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Abstract. The combination of the Internet of Things and deep learning technology is usually 

accompanied by many problems, such as limited bandwidth and computing resources. IoT 

combined with deep learning often causes system freezes or delays due to limited computing 

resources. Upgrading the hardware equipment of the IoT system requires a large economic 

cost, but using a lightweight deep learning model can reduce the consumption of hardware 

resources to adapt to the actual scene. In this paper, we combine IoT technology and improve a 

lightweight deep learning model, YOLOv5, to assist people in mask detection, vehicle 

counting, and target tracking, which does not take up too many computing resources. We 

deployed the improved YOLOv5 on the server side, and completed the training in the 

container. The weight file after training was deployed in Docker, and then combined with 

Kubernates to get the final experimental results. The resulting graph can be displayed by 

opening a browser at the edge node and entering the relevant IP address. Users can also 

perform certain operations on the results in the front end of the browser, such as drawing a 

horizontal line in the road to complete the local vehicle count. These operations are also fed 

back to the server for interaction with developers. For improved YOLOv5, the recognition 

speed and accuracy are faster than before. At the same time, compared with the previous 

version, the model itself requires less storage space and is easier to deploy, making the model 

easier to implement in the operation of edge nodes. Theoretical analysis and experimental 

results verify the feasibility and superiority of the proposed method. 
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1.  Introduction 

With increase in speed and bandwidth of internet, Internet of Things (IoT) is pushing the market and 

the life of people to a new level and knocking on the door with new opportunities for interactions with 

other fields, such as 5G [1], artificial intelligence [2] and so on. For IoT itself, it is an extended 

network based on the Internet. It combines various information sensing devices with the network to 

form a huge network, so that people can operate and manage by issuing instructions to the devices of 

this network. For example, our home appliances can be connected to a server through IoT technology, 
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and then users can use their mobile phones to command the server to control these furniture [3]. But 

with more and more devices adding IoT systems, IoT’s central processing platform will face a large 

amount of data processing. How to deal with these huge amounts of data, or how to achieve efficient 

scheduling in limited computing resources to prevent congestion, has become a hot research direction. 

This means that running such a large amount of data requires powerful hardware. At the same time, 

better strategies must be developed to prevent conflict. But in many real cases, we often get limited 

resources, such as no powerful GPU and CPU, insufficient human resources, and imperfect allocation 

strategies, so the existing IoT systems will perform unsatisfactorily. For example, when researchers 

use cameras to count vehicles, a single node can run and compute without overloading the core server. 

However, if multiple edge nodes start running, transmitting video, etc., the server may be overloaded. 

At the same time, human resources will also increase to ensure and maintain the normal operation of 

the system. Based on such situations, developing a lightweight and easy-to-deploy ’tool’ to assist 

people in serving IoT systems can not only reduce human resource consumption, but also help the 

system process large amounts of data more efficiently. 

To make IoT application be used in real-world scenarios, many researchers combine artificial 

intelligence technology with IoT [4] [5] [6]. Artificial intelligence can operate and maintain the IoT 

system like a human. For example, it can help the communication of the IoT system to allocate 

bandwidth reasonably, and it can also complete some monitoring on the system: vehicle counting, 

mask detection, etc. Different tasks often require different artificial intelligence models, which also 

involves detailed branches of AI. For AI itself, there are many branches, such as machine learning, 

deep learning, reinforcement learning, etc. Many of these branches can also intersect with each other, 

such as deep reinforcement learning. Deep learning is to learn the inherent laws and representation 

levels of sample data, and the information obtained during the learning process is of great help to the 

interpretation of the data. Its ultimate goal is to enable machines to have the ability to analyze and 

learn like humans, and to recognize data such as words, images, and sounds, like image recognition [7] 

[8] and segmentation [9] [10], speech recognition [11] [12], target tracking [13] [14], etc.. This 

technologies can be used in some special application scenarios, such as during the new crown 

epidemic, people need to wear masks. Identifying whether people are wearing masks can help the 

government implement effective epidemic prevention measures. Epidemic prevention personnel can 

capture pictures of people by calling the cameras in the IoT system, and then use AI for mask 

identification. 

In this paper, we combine the YOLOv5 model [15] with BiFPN [16] and Ghost-Net [17] to 

propose the improved YOLOv5, a lightweight model ,that can be used for dense object detection. This 

model is lightweight, which means that it does not require as much computational resources as larger 

models. Such a model does not preempt too many IoT system resources to keep itself running. This 

ensures that the system is not easily overloaded if multiple edge nodes start computing at the same 

time. At the same time, we combined Ghost-Net [17] to further reduce the redundant feature 

calculation in the image, which can be faster in speed. This can enhance the realtime performance of 

the system, reduce delays, and collect the latest mask wearing data at the first time. Finally, we 

introduce BiFPN [16] to replace the PANs network, in order to extract features bidirectionally. Doing 

so allows our model to have better detection performance than the original model when dealing with 

dense targets and small targets. On the basis again, we deploy this model on the IoT platform system, 

as shown in Fig. 1, which can effectively assist people in operations such as vehicle counting and 

mask detection. We collect videos from Pod Tracking and save it in Share Volume Store Videos. Our 

model is stored in Pod opendatacam. mongoDB is a database based on distributed file storage. The 

Pod RTSP Server is a real-time streaming protocol-based server, and its purpose is to transmit the 

processed data to the client. Pod HTTP Server is bound to an IP address and port number and listens 

for incoming TCP connections from clients on this address. Finally, you can open the web according 

to the corresponding port number to view the results. 

The main contributions of this article are summarized as follows.  
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• We use the Ghost convolution to replace the convolution in YOLOv5 and modify the PANet layer 

in YOLOv5 to EfficientDet-BiFPN, which can make the model become a lightweight one, and realize 

the bidirectional fusion of topdown and bottom-up deep and shallow features, and enhance the transfer 

of feature information between different network layers. 

• We combine the improved YOLOv5 model with IoT technology to make the system intelligent, 

which can assist in people counting and data collection in the real life situation. The IoT system can be 

easily deployed on the terminal of the server, and people can observe it by opening a specific web. 

 

Figure 1. Overview diagram of our approach. 

2.  Methodology 

2.1.  IoT system 

The establishment of the entire IoT system and how to deploy and operate on the edge node and 

Kubemetes platform are shown in Fig. 2. We combine the Dockerfile with the dependency file to 

create a docker file, and then upload the file to the docker hub. Furthermore, we store the YOLOv5 

configuration file and the improved configuration file in config.json, and participate in the 

development of Kubemetes [18] together with docker hub through configmap. Then run it in 

opendatacampod, and apply for video data from mongoDB pod through port 27017. Finally, we can 

open a browser through port: 8070, 8080, or 8090 to view the output results. 

 

Figure 2. Flowchart of the IoT system we use. 

And then, as shown in Fig. 1, this is the mapping of the system at the hardware level. We collect 

videos from Pod Tracking and save it in Share Volume Store Videos. Our model is stored in Pod 

opendatacam. mongoDB is a database based on distributed file storage. The Pod RTSP Server is a 

real-time streaming protocol-based server, and its purpose is to transmit the processed data to the 

client. Pod HTTP Server is bound to an IP address and port number and listens for incoming TCP 

connections from clients on this address. Finally, you can open the web according to the corresponding 

port number to view the results. 
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2.2.  YOLOv5 modification 

 

Figure 3. The structure of our proposed method. 

As shown in Fig. 3 and Fig. 4, the general structure of the improved YOLOv5 algorithm has not 

changed. We replaced the original CSP structure with Ghost Bottleneck, which can greatly optimize 

the parameter scale and computing resource consumption of the network without affecting the 

detection accuracy of network pre-training. There are many other ways to reduce redundant parameter 

computation and redundant features, such as atrous convolution [19]. The receptive field of atrous 

convolution is very large. When the amount of parameters is certain, ordinary convolution can only 

extract small blocks of features, while atrous convolution can increase the hole rate to make more 

overlapping sampling areas on the input feature map for each sampling, so as to obtain denser 

characteristic response. Atrous convolution can be used when the network layer needs a large 

receptive field, but the computing resources are limited and the number or size of the convolution 

kernel cannot be increased. But this also brings two problems: not all pixels participate in the 

calculation, so the obtained features are discontinuous, which is defective in pixel-level detection; the 

information using a large dilation rate is only effective for some large object segmentation, while for 

small objects it does not help. When our model detects masks, some of the masks have a very small 

proportion of the screen, or the video is blurry and the resolution is not high. These situations will lead 

to difficulties in sampling and thus cannot be accurately identified. Therefore, atrous convolution is 

not suitable for this scenario. 

 

Figure 4. The structure of YOLOv5. 

As shown in Fig. 5, the Module in GhostNet is divided into two steps to obtain the same number of 

feature maps as ordinary convolutions: i. smaller amount of convolution. ii. cheap operations. In this 

way, the feature maps of the upper and lower parts are phantoms of each other. The first step is to 

apply a traditional convolution operation to the input tensor to obtain a tensor of yellow feature maps 

from light to dark in the Fig. 3, also known as intrinsic features. Then, the linear operation represented 

by the ϕ function (Depthwise Separable Convolution) [20] [21] is applied to the feature map to 

generate a red feature map tensor from light to dark in the figure, and finally stacked together as the 

output of the Ghost Module, which is uesed to generate a corresponding Ghost feature map for a series 

of single-channel feature maps. 
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Figure 5. The Ghost module. 

Set the width of the input tensor to be w, the height to be h, the number of channels to be c, the 

number of channels of the output tensor to be n, and the size of the standard convolution kernel to be 

k*k. The conv here should not contain nonlinear activation functions. The output of feature maps in 

the Ghost Module can be divided into n/s groups, each of which is s feature maps. The s feature maps 

contain the calculation result of a standard convolution kernel and the result obtained by s-1 linear 

transformations. The operation of adding offsets is ignored, and the approximation task k*k is equal to 

d*d. Then the ratio of computational complexity between ordinary convolution and Ghost-Net is as 

follows: 

  (1) 

As shown in (1), using the Ghost Module to transform the standard convolution kernel can reduce 

the calculation amount and the number of parameters of the model by approximately s times. 

Based on advantages of Ghost Modules, the author introduces the Ghost bottleneck (G-bneck) 

specially designed for small CNNs, as shown in Fig. 6. Borrowing from MobileNetV2, ReLU is not 

used after the second Ghost module, and other layers apply BN and ReLU after each layer. For 

efficiency reasons, the initial convolution in the Ghost module is a point convolution. 

 

Figure 6. Ghost bottleneck with different parameters. 

And this structure mainly adopts the common design pattern of channel enlargement and reduction. 

It first passes through a Ghost Module that enlarges the number of channels, and then connects to a 

Ghost module that reduces the number of channels, so that the number of channels before and after 

remains unchanged, so as to perform a channel-by-channel addition operation with the original tensor 

connected through the shortcut. There are two types of bottlenecks of this type. The structure on the 

right side in Fig. 6 is based on the structure on the left, and a Depthwise Conv with stride=2 is added. 
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Correspondingly, in order to be able to add directly, the shortcut branch needs to perform a 

downsampling. 

And also, we replaced the Concat unit with BiFPN, which can realize the two-way fusion of top-

down and bottomup deep and shallow features, and enhance the transfer of feature information 

between different network layers. Because the resolutions of the feature maps of different layers are 

different, their contributions to the fused features are different, so weights are introduced in the feature 

fusion stage. Unlike PANs, PANs adds a bottom-up channel based on FPN, which makes PANs have 

better accuracy than FPN, but requires more parameters and computation. If the node with only one 

input edge and output edge in the PANs is removed, and if the input and output nodes are at the same 

level, an extra edge is added to fuse more features without increasing the cost. As shown in (2), there 

is no limit on weight, which may cause unstable training. In (2), the calculation of softmax is slow, 

which is especially prominent in the front end. In order to ensure that the weight is greater than 0, the 

relu function is used before the weight. In order to ensure that the weight is greater than 0, the relu 

function is used before the weight. (3) Similar accuracy to (2) but can be 30% faster. Based on it, 

BiFPN achieves similar accuracy to repeated FPN+PANet, but uses far fewer parameters and FLOPs. 

With additional weighted feature fusion, our BiFPN further achieves the best accuracy with fewer 

parameters and FLOPs. 

2.3.  BiFPN 

PANs [22] is an improved FPN algorithm [23] which adds a bottom-up channel, but it brings a 

problem, that is, a large amount of computation, and BiFPN [16] improves it on the basis of FPN, adds 

edges with contextual information to the original FPN module, and multiplies each edge with a 

corresponding weight. As shown in Fig. 7, compared with PANs, BiFPN adds residual links to 

enhance the representation ability of features; moreover, it removes nodes with a single input edge, 

because the nodes on the input edge do not perform feature fusion, so they have information 

comparison Less, there is no contribution to the final fusion, on the contrary, removal can also reduce 

the amount of calculation. At the same time, it also performs weight fusion, that is, adding a weight to 

each scale feature of the fusion to adjust the contribution of each scale. Among them, Fast-softmax is 

proposed to improve the detection speed. 

 

Figure 7. Structural comparison of PANs and BiFPN. 

Since different input features have different resolutions, their contributions to output features are 

usually unequal. So let each input add extra weight and let the network understand the importance of 

each input feature. M. Tan and his team have considered three ways to solve the problem: i. 

Unbounded fusion; ii. Fusion based on softmax; iii. Fast normalized fusion. 

As shown in (2), wi is a learnable weight that can represent vectors, scalars and multidimensional 

tensors. However, since the scalar weights are unbounded, the training will be unstable. Based on this, 

weight normalization is used to limit the value range. 
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  (2) 

Also, as shown in (3), (2) is combined with softmax yields (3). 

  (3) 

(3) Apply softmax to each weight such that all weights are normalized to the 0 to 1 range to 

represent their input importance. And then, (3) adopts a fast fusion method, which is (4), and its value 

is passed through the Relu function to ensure numerical stability, and the value of its normalized 

weight is also between 0 and 1. 

  (4) 

In general, Bi-FPN is equivalent to giving different weights to each layer for fusion, making the 

network pay more attention to important layers, and reducing the node connections of some 

unnecessary layers. 

3.  Hardware equipment and data preparation 

3.1.  BiFPN 

Our model and deployment of the iot system use the Ubuntu18.04 operating system, 16GB of 

memory, and a weak GPU acceleration. Several related servers are on this system.  

The Docker weight file and the Kubernetes deployment are both on the personal computer. The 

final viewing of the results via the web was also performed on a personal computer. 

3.2.  Dataset 

Our dataset comes from RMFD(Real-World Masked Face Dataset) [24]. The dataset is mainly divided 

into two parts: real face mask data and simulated mask face data. Among them, the real mask face 

recognition dataset contains 5,000 mask faces and 90,000 normal faces of 525 people. The simulated 

mask face recognition dataset includes a simulated mask face dataset of 10,000 people and 500,000 

faces. These images can be annotated with Labelme software to generate labels, and then divide the 

dataset. We use a ratio of 8:2 to divide the training and testing datasets in this article. 

3.3.  Performance measurements 

For the measurement of detection or recognition performance of machine learning model results, 

confusion metric is widely used, it is a performance-based metric, and the widely used metrics for 

model evaluation are discussed as follows: 

1. True Positive (TP): In attack detection, the TP indicates that Class A is correctly identified as 

belonging to Class A.  

2. True Negative (TN): This matrix indicates that Class A is correctly identified as not belonging to 

Class A.  

3. False Positive (FP): It indicates that Class A is not correctly identified as belonging to Class A.  

4. False Negative (FN): It indicates that Class A is not correctly identified as not belonging to Class 

A. 

However, using the metrics above, different measures can be made to better evaluate the model. 

For accurate detection, the classifier minimizes the values of the FP and FN metrics. However, the 

selected metrics used in this article are detailed below. 

Accuracy: In mask detection, it can be described as Whether or not wearing a mask is a false 

detection that does not match the real situation. However, using performance measurement metrics, 

the accuracy can be defined mathematically as 
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And we only used the above given equation for the proposed technique performance evaluation. 

 

Figure 8. The experimental result of our method. 

4.  Experimental results and analysis 

4.1.  Experimental results 

As shown in Fig. 8, this is the final result of our experiment after combining the IoT system with the 

improved YOLOv5 model. We opened the IP address and its port output by the server on the personal 

computer, and the results showed the real-time detection of masks. The experimental results will not 

be displayed at the beginning, because the CPU is used for computing, and it will take a while to 

appear. 

Table 1. Comparison of mask detection effects of different models. 

Model Mask Unmask FPS 

YOLOv4 95.12% 95.12% 74 

YOLOv5 96.62% 97.87% 107 

Faster R-CNN 95.78% 95.31% 71 

SSD 95.98% 96.63% 96 

GB-YOLO 97.08% 97.85% 128 

 

We first deployed the relevant Docker Image on the server, then combined it with Kubernetes, then 

we ran the container through Kubernetes, and finally opened the corresponding port through the web 

to see the result. 

At the same time, we also our model separately, as shown in Fig. 9 and compared it with other 

models, as shown in Table. I. We compare v4, v5, SSD, Faster R-CNN and our model. These models 

are all run on the original operating system, and the same dataset is used for experiments. Among 
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them, the test of the number of frames is mainly based on the video of mask detection, and the rest of 

the video such as vehicle counting is not included in it. 

 

Figure 9. The experimental result of our improved model. 

4.2.  System performance 

As shown in Fig.10, we recorded the operation of each part of the system when the IoT system was 

running. When the system starts to run the IoT system and activates a node, the GPU resources 

consumed are not large, and as the mask detection begins, the GPU and CPU speed up. Also always 

filled. However, compared with the previous v5 model, the detection effect can make better use of gpu 

resources. In the same case of full load, our method is faster and has a higher frame rate. Under the 

same limited computing power, our improved model can support detection of more objects. 

And we need less computing power for the same detection effect, which allows our model to 

independently detect other objects concurrently or run two improved models at the same time. 

 

Figure 10. The system performance of our method. 

5.  Conclusion 

In this paper, we successfully combine an IoT system and an improved YOLOv5 model for mask 

detection in daily life. Our method can well assist government personnel and antiepidemic workers to 
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count the wearing of masks, so as to formulate effective anti-epidemic policies. We use the lightweight 

model YOLOv5 and combine Ghost-Net and BiFPN on it, which enables it to exert more computing 

power with less computing resources. The improved YOLOv5 combined with our deployed IoT 

system can better perform concurrent operations, and different edge nodes can run different projects at 

the same time, such as vehicle counting, person tracking, mask detection, etc. Furthermore, this IoT 

system combined with YOLOv5 is easy to expand and deploy, and it is very easy to clone on the 

server. Its lightweight setting can help people maximize efficiency under the condition of limited 

computing power. 
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