S. (2019). On the convergence of adam and beyond. doi:

https://arxiv.org/abs/1904.09237.

[9] UCI Machine Learning Repository. https://archive-beta.ics.uci.edu/. 2022.

[10] Tran, P. T.On the convergence proof of amsgrad and a new version. IEEE Access, 7, 61706-61716.

(2019).

[11] Loshchilov, I., & Hutter, F. Fixing weight decay regularization in adam. doi:

https://openreview.net/forum?id=rk6qdGgCZ (2018).

[12] Dozat, T. Incorporating nesterov momentum into adam. doi:

https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ (2016).

Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022)
DOI: 10.54254/2755-2721/2/20220622

960

https://archive-beta.ics.uci.edu/
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ

