
Lightweight food classification model based on MobileViT 

and ULSAM 

Tian Zhang 

Shanghai Film Academy, Shanghai University, Shanghai, China, 200072 

 

2876187491@qq.com 

Abstract. This paper presents a novel approach to enhance the image classification performance 

by incorporating Unified Local-Scale Attention Module mechanism into the lightweight 

MobileViT architecture. The MobileViT+ Ultra-Lightweight Subspace Attention Module model 

achieved remarkable accuracy on the ISIA food-500 dataset, while maintaining computational 

efficiency and parameter quantity similar to the original MobileViT model. Moreover, the 

MobileViT+ Ultra-Lightweight Subspace Attention Module model outperforms other 

lightweight models such as MobileNetV2 and LCNet. The ablation experiments confirmed the 

effectiveness of Ultra-Lightweight Subspace Attention Module in enhancing classification 

accuracy and its ability to uniformly optimize multiple model structures. Additionally, this paper 

explored a more lightweight model that significantly reduced FLOPs and parameter quantity 

while maintaining the same model performance. Overall, this research provides a practical and 

resource-efficient approach for improving image classification performance in various deep 

learning. 
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1.  Introduction 

Recent advancements in machine learning and deep learning have enabled researchers to make 

significant progress in several fields. Deep learning techniques have been successful in various visual 

perception tasks, including object and action recognition, image segmentation, super-resolution, and 

visual question answering, while being increasingly used in everyday life. 

Object recognition and semantic recognition, including popular models such as Generative Pre-

trained Transformer and diffsinger, are examples of the use of machine learning and deep learning 

techniques in everyday life [1-4]. The recognition and classification of food is one of the sub-tasks of 

object recognition. Often when people encounter a new food, they want to identify it, so meeting this 

need requires a lightweight food recognition network model that can be used on mobile and embedded 

devices. Related work in computer vision includes food classification, recipe generation , and food 

image retrieval [5-12]. 

While deep learning technology has achieved better accuracy on several datasets, certain image 

classification problems, especially for similar types of food, can still pose a challenge to current methods, 

primarily due to variations resulting from different production methods. Therefore, we wanted to explore 

a more effective approach to food image recognition. Nonetheless, since the main objective of this article 

is to allow users to quickly identify broad food categories. 
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Addressing the above-mentioned challenges involves finding a suitable model for task classification 

and optimizing it for mobile and embedded devices. Some studies have achieved impressive results in 

food classification using deep neural networks optimized for this task [13-14]. Additionally, many 

lightweight models (MobileViT [15], EfficientNet [16], LCNet [17]) have been developed for traditional 

tasks with satisfactory results. However, currently, combining both approaches is not ideal, as the 

models with high accuracy are large and cumbersome, whereas the models with low complexity lack 

accuracy. 

This study propose a novel method that combines the MobileViT model with a new spatial attention 

module called the Ultra-Lightweight Subspace Attention Module (ULSAM) to enhance its ability to 

capture spatial information for food image classification. The author proposed model achieves high 

accuracy while maintaining low computational complexity and parameter quantity, making it a practical 

and efficient alternative for deep learning applications. 

2.  Related work 

2.1.  Food ecognition 

Food recognition for healthcare applications is receiving more attention, following the success of image 

recognition. Yang segmented each image into eight different types of components using Semantic 

Texton Forest and classified them with SVM, making it one of the earliest works on food recognition 

[18]. Recently, Martinel et al revealed that food has unique characteristics in the vertical direction, by 

introducing a sliced convolutional block to capture the food layer and merge it with the depth residual 

block output [13]. Qiu et al. created a model based on adversarial erasure that concentrates on 

"maintaining the basic accuracy of classifying input images" and "adversarial Mining discriminative 

food regions" with the help of assisted adversarial networks [14]. Moreover, they introduced the Sushi-

50, a new, fine-grained food dataset. 

2.2.  Light weighted model 

Since 2017, numerous practical and substantial lightweight network architectures have emerged. Google 

proposed the MobileNet model as a lightweight network architecture for mobile devices [10-21]. It 

utilizes the depthwise separable convolution technique and the residual structure by performing 

Expansion and Projection operations, among others. 

It also constructs an inverted residual network module, which is referred to as the Inverted residual 

block. In an effort to enhance the convolutional feature expression capability of mobile networks and 

resolve the limitations of the channel attention mechanism (such as SE), CANet introduced a novel 

attention mechanism referred to as Coordinate Attention [16]. 

LCNet, also a lightweight network architecture, enhances accuracy without a corresponding increase 

in inference time [17]. Combining these strategies results in a more optimized balance between accuracy 

and speed. Lastly, the MobileViT network focuses on skillfully combining the inductive bias advantages 

of CNNs and the global receptive field capability of ViT, resulting in a lightweight, general-purpose, 

and low-latency end-to-side network architecture [15]. 

2.3.  Deep learning for food recognition 

Tahir et al. proposed an open continuous learning framework that uses transfer learning to extract deep 

features, Relief F for feature selection, and an adaptive degraded incremental kernel extreme learning 

machine (ARCIELM) for classification [22]. The transfer learning approach capitalizes on the high 

generalization ability of deep learned features, while Relief F reduces computational complexity by 

sorting and selecting the most significant features.  

MSMVFA combines high-level semantic features, mid-level attribute features, and deep visual 

features to create a unified representation that captures food image semantics with the highest 

probability[23]. Horiguchi et al. suggested a personalized incremental learning framework for each user, 
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which combines the nearest class mean classifier and 1-nearest neighbor classifier using deep features 

to address the personalized food classification problem [24]. 

2.4.  Dataset 

Datasets play a critical role in the development and evaluation of food image recognition models. ISIA 

food-500 is a fine-grained food dataset with 500 categories and almost 400,000 images sourced from 

Wikipedia [25]. Despite providing comprehensive coverage of food categories and data volume, many 

classes exhibit high similarity, making it difficult to classify images accurately. To simplify the 

classification task, the authors combined 80 classes by either merging or deleting subclasses belonging 

to the same superclass. Each class comprises approximately 450 to 1000 images to ensure a well-

balanced distribution. Despite aggregation, the dataset retains certain fine-grained features. Some 

samples are shown in the figure 1. 

 

Figure 1. Some images from the ISIA-food500 dataset. 

3.  Networks and methods 

3.1.  MobileViT based 

ViT was a model proposed in 2020 by Google's team for applying the Transformer to image 

classification [27]. Although previous studies have attempted to use Transformer for visual tasks, the 

ViT model's effectiveness lies in its simplicity, versatility, and scalability. 

The food image classification task is a challenging and relevant computer vision problem that 

involves recognizing food items based on their type, style, cooking method, and ingredients, requiring 

a model with strong detail perception and abstraction skills, particularly in complex and diverse 

conditions.  

Due to the mobile nature of such tasks, an ideal model must be both lightweight and fast. Therefore, 

this paper propose the MobileViT model, providing efficient high-precision results at minimal cost [15]. 

In previous studies, the patch is projected, and the Transformer subsequently learns global information 

between patches, leading to a loss of the image's inductive bias. Consequently, these models need more 

parameters and wider and deeper models. However, the MobileViT, with its convolution and 

Transformer structures, combines the Transformer's global modeling and CNN's inductive bias, 

requiring fewer parameters than ViT, making it mobile-friendly. 

Furthermore, the MobileViT blocks effectively encode both local and global information, with the 

added benefit of having differing perspectives for global representation learning. Standard convolution 

entails un-folding, local processing, and folding. Figure 2 shows the substrate structure. 
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Figure2. The basic network structure of MoblieViT and where the ULSAM module is added. 

The MV2 module utilizes two convolution kernels of size 1x1 and a convolution kernel of size 3x3 

to perform deep separable convolution on the input feature when the convolution step size is set to 2. 

Conversely, a residual connection is introduced when the step size is set to 1 to prevent potential 

problems like gradient explosion or disappearance that can be caused by an excessive number of output 

features. This facilitates network parameter propagation across layers. Moreover, the MV2 module 

follows the upsample-extract-downsample approach, which involves an inverse operation to upsample 

the input data, the subsequent feature extraction using deep separable convolution, and lastly, 

downsampling, ultimately maintaining the input data dimension, significantly reducing computational 

burden and model parameters. 

3.2.  ULSAM block 

Physical food images exhibit strong spatial features, such as soup foods that are mainly contained in 

bowls or pots, where the container is situated below the food. Similarly, pastries and breads items exhibit 

a strong vertical hierarchy, with certain food presentations creating spatial interrelationships. The spatial 

attention mechanism provides many advantages for the performance and accuracy of food recognition 

and classification in several ways. Firstly, it focuses the neural networks on critical image areas, such 

as different ingredients and side dishes, improving the visibility and classification accuracy. Secondly, 

it enables multi-scale processing, which is critical for food images containing ingredients and side dishes 

of varying sizes and proportions. By doing so, it better perceives image details and local features. Thirdly, 

it enhances interpretability and visualizes the processing actions of the neural network through the pixel 

attention weight calculation. Therefore, we chose an ultra-lightweight subspace attention mechanism 

called ULSAM [28]. The large computational overhead and parameter number associated with existing 

attention mechanisms are not desirable in compact CNNs. ULSAM effectively learns cross-channel 

interdependencies for each feature map subspace, making it the first attention module to achieve this 

goal. In particular, it divides extracted features into g groups, spatially recalibrating each subfeature of 

a group, and finally joining the g group features together. The approximate structure of the model is 

shown in the figure 3. 

 

Figure 3. ULSAM Block. 
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3.3.  MobileViT+ ULSAM 

It is crucial to integrate ULSAM into the framework structure of MobileViT. Deeper layers are 

associated with global features that possess stronger location information and contain semantic 

information with coarser spatial details while having smaller dimensions than that of the feature maps 

in the initial layer. Moreover, evidence suggests that adding ULSAM to a shallower layer creates a loss 

of effective information and interferes with spatial relationships [28], hindering the training effect. 

Therefore, integrating self-attention in deeper layers is beneficial for better learning of global 

information interactions. MobileViT comes with its MobileViT Block, and including a spatial attention 

module after the block can enhance the model's perception of spatial relationships.  

This paper presents three insertion methods(Figure 2) and the specific parameters are shown in the 

table1, table2, table3:  

V1: adding the spatial attention module after layer 5,  

V2: adding it after layers 4 and 5, 

V3: adding it after layers 3, 4, and 5. 

Table1. MobileVit + ULSAM V1. 

Layer(V3) out_channels dim g 

layer1 16 128×128 None 

layer2 24 64×64 None 

layer3 48 32×32 None 

layer4 64 16×16 None 

layer5 80 8×8 None 

ULSAM 80 8×8 16 

Table2. MobileVit + ULSAM V1. 

Layer(V4) out_channels dim g 

layer1 16 128×128 None 

layer2 24 64×64 None 

layer3 48 32×32 None 

layer4 64 16×16 None 

ULSAM 64 16×16 8 

layer5 80 8×8 None 

ULSAM 80 8×8 16 

Table3. MobileVit + ULSAM V1. 

Layer(V5) out_channels dim g 

layer1 16 128×128 None 

layer2 24 64×64 None 

layer3 48 32×32 None 

ULSAM 48 32×32 4 

layer4 64 16×16 None 

ULSAM 64 16×16 8 

layer5 80 8×8 None 

ULSAM 80 8×8 16 
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4.  Experiment 

4.1.  Dataset preprocessing 

To start the image preparation for training, the dataset was split into two sets: one for training and the 

other for validation, in a 4:1 ratio respectively. For the training set, we perform center cropping of the 

images to resize them into 224×224 pixels, and augment the dataset by randomly flipping them 

horizontally to enhance its diversity. On the other hand, for the validation set, images are resized to 

224×224 pixels without cropping for consistency. 

Then, we convert all samples in both sets by transforming them into tensors, which is a multi-

dimensional array that represents the numerical data of images. Subsequently, the tensor values are 

normalized with parameters ([0.616, 0.520, 0.418], [0.232, 0.248, 0.268]) for effective learning 

convergence. The normalization serves to standardize the mean and variance of the pixel values, making 

them easier for the model to learn in a consistent and stable manner. 

4.2.  Hardware and environment 

The proposed method in this article was tested on a computer system equipped with an Intel Core i7 

13700k CPU, 32GB of memory, and a NVIDIA GeForce RTX 3090Ti GPU. Specifically, the software 

environment used was a 64-bit Windows 11 operating system, and the code was developed using the 

PyTorch framework, a popular deep learning framework for machine learning research. 

4.3.  Experimental setup 

For the training process, we used MobileViT as the baseline architecture, and selected XXS for scaling 

the model for its lightweight nature. On the ISIA food-500 dataset, we used the stochastic gradient 

descent (SGD) optimizer with a batch size of 256, a momentum of 0.9, and a weight decay rate of 5 × 

10^−4 with an initial learning rate of 0.045. The SGD optimizer is an efficient algorithm for optimizing 

large scale deep learning models, and the author found these hyperparameters to produce good results 

in our experiments. 

To tackle the issue of diverging or slow convergence caused by an excessively large or small learning 

rate respectively, this paper adopts a cosine annealing algorithm that dynamically modifies the learning 

rate. 

The cosine annealing algorithm partitions the training process into several cycles, each with a pre-

defined initial and minimum learning rate. For each cycle, a cosine function value is computed as a ratio 

of the current learning rate to the initial learning rate, based on the current training step and the overall 

iteration. The formula for calculation follows: 

 𝑙𝑟 = 𝑙𝑟𝑚𝑖𝑛 + 0.5 ∙ (𝑙𝑟𝑚𝑎𝑥 − 𝑙𝑟𝑚𝑖𝑛) ∙ (1 + cos
𝜋∙𝑖𝑡𝑒𝑟

𝑡𝑜𝑡𝑎𝑙𝑖𝑡𝑒𝑟
) (1) 

In the equation, lr denotes the learning rate in the current iteration, lrmin represents the minimum 

learning rate, lrmax represents the initial learning rate, iter denotes the number of completed training 

steps, and totaliter represents the total number of training steps.  

At the start of every cycle, the current learning rate is identical to the initial learning rate. As training 

steps progress, the current learning rate gradually decreases and aligns with the minimum value in the 

shape of a cosine wave. Eventually, at the end of each cycle, the current learning rate matches the 

minimum rate. This approach continues throughout the entire process, allowing for successful 

convergence. In the experiment, each cycle lasted 130 epochs, accumulating to a total of 390 epochs. 

In addition, we compared our algorithm to several other established models, including MobileNetV2, 

ResNet, and LCNet. All of the models followed the same training methodology adopted in this paper. 

4.4.  Results  

According to the Table4, the model frameworks of V1, V2, and V3 versions have achieved respective 

improvements of 0.8%, 1,0%, and 1.3% compared to the original model. Furthermore, it can be seen 
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that V3 outperforms V2, while V2 performs better than V1. Therefore, it can be concluded that 

incorporating ULSAM after the MobileViT module in a deep network structure can enhance the model's 

ability to capture spatial information. This demonstrates that the method in this research can effectively 

leverage the feature extraction capabilities of MobileVit, and improve the performance of image 

classification by enhancing the spatial attention mechanism through ULSAM. This method not only 

outperforms the original MobileViT in accuracy but also maintains a similar level of computing 

complexity and parameter quantity, demonstrating its high practical value. 

Table4. Comparison of the original MobileVit with three different methods of adding ULSAM. 

Models ACC FLOPs Params 

MobileViT 0.810 318.83M 0.98M 

MobileViT+ULSAMV1 0.818 318.86M 0.98M 

MobileViT+ULSAMV2 0.820 318.96M 0.98M 

MobileViT+ULSAMV3 0.823 319.24M 0.98M 

 

Compared with ResNet, the MobileVit+ULSAM(Table5) model exhibits significant advantages in 

terms of FLOPs (floating-point operations per second) and parameter quantity, while also demonstrating 

superior training effectiveness. These results indicate that the MobileVit+ULSAM model can 

substantially decrease the demand for computing resources without compromising model performance, 

providing a resource-efficient and high-accuracy alternative for deep learning applications. In addition, 

the MobileVit+ULSAM model outperforms other lightweight network models in terms of accuracy, 

achieving a 5.5% increase in accuracy compared to MobileNet. Although LCNet incorporates a spatial 

attention module and performs well, there is still 1.0% difference compared to the method proposed in 

this paper. These findings provide evidence of the potential of MobileVit+ULSAM model in diverse 

deep learning applications. 

Table5. MobileVit + ULASM V3 compared to other networks. 

Models ACC FLOPs Params 

MobileNet V2 0.768 333.05M 2.33M 

ResNet34 0.819 3682.01M 21.33M 

LCNET 0.813 167.19M 1.77M 

MobileViT+ULSAMV3 0.823 319.24M 0.98M 

4.5.  Ablation experiments 

The effectiveness of ULSAM was further tested and verified by replacing the MobileViT Block with a 

regular MV2 Block (named MobileViT) and evaluating the performance of the model (MobileViT and 

MobileViT+ULSAM) with and without the ULSAM module, as shown in Table 6. This experiment 

demonstrates that the ULSAM module can optimize food images for classification with or without the 

MobileViT module. Moreover, the MobileViT Block also contributes to this classification task. 

The MobileViT Block in the MobileViT model was substituted with a regular MV2 Block and the 

renamed model MobileViT was used for further comparison of the performance impact of ULSAM 

modules under two conditions: with ULSAM retained after layer 3, layer 4, and layer 5, and without 

ULSAM. 

Experiments have shown that the ULSAM module improves food image classification performance, 

independent of whether or not the MobileViT Block is present. This indicates that the ULSAM module 

can consistently optimize different model structures, enhancing their performance and robustness. 

Upon comparison, we discovered that after substituting the Mobile Vision Transformer Block with 

the mv2 structure, the classification accuracy of the model decreased to 76.0%. However, upon adding 

three layers of ULSAM structure the accuracy significantly improved to 81.7%, surpassing the original 

accuracy of the MobileViT. Moreover, this network structure's FLOPs are one-third of the original and 
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the number of parameters is only one-fifth of the Mobile Vision Transformer Block. These features 

allow for further lightweighting and improve the accuracy in line with the original model. 

Table 6. Pilot Experiments. 

Models ACC FLOPs Params 

MobileViT* 0.760 105.60M 0.21M 

MobileViT 0.811 318.83M 0.98M 

MobileViT*+ULSAMV3 0.817 106.00M 0.21M 

MobileViT+ULSAMV3 0.823 319.24M 0.98M 

5.  Conclusion 

The current experimental findings suggest that MobileViT plus ULSAM possesses certain advantages 

in real-world image classification tasks, yet it still faces certain limitations. To enhance the model's 

performance and generalization capability, this study intends to undertake the following tasks in the 

future.  

Firstly, we aim to investigate new data augmentation techniques, such as color perturbation and 

rotation, to diversify and challenge the dataset, which will enhance the model's resilience to noise and 

alterations. Secondly, we plan to evaluate various optimizers and learning rate adjustment strategies, 

including Adam, RMSProp, and Warmup, to determine the optimum parameters and training process 

for MobileViT + ULSAM. Thirdly, it is planned to further scrutinize and visualize MobileViT plus 

ULSAM through methods like Grad-CAM or Saliency Map to understand the regions and features that 

the model prioritizes. Employing methods such as t-SNE or UMAP to present the clustering and feature 

space learned by the model is also under consideration. Fourthly, we aim to use additional food datasets, 

such as Fruit360, Food2K, and ChineseFood or Caltech256, to assess the model's ability to classify 

varied categories and scenarios. This would facilitate the classification of fruits, dishes, and everyday 

objects. Finally, the author also plan to utilize MobileViT plus ULSAM in other domains and tasks, like 

medical image analysis, remote sensing image recognition, and video understanding, to assess its 

versatility and effectiveness. 
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