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Abstract. Sequential Recommendation (SR) is an important scenario in recommendation tasks. 
Sequential recommendations model the sequential pattern between item-item or user-item based 
on a user's recent activity in a time series to predict their next preference. However, existing 
methods are based only on the conventional Graph Neural Networks (GNN) as a model 
architecture for adaptive fine-tuning of specific SR tasks. To get better recommendation results, 
more advanced GNNs can be used as the network architecture of the SR method. This paper 
introduces graph transformer, a combination of GNN and a good sequential task processing 
model. Then a cross-sectional comparison is made with the current SR method model and its 
suitability for application in SR tasks is discussed. The comparison shows that the graph 
transformer is similar in principle and structure to the current SR models, and requires the 
addition of some adaptive components to be applied in SR tasks. The superior performance after 
application can be demonstrated from the results data of the Benchmarking-GNNs and Long-
Range Graph Benchmark on the models. 

Keywords: Sequential Recommendation, transformer, Graph Neural Network, graph 
transformer. 

1.  Introduction 
Recommender system is one of the crucial information service technologies in the field of e-commerce 
nowadays, and its appearance enables Internet companies to gain considerable revenue. To enhance and 
improve the user experience, it is necessary for the system to be able to filter out personalized 
information from the huge amount of information, so Recommender System is proposed to achieve 
personalized information presentation for users and is dedicated to solving the problem of information 
overload. Users explore the web for items that interest them, and recommendation systems can 
accurately model user preferences based on their interaction history. Sequential recommendation (SR) 
is a very important task in a recommendation system. This paper focuses on obtaining better 
recommendation performance by applying better network design in SR tasks. 

The specific SR task is to predict the user's future choice based on the user's recent behaviours. This 
is a kind of temporal preference, so modelling serial features is more appropriate. To improve the 
recommendation performance to obtain excellent prediction results, it is necessary to extract as much 
valid information from the sequence as possible. An illustration of sequential recommendation is shown 
in Figure 1. 
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Figure 1. An illustration of sequential recommendation is cited from [1]. 

Frankly speaking, the history of recommender systems is presented in more detail in two high-quality 
review articles in [1][2], describing from the past collaborative filtering systems (CF), matrix 
decomposition methods, etc., to the present day, using deep learning networks. Essentially, most of the 
information in a recommendation system is presented as a graph structure, and Graph Neural Networks 
(GNN) have some advantages for representation learning (RL), which can use graphs to obtain high-
quality embedding. Therefore, it is becoming increasingly popular to use GNNs to convert the user's 
sequential behaviour into a graph structure such as a sequence graph to capture the transformation 
patterns from the user's sequential actions. 

For specific sequential recommendation tasks, currently used GNNs-based recommendation models 
are largely dependent on supplementary sequence models [1]. In SURGE [3] GNN started as a feature 
extractor only, assisting RNN with sequence modelling. Later in models such as TGSRec [4] the whole 
task is done using GNN only and the performance of the model is further optimized. Sequential 
recommendations are essentially sequential tasks, and the transformer [5] was shown to have excellent 
in-sequence task processing capabilities. Transformer was originally proposed for the task of processing 
sequential data in natural language processing, but its encoder-decoder structure and proposed self-
attention mechanism perform equally well in other computer domains. GNN fusion transformer 
architecture can be tried for Sequential recommendation tasks. 

In this paper, this paper first discusses the current advanced graph transformer model and the 
commonality of the Sequential Recommender System (SeqRS) model. In the discussion citing specific 
papers [6-8] work, the graph transformer and the currently popular SeqRS model have similar network 
structures and the application of the method, verifying the feasibility of the graph transformer model. 
Then, this paper discusses and points out the superiority of graph transformer over the current SeqRS 
model and applying its ideas directly or indirectly in the SR task will further enhance the performance 
of the model in real-life situations. The experimental data of [9] is cited at the end to enhance the 
reliability of the previous results at the data level.  

2.  Related Work 
Before the formal discussion, we will briefly introduce a mathematical representation of the SR task. 
Also, some basic information about GNN and transformer is provided in this section to aid a better 
understanding of what will be discussed later. 

2.1.  Problem Formulation 
In the sequential recommendation task, we have a set of 𝑀𝑀 users 𝒰𝒰 =  {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑀𝑀} and a set of 𝑁𝑁 
items 𝛪𝛪 =  {𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑁𝑁}. The user-item interaction matrix is represented by 𝑌𝑌 ∈ ℝ𝑀𝑀×𝑁𝑁, where 𝑦𝑦𝑢𝑢𝑢𝑢  =  1 
represents that user u interacts with the item 𝑖𝑖 and otherwise, 𝑦𝑦𝑢𝑢𝑢𝑢  =  0. A session is a succession of 
sequential interaction objects that a user can interact with in distinct time steps. Given a user 𝑢𝑢, one of 
his sessions is denoted as 𝑆𝑆𝑢𝑢  =  (𝑠𝑠1𝑢𝑢, 𝑠𝑠2𝑢𝑢, … , 𝑠𝑠𝐿𝐿𝑢𝑢 ), where 𝐿𝐿 = |𝑆𝑆𝑢𝑢| is the session length and 𝑆𝑆𝑗𝑗𝑢𝑢  ∈ 𝛪𝛪 is an 
item index that the user has interacted with throughout the session. 𝐼𝐼𝑢𝑢 is denoted as a set of items that 
the user 𝑢𝑢 has interacted with. Ultimately, the goal of the task is to predict a list of items from the item 
set 𝐼𝐼 as a recommendation to each other, based on the earlier session 𝑆𝑆1:𝑡𝑡

𝑢𝑢  (𝑡𝑡 < 𝐿𝐿) of every user 𝑢𝑢 ∈ 𝒰𝒰. 
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The main purpose of putting in this paper is to highlight the better prediction recommendation results 
on the performance of the model on a specific dataset. 

2.2.  Graph Neural Networks 
Most of the modelling operation in the SR task is based on item-item interaction and user-item 
interaction. Recommender systems store a large amount of user-item interaction data, which can be 
presented in graphs. The use of graph data is of great help to eliminate data sparsity and cold starts in 
recommender systems. Compared with other deep learning models, GNN-based models have significant 
advantages for feature extraction tasks on non-Euclidean structured data. The stacking structure of graph 
neural networks enables each node of the graph to access information from higher-order neighbours, 
enhancing collaborative filtering signals. In addition, GNNs use the de-aided propagation of edges, 
integrate the states of nodes and neighbours, update the state of the current node, and the structured 
information is captured by the model and expressed on each node, thus solving the problem of the 
sparsity of recommender systems. Therefore, GNN-based recommender is very popular recently.  

By aggregating the features of nearby nodes, GNN and GCN models update the features of the 
current central node. Let  𝐺𝐺 =  (𝑉𝑉,𝐸𝐸)  denote a graph where 𝑉𝑉 =  {𝑣𝑣1, 𝑣𝑣2,· · · , 𝑣𝑣𝑛𝑛},𝑛𝑛 =  |𝑉𝑉|  is the 
number of nodes. The node update formula of GCN is as  

 ℎi𝑙𝑙+1 = 𝛿𝛿�𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑙𝑙 ℎ𝑖𝑖𝑙𝑙 + 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ

𝑙𝑙 ∑ ℎ𝑗𝑗𝑙𝑙𝑗𝑗∈𝑁𝑁(𝑖𝑖),𝑖𝑖≠𝑗𝑗 � (1) 

where 𝑁𝑁(𝑖𝑖) is the set of first or higher-order neighbours of 𝑣𝑣𝐼𝐼,  ℎ𝑖𝑖𝑙𝑙 as the representation of 𝑣𝑣𝐼𝐼 at the l-
th layer, 𝛿𝛿  represents a nonlinear function (e.g. tanh or ReLU), 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑙𝑙  and 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ
𝑙𝑙  are trainable 

parameter matrices, the bias term is omitted for simplicity of the equation. 
However, the training of GCN requires knowledge of the entire graph structure (including the nodes 

to be predicted), which is not possible in a realistic recommender system. In addition, a pooling function 
is furthermore needed to transfer a collection of node representations into a compact form to achieve an 
accurate representation of the graph. To integrate the representations of the objects in a sequence, an 
attention mechanism can be utilized. 

2.3.  Graph Attention Networks [10] 
To incorporate the attention mechanism, Graph Attention Network (GAT) can be easily associated. 
graph Attention Network (GAT) proposes a weighted summation of neighbouring node features using 
the attention mechanism. GAT introduces masked self-attention and multi-head attention mechanism 
based on GNN (using multiple Wk  to calculate self-attention at the same time), which solves the 
problem that GNN aggregates neighbour nodes without taking the different importance of different 
neighbour nodes into account. Let the input feature ℎ = �ℎ1����⃗ , ℎ2����⃗ , … , ℎ𝒩𝒩�����⃗ �, ℎı���⃗ ∈ ℝ𝐹𝐹 , and the normal node 
formula (does not consider multi-head attention) of GAT is obtained as: 

 ℎı′���⃗ = 𝜎𝜎�∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑊𝑊ℎȷ���⃗𝑗𝑗∈𝒩𝒩𝐼𝐼 � (2) 

 𝛼𝛼𝑖𝑖𝑖𝑖 =
exp�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑎𝑎�⃗ 𝑇𝑇�𝑊𝑊ℎı���⃗ ∥𝑊𝑊ℎȷ���⃗ ���

∑ exp�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑎𝑎�⃗ 𝑇𝑇�𝑊𝑊ℎı���⃗ ∥𝑊𝑊ℎ𝜅𝜅�����⃗ ���𝜅𝜅∈𝒩𝒩𝐼𝐼
 (3) 

where 𝑊𝑊 ∈ ℝ𝐹𝐹′×𝐹𝐹  is a weight matrix applied to every node and 𝒩𝒩  is the number of nodes, ∙T 
represents transposition and ∥ is the concatenation operation. The structure of the graph attention layer 
in the GAT is shown in figure 2. 
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Figure 2. One of the graph attention layers in GAT is cited from [10]. 

GAT does not require the use of pre-constructed graphs and can also be used for Inductive learning, 
enabling the processing of unseen graph structures. But GAT does not make full use of the edge 
information, only the connectivity. If GAT is applied to the SR tasks, a large amount of potentially valid 
information will be lost. 

2.4.  Transformer [5] 
Based on the preceding inference, the transformer, which has become very popular in sequential tasks 
recently, can be introduced into the GNN network structure. Transformer originally comes from the 
field of NLP, which uses a self-attentive mechanism to construct the features of each word. Transformer 
is a global attention mechanism, which can also be seen as a fully connected GAT. 

Transformer takes the {𝑄𝑄(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) = 𝑄𝑄𝑙𝑙𝐻𝐻𝑙𝑙 ,𝐾𝐾(𝐾𝐾𝐾𝐾𝐾𝐾) = 𝐾𝐾𝑙𝑙𝐻𝐻𝑙𝑙 ,𝑉𝑉(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) = 𝑉𝑉𝑙𝑙𝐻𝐻𝑙𝑙}  to construct the 
attention mechanism (e.g. the current word  ℎ𝐼𝐼 𝑙𝑙 has query value  𝑄𝑄𝑙𝑙ℎ𝐼𝐼 𝑙𝑙  ), where both the triple and the 
output are vectors, the output is a weighted sum of  𝑉𝑉(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉), whose weights are the values computed 
from the corresponding combinations of 𝑄𝑄(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) and 𝐾𝐾(𝐾𝐾𝐾𝐾𝐾𝐾).The node formula of the transformer 
is obtained as： 

 ℎ𝑖𝑖𝑙𝑙+1 = 𝛿𝛿(∑ 𝜔𝜔𝑖𝑖𝑖𝑖(𝑉𝑉𝑙𝑙ℎ𝑗𝑗𝑙𝑙𝑗𝑗∈𝑆𝑆 ) (4) 

where 𝜔𝜔𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑄𝑄𝑙𝑙ℎ𝑖𝑖𝑙𝑙 ∙ 𝐾𝐾𝑙𝑙ℎ𝑗𝑗𝑙𝑙�. The formulas of GNN and transformer are similar. When the 
data is a fully connected graph, then GNN's node formula is equivalent to transformer's node formula to 
some extent, which provides a feasible basis for combining GNN and transformer. Therefore, the 
combination of GNN and transformer is a sensible approach. 

3.  Methods 
This section will discuss the feasibility of graph transformers in sequential recommendation tasks and 
their superiority over the current SeqRS model. To apply GNNs well to the SR task, the feasibility, and 
adaptability of graph transformer in the SR task should be discussed first. Second, the advanced nature 
of graph transformer should also be noted. Graph transformers is compared in two main aspects: 
optimization of GNN-based models and control of the computational cost of current SeqRS methods. 
This part will be talked about in the discussion of superiority.  

3.1.  Graph Transformer  
Graph transformer combines GNN and transformer, which retains the features of both to form a model 
with better performance. There are also many ways to combine GNN and transformer. Nowadays, there 
are many approaches to splice the transformer directly into the GNN model, e.g. U2GNN [11] uses the 
transformer only in aggregators. GMT [12] concatenates the transformer directly behind GNN as a 
pooling process. GraphTrans [13] adds the transformer on top of the standard GNN layer and proposes 
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a new mechanism called Readout. Although these were able to fetch good experimental results, they 
only used the transformer idea and did not explore the commonality of GNN and transformer. The graph 
transformer model with superior performance captures the core of GNN and transformer and is more 
likely to achieve better results in the sequential recommendation task. 

3.1.1.  Feasibility. In this section, we focus on whether the graph transformer models can be applied to 
the sequential recommendation task. To get better performance in actual recommendation tasks, it is 
necessary to consider many other factors such as dynamic time variation, social network, and knowledge 
graph in the recommendation system. However, in this paper, only the basic network structure and 
methods for sequential prediction are discussed. Next, the feasibility of the graph transformer model 
will be explored from several specific model cases.  

Graphormer [6] and GraphFormer [7] are the classical graph transformer models. And both 
demonstrate rich extensibility. The network structure of Graphormer and GraphFormer is shown in 
Figure 3 and Figure 4. Graphormer is using the topological properties of GNN which allows the 
transformer to focus not only on global information but also to capture local information by 
incorporating topological structure properties on the graph space in the transformer. Three main 
encoding methods are introduced in Graphormer, spatial encoding introduces information about the 
importance of nodes for the model; centrality encoding allows the model to measure the importance 
between nodes; Edge encoding is used to introduce the information on edges into the attention 
mechanism. GraphFormer, on the other hand, fully considers the neighbourhood information from GNN 
in the transformer encoding stage, i.e., cascading transformer and GNN. This structure allows a better 
fusion of local and global information in the text domain than the concat method. 

 
Figure 3. The model architecture of Graphormer is cited from [6]. 

 
Figure 4. The model architecture of GraphFormer is cited from [7]. 
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In most of the latest SeqRS methods, the sequences are modelled only by GNN. In TGSRec [4], the 
SR problem is linked to the graph embedding method. TGSRec aggregates item embeddings and 
temporal collaborative signals primarily through GNN. This enhances the Temporal Collaborative 
Transformer layer structure's representation of the item to enhance the model's performance. In SGRec 
[8], the article first generates graph-enhanced variants of the sequence data, then feeds them into the 
graph attention layer (like the GAT layer) to understand user preferences and POI representations. They 
both prefer to use the common GNN or GAT as a means of feature extraction, and then put it into the 
sequence prediction model for prediction.  

The nature of graph transformers is the same, they add some tricks to make the whole feature 
extraction and project prediction tasks can be further nested to get better prediction results. From another 
perspective, TGSRec and SGRec in the SR task are essentially solving the problem of sequence 
prediction, which is the same purpose of the graph transformer, which combines the graph topology 
property of GNN and the transformer with an excellent ability to handle sequence data. Graphormer and 
GraphFormer were not originally designed for molecular property prediction scenarios or edge 
prediction tasks only, the introduction of similar encoding methods and structures may slightly improve 
the accuracy of predictions of existing SeqRS models. 

3.1.2.  Priority. The network design of many current models for sequential recommendation work is 
GNN or GAT, or GNN is only used as an auxiliary tool and thus its superior RL capability is ignored, 
so it is necessary to discuss the advanced graph transformer model. 

Graph transformer is the combination of GNN and transformer. Graph transformer combines the core 
of transformer and GNN, both the attention mechanism of global attention and the consideration of 
topological properties of the graph. There are also many excellent models of graph transformers. For 
example, SAN [14] uses Learnable Position Encoding (LPE) in the transformer architecture, which can 
learn the position of each node in a given graph using the full Laplace spectrum. SAT [15] proposed a 
new self-attention mechanism, which can fuse structural information and significantly enhance the 
model’s performance by using GNN to extract the subgraph representation. GraphGPS [9] has designed 
different Position Encoding (PE) for different categorizations. Also, GraphGPS solved the over-
smoothing problem in the MPNNs layer and achieved excellent performance in various benchmark tasks. 

In the context of sequential recommendation, long sequences usually reflect only implicit user 
behaviours and are somewhat noisy, making it difficult to accurately capture user preferences. Graph 
transformer has the advantage of capturing long-range dependencies compared to GNN. According to 
the introduction in 2.4, the attention to the global attention mechanism in transformer is that the attention 
factor is calculated between each word and all words, so the maximum path length is only 1, no matter 
how long the distance is. Furthermore, compared to ordinary transformers, GAT and graph transformers 
introduce topological structure properties of graphs on top of the transformer so that the model has a 
priori structural location in high-dimensional space. If simply using the transformer to process graph 
data, the structural information between nodes depends only on their semantic similarity, ignoring the 
structural prior simple graph transformer Layer [16] itself as shown in Figure 5. 
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Figure 5. A simple graph transformer layer is cited from [16]. 

Graph transformer also has priority for GAT, which also uses the attention mechanism. GAT trained 
on graph datasets learns structured node information that does not vary with node position, so GAT is 
only local attention. Therefore, in comparison, graph transformer will have a greater ability to 
characterize and capture the complex relationships between nodes. Compared with GAT, graph 
transformer can handle the case of missing nodes and edges. 

The ability to handle large-scale data is also a noteworthy issue in recommender systems. The vector 
of each node in GAT is passed through a multilayer perceptron, and the new vector of outputs is then 
used to calculate a weighted summation between every two nodes. Graph transformer employs Scaled 
Dot-Product Attention, which greatly improves the parallel processing capability of the model. 
Compared to GAT, graph transformer can handle large-scale graph data, including graph data with 
millions of nodes and edges, more efficiently. The advantages of graph transformer are better 
demonstrated in the Result in Section 4. 

4.  Results 
This section compares mainly traditional graph neural networks (GCN and GAT) and popular graph 
transformers (Graphormer, SAN, GPS). To ensure the diversity of benchmarking tasks in the 
background of SR tasks, the experiment uses datasets from Benchmarking-GNNs [17] and Long-Range 
Graph Benchmark [18]. The experimental data in this section were obtained from [9]. 

4.1.  Benchmarking-GNNs 
From Benchmarking-GNNs, GNNs are tested on the ZINC, PATTERN, CLUSTER, MNIST and 
CIFAR10, shown in table 1. ZINC consists of 12K molecular graphs. These graphs have 28 different 
types of heavy atoms for each node, and three different types of bonds are represented by each edge. 
The goal is to regress the molecule's bound solubility. MNIST and CIFAR10 data were derived from a 
similarly named image classification dataset by constructing 8 nearest neighbour graphs of SLIC 
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superpixels for each image. The task is to classify the data. PATTERN and CLUSTER are made-up 
datasets that were drawn from a random block model. Unlike the previously mentioned tasks, this 
prediction task is based on inductive node-level classification. 

The observation reveals that graph transformers give better SOTA results in five tasks. It is 
demonstrated that the graph transformer models perform better in a series of synthetic tasks created to 
evaluate the expressiveness of the model, compared to the network models used in the existing SR 
methods.  
Table 1. Results of each model in five benchmarks (mean ± s.d. of performance in 10 runs) cited from 
[9]. 

Model ZINC MNIST CIFAR10 PATTERN CLUSTER 
MAE ↓ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ 

GCN 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976 
GAT 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455 78.271 ± 0.186 70.587 ± 0.447 
Graphormer 0.122 ± 0.006 – – – – 
SAN 0.139 ± 0.006 – – 86.581 ± 0.037 76.691 ± 0.65 
GPS 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180 

4.2.  Long-Range Graph Benchmark (LRGB) 
The models listed above are assessed on LRGB. In the background of SR tasks, methods are expected 
to possess the capacity to capture long-range dependencies in graph data, which is LRGB and its datasets 
intended to test. This experiment set a 500k model parameter budget and followed the experimental 
setup which graph transformer used to test in LRGB. PascalVOC SP and COCO-SP are the products of 
SLIC superpixelation of Pascal VOC and MS COCO datasets. Each node in both datasets is a member 
of a distinct object class, making them both suitable for node classification tasks. PCQM-Contact is a 
derivative of PCQM4Mv2. As a link prediction task, the challenge requires detecting pairings of nodes 
that have structures with special 3D connections in the 2D graph but are distant. Data for both Peptide-
func and Peptide-struct are derived from SATPdb, which is a database of structurally annotated 
therapeutic peptides. The task of Peptide-func is to classify the multi-labelled graphs into 10 non-
exclusive peptide function classes. And the Peptide-struct task is to perform a graphical regression of 
all the peptide's various 3D structural features.  

Table 2. Results of each model in LRGB (mean ± s.d. of performance in 4 runs) cited from [9]. 

Model PascalVOC-SP COCO-SP Peptides-func Peptides-struct PCQM-
Contact 

F1 score ↑ F1 score ↑ AP↑ MAE ↓ MRR ↑ 

GCN 0.1268 ± 0.0060 0.0841 ± 0.0010 0.5930 ± 0.0023 0.3496 ± 0.0013 0.3234 ± 0.0006 
Transformer+LapPE 0.2694 ± 0.0098 0.2618 ± 0.0031 0.6326 ± 0.0126 0.2529 ± 0.0016 0.3174 ± 0.0020 
SAN+LapPE 0.3230 ± 0.0039 0.2592 ± 0.0158 0.6384 ± 0.0121 0.2683 ± 0.0043 0.3350 ± 0.0003 
GPS 0.3748 ± 0.0109 0.3412 ± 0.0044 0.6535 ± 0.0041 0.2500 ± 0.0005 0.3337 ± 0.0006 

Only GCN, transformer, SAN, and GPS were evaluated in five LRGB datasets, shown in table 2. 
The experiment utilized LapPE positional encodings in both transformer and SAN and GPS with 
components. From the experimental results, graph transformers show better performance in five datasets 
in LRGB, which means they are equipped with a more powerful ability to capture long-range 
dependencies. 

5.  Conclusion 
In this paper, we discuss the viability and superiority of popular graph transformers in the current 
sequential recommendation task, analysing it in terms of principle and architecture. This paper shows 
the performance of the graph transformers and the current models applied in the SR task in 
Benchmarking-GNNs and Long-Range Graph Benchmark for different datasets. In the ablation studies, 
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the effectiveness of graph transformers on various benchmarks further supports the point that graph 
transformers, or their variations will perform well in sequential recommendation tasks.  

At present, graph transformer models with better performance are rarely used in sequential 
recommendation tasks. In the future, more graph transformer models for SR tasks will emerge to achieve 
more advanced prediction levels. Admittedly, the current graph transformer-based recommendation 
model has some limitations. The combination of GNN and transformer increases the model complexity 
to some extent, and the redundancy of the existing graph transformer structure has not been explored in 
detail. If these challenging tasks can be optimized in the future, this will have a non-negligible impact 
on the real-time and scalability of the graph transformer-based recommendation model. On the other 
hand, given the time-ordered developmental characteristics of recommendation systems, the dynamics 
of graph transformer-based recommendation models are insufficient. We can further investigate 
dynamic recommendation models to make them better at sequential recommendation tasks to 
accomplish dynamic user preference recommendations. 
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