
Application of YOLOv5 for mask detection on IoT

Cheng Huang1,4, Yishen Liu2,5, Jiahao Li1,6, Hao Tian3,7, and Haoyi Chen1,8

1The Chinese University of Hong Kong, Hong Kong SAR, China
2Perking University, Shenzhen, China
3The Hong Kong Polytechnic University, Hong Kong SAR, China

4chenghuang@link.cuhk.edu.hk
5Lyshen2021@163.com
6leejarvis1314@gmail.com
7tianhao7214@gmail.com
8chenhaoyi0430@163.com

Abstract. The combination of the Internet of Things and deep learning technology is usually

accompanied by many problems, such as limited bandwidth and computing resources. IoT

combined with deep learning often causes system freezes or delays due to limited computing

resources. Upgrading the hardware equipment of the IoT system requires a large economic

cost, but using a lightweight deep learning model can reduce the consumption of hardware

resources to adapt to the actual scene. In this paper, we combine IoT technology and improve a

lightweight deep learning model, YOLOv5, to assist people in mask detection, vehicle

counting, and target tracking, which does not take up too many computing resources. We

deployed the improved YOLOv5 on the server side, and completed the training in the

container. The weight file after training was deployed in Docker, and then combined with

Kubernates to get the final experimental results. The resulting graph can be displayed by

opening a browser at the edge node and entering the relevant IP address. Users can also

perform certain operations on the results in the front end of the browser, such as drawing a

horizontal line in the road to complete the local vehicle count. These operations are also fed

back to the server for interaction with developers. For improved YOLOv5, the recognition

speed and accuracy are faster than before. At the same time, compared with the previous

version, the model itself requires less storage space and is easier to deploy, making the model

easier to implement in the operation of edge nodes. Theoretical analysis and experimental

results verify the feasibility and superiority of the proposed method.

Keywords: Internet of Things, deep learning, YOLOv5, object detection.

1. Introduction

With increase in speed and bandwidth of internet, Internet of Things (IoT) is pushing the market and

the life of people to a new level and knocking on the door with new opportunities for interactions with

other fields, such as 5G [1], artificial intelligence [2] and so on. For IoT itself, it is an extended

network based on the Internet. It combines various information sensing devices with the network to

form a huge network, so that people can operate and manage by issuing instructions to the devices of

this network. For example, our home appliances can be connected to a server through IoT technology,

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

1

mailto:leejarvis1314@gmail.com

and then users can use their mobile phones to command the server to control these furniture [3]. But

with more and more devices adding IoT systems, IoT’s central processing platform will face a large

amount of data processing. How to deal with these huge amounts of data, or how to achieve efficient

scheduling in limited computing resources to prevent congestion, has become a hot research direction.

This means that running such a large amount of data requires powerful hardware. At the same time,

better strategies must be developed to prevent conflict. But in many real cases, we often get limited

resources, such as no powerful GPU and CPU, insufficient human resources, and imperfect allocation

strategies, so the existing IoT systems will perform unsatisfactorily. For example, when researchers

use cameras to count vehicles, a single node can run and compute without overloading the core server.

However, if multiple edge nodes start running, transmitting video, etc., the server may be overloaded.

At the same time, human resources will also increase to ensure and maintain the normal operation of

the system. Based on such situations, developing a lightweight and easy-to-deploy ’tool’ to assist

people in serving IoT systems can not only reduce human resource consumption, but also help the

system process large amounts of data more efficiently.

To make IoT application be used in real-world scenarios, many researchers combine artificial

intelligence technology with IoT [4] [5] [6]. Artificial intelligence can operate and maintain the IoT

system like a human. For example, it can help the communication of the IoT system to allocate

bandwidth reasonably, and it can also complete some monitoring on the system: vehicle counting,

mask detection, etc. Different tasks often require different artificial intelligence models, which also

involves detailed branches of AI. For AI itself, there are many branches, such as machine learning,

deep learning, reinforcement learning, etc. Many of these branches can also intersect with each other,

such as deep reinforcement learning. Deep learning is to learn the inherent laws and representation

levels of sample data, and the information obtained during the learning process is of great help to the

interpretation of the data. Its ultimate goal is to enable machines to have the ability to analyze and

learn like humans, and to recognize data such as words, images, and sounds, like image recognition [7]

[8] and segmentation [9] [10], speech recognition [11] [12], target tracking [13] [14], etc.. This

technologies can be used in some special application scenarios, such as during the new crown

epidemic, people need to wear masks. Identifying whether people are wearing masks can help the

government implement effective epidemic prevention measures. Epidemic prevention personnel can

capture pictures of people by calling the cameras in the IoT system, and then use AI for mask

identification.

In this paper, we combine the YOLOv5 model [15] with BiFPN [16] and Ghost-Net [17] to

propose the improved YOLOv5, a lightweight model ,that can be used for dense object detection. This

model is lightweight, which means that it does not require as much computational resources as larger

models. Such a model does not preempt too many IoT system resources to keep itself running. This

ensures that the system is not easily overloaded if multiple edge nodes start computing at the same

time. At the same time, we combined Ghost-Net [17] to further reduce the redundant feature

calculation in the image, which can be faster in speed. This can enhance the realtime performance of

the system, reduce delays, and collect the latest mask wearing data at the first time. Finally, we

introduce BiFPN [16] to replace the PANs network, in order to extract features bidirectionally. Doing

so allows our model to have better detection performance than the original model when dealing with

dense targets and small targets. On the basis again, we deploy this model on the IoT platform system,

as shown in Fig. 1, which can effectively assist people in operations such as vehicle counting and

mask detection. We collect videos from Pod Tracking and save it in Share Volume Store Videos. Our

model is stored in Pod opendatacam. mongoDB is a database based on distributed file storage. The

Pod RTSP Server is a real-time streaming protocol-based server, and its purpose is to transmit the

processed data to the client. Pod HTTP Server is bound to an IP address and port number and listens

for incoming TCP connections from clients on this address. Finally, you can open the web according

to the corresponding port number to view the results.

The main contributions of this article are summarized as follows.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

2

• We use the Ghost convolution to replace the convolution in YOLOv5 and modify the PANet layer

in YOLOv5 to EfficientDet-BiFPN, which can make the model become a lightweight one, and realize

the bidirectional fusion of topdown and bottom-up deep and shallow features, and enhance the transfer

of feature information between different network layers.

• We combine the improved YOLOv5 model with IoT technology to make the system intelligent,

which can assist in people counting and data collection in the real life situation. The IoT system can be

easily deployed on the terminal of the server, and people can observe it by opening a specific web.

Figure 1. Overview diagram of our approach.

2. Methodology

2.1. IoT system

The establishment of the entire IoT system and how to deploy and operate on the edge node and

Kubemetes platform are shown in Fig. 2. We combine the Dockerfile with the dependency file to

create a docker file, and then upload the file to the docker hub. Furthermore, we store the YOLOv5

configuration file and the improved configuration file in config.json, and participate in the

development of Kubemetes [18] together with docker hub through configmap. Then run it in

opendatacampod, and apply for video data from mongoDB pod through port 27017. Finally, we can

open a browser through port: 8070, 8080, or 8090 to view the output results.

Figure 2. Flowchart of the IoT system we use.

And then, as shown in Fig. 1, this is the mapping of the system at the hardware level. We collect

videos from Pod Tracking and save it in Share Volume Store Videos. Our model is stored in Pod

opendatacam. mongoDB is a database based on distributed file storage. The Pod RTSP Server is a

real-time streaming protocol-based server, and its purpose is to transmit the processed data to the

client. Pod HTTP Server is bound to an IP address and port number and listens for incoming TCP

connections from clients on this address. Finally, you can open the web according to the corresponding

port number to view the results.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

3

2.2. YOLOv5 modification

Figure 3. The structure of our proposed method.

As shown in Fig. 3 and Fig. 4, the general structure of the improved YOLOv5 algorithm has not

changed. We replaced the original CSP structure with Ghost Bottleneck, which can greatly optimize

the parameter scale and computing resource consumption of the network without affecting the

detection accuracy of network pre-training. There are many other ways to reduce redundant parameter

computation and redundant features, such as atrous convolution [19]. The receptive field of atrous

convolution is very large. When the amount of parameters is certain, ordinary convolution can only

extract small blocks of features, while atrous convolution can increase the hole rate to make more

overlapping sampling areas on the input feature map for each sampling, so as to obtain denser

characteristic response. Atrous convolution can be used when the network layer needs a large

receptive field, but the computing resources are limited and the number or size of the convolution

kernel cannot be increased. But this also brings two problems: not all pixels participate in the

calculation, so the obtained features are discontinuous, which is defective in pixel-level detection; the

information using a large dilation rate is only effective for some large object segmentation, while for

small objects it does not help. When our model detects masks, some of the masks have a very small

proportion of the screen, or the video is blurry and the resolution is not high. These situations will lead

to difficulties in sampling and thus cannot be accurately identified. Therefore, atrous convolution is

not suitable for this scenario.

Figure 4. The structure of YOLOv5.

As shown in Fig. 5, the Module in GhostNet is divided into two steps to obtain the same number of

feature maps as ordinary convolutions: i. smaller amount of convolution. ii. cheap operations. In this

way, the feature maps of the upper and lower parts are phantoms of each other. The first step is to

apply a traditional convolution operation to the input tensor to obtain a tensor of yellow feature maps

from light to dark in the Fig. 3, also known as intrinsic features. Then, the linear operation represented

by the ϕ function (Depthwise Separable Convolution) [20] [21] is applied to the feature map to

generate a red feature map tensor from light to dark in the figure, and finally stacked together as the

output of the Ghost Module, which is uesed to generate a corresponding Ghost feature map for a series

of single-channel feature maps.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

4

Figure 5. The Ghost module.

Set the width of the input tensor to be w, the height to be h, the number of channels to be c, the

number of channels of the output tensor to be n, and the size of the standard convolution kernel to be

k*k. The conv here should not contain nonlinear activation functions. The output of feature maps in

the Ghost Module can be divided into n/s groups, each of which is s feature maps. The s feature maps

contain the calculation result of a standard convolution kernel and the result obtained by s-1 linear

transformations. The operation of adding offsets is ignored, and the approximation task k*k is equal to

d*d. Then the ratio of computational complexity between ordinary convolution and Ghost-Net is as

follows:

 (1)

As shown in (1), using the Ghost Module to transform the standard convolution kernel can reduce

the calculation amount and the number of parameters of the model by approximately s times.

Based on advantages of Ghost Modules, the author introduces the Ghost bottleneck (G-bneck)

specially designed for small CNNs, as shown in Fig. 6. Borrowing from MobileNetV2, ReLU is not

used after the second Ghost module, and other layers apply BN and ReLU after each layer. For

efficiency reasons, the initial convolution in the Ghost module is a point convolution.

Figure 6. Ghost bottleneck with different parameters.

And this structure mainly adopts the common design pattern of channel enlargement and reduction.

It first passes through a Ghost Module that enlarges the number of channels, and then connects to a

Ghost module that reduces the number of channels, so that the number of channels before and after

remains unchanged, so as to perform a channel-by-channel addition operation with the original tensor

connected through the shortcut. There are two types of bottlenecks of this type. The structure on the

right side in Fig. 6 is based on the structure on the left, and a Depthwise Conv with stride=2 is added.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

5

Correspondingly, in order to be able to add directly, the shortcut branch needs to perform a

downsampling.

And also, we replaced the Concat unit with BiFPN, which can realize the two-way fusion of top-

down and bottomup deep and shallow features, and enhance the transfer of feature information

between different network layers. Because the resolutions of the feature maps of different layers are

different, their contributions to the fused features are different, so weights are introduced in the feature

fusion stage. Unlike PANs, PANs adds a bottom-up channel based on FPN, which makes PANs have

better accuracy than FPN, but requires more parameters and computation. If the node with only one

input edge and output edge in the PANs is removed, and if the input and output nodes are at the same

level, an extra edge is added to fuse more features without increasing the cost. As shown in (2), there

is no limit on weight, which may cause unstable training. In (2), the calculation of softmax is slow,

which is especially prominent in the front end. In order to ensure that the weight is greater than 0, the

relu function is used before the weight. In order to ensure that the weight is greater than 0, the relu

function is used before the weight. (3) Similar accuracy to (2) but can be 30% faster. Based on it,

BiFPN achieves similar accuracy to repeated FPN+PANet, but uses far fewer parameters and FLOPs.

With additional weighted feature fusion, our BiFPN further achieves the best accuracy with fewer

parameters and FLOPs.

2.3. BiFPN

PANs [22] is an improved FPN algorithm [23] which adds a bottom-up channel, but it brings a

problem, that is, a large amount of computation, and BiFPN [16] improves it on the basis of FPN, adds

edges with contextual information to the original FPN module, and multiplies each edge with a

corresponding weight. As shown in Fig. 7, compared with PANs, BiFPN adds residual links to

enhance the representation ability of features; moreover, it removes nodes with a single input edge,

because the nodes on the input edge do not perform feature fusion, so they have information

comparison Less, there is no contribution to the final fusion, on the contrary, removal can also reduce

the amount of calculation. At the same time, it also performs weight fusion, that is, adding a weight to

each scale feature of the fusion to adjust the contribution of each scale. Among them, Fast-softmax is

proposed to improve the detection speed.

Figure 7. Structural comparison of PANs and BiFPN.

Since different input features have different resolutions, their contributions to output features are

usually unequal. So let each input add extra weight and let the network understand the importance of

each input feature. M. Tan and his team have considered three ways to solve the problem: i.

Unbounded fusion; ii. Fusion based on softmax; iii. Fast normalized fusion.

As shown in (2), wi is a learnable weight that can represent vectors, scalars and multidimensional

tensors. However, since the scalar weights are unbounded, the training will be unstable. Based on this,

weight normalization is used to limit the value range.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

6

 (2)

Also, as shown in (3), (2) is combined with softmax yields (3).

 (3)

(3) Apply softmax to each weight such that all weights are normalized to the 0 to 1 range to

represent their input importance. And then, (3) adopts a fast fusion method, which is (4), and its value

is passed through the Relu function to ensure numerical stability, and the value of its normalized

weight is also between 0 and 1.

 (4)

In general, Bi-FPN is equivalent to giving different weights to each layer for fusion, making the

network pay more attention to important layers, and reducing the node connections of some

unnecessary layers.

3. Hardware equipment and data preparation

3.1. BiFPN

Our model and deployment of the iot system use the Ubuntu18.04 operating system, 16GB of

memory, and a weak GPU acceleration. Several related servers are on this system.

The Docker weight file and the Kubernetes deployment are both on the personal computer. The

final viewing of the results via the web was also performed on a personal computer.

3.2. Dataset

Our dataset comes from RMFD(Real-World Masked Face Dataset) [24]. The dataset is mainly divided

into two parts: real face mask data and simulated mask face data. Among them, the real mask face

recognition dataset contains 5,000 mask faces and 90,000 normal faces of 525 people. The simulated

mask face recognition dataset includes a simulated mask face dataset of 10,000 people and 500,000

faces. These images can be annotated with Labelme software to generate labels, and then divide the

dataset. We use a ratio of 8:2 to divide the training and testing datasets in this article.

3.3. Performance measurements

For the measurement of detection or recognition performance of machine learning model results,

confusion metric is widely used, it is a performance-based metric, and the widely used metrics for

model evaluation are discussed as follows:

1. True Positive (TP): In attack detection, the TP indicates that Class A is correctly identified as

belonging to Class A.

2. True Negative (TN): This matrix indicates that Class A is correctly identified as not belonging to

Class A.

3. False Positive (FP): It indicates that Class A is not correctly identified as belonging to Class A.

4. False Negative (FN): It indicates that Class A is not correctly identified as not belonging to Class

A.

However, using the metrics above, different measures can be made to better evaluate the model.

For accurate detection, the classifier minimizes the values of the FP and FN metrics. However, the

selected metrics used in this article are detailed below.

Accuracy: In mask detection, it can be described as Whether or not wearing a mask is a false

detection that does not match the real situation. However, using performance measurement metrics,

the accuracy can be defined mathematically as

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

7

 (5)

And we only used the above given equation for the proposed technique performance evaluation.

Figure 8. The experimental result of our method.

4. Experimental results and analysis

4.1. Experimental results

As shown in Fig. 8, this is the final result of our experiment after combining the IoT system with the

improved YOLOv5 model. We opened the IP address and its port output by the server on the personal

computer, and the results showed the real-time detection of masks. The experimental results will not

be displayed at the beginning, because the CPU is used for computing, and it will take a while to

appear.

Table 1. Comparison of mask detection effects of different models.

Model Mask Unmask FPS

YOLOv4 95.12% 95.12% 74

YOLOv5 96.62% 97.87% 107

Faster R-CNN 95.78% 95.31% 71

SSD 95.98% 96.63% 96

GB-YOLO 97.08% 97.85% 128

We first deployed the relevant Docker Image on the server, then combined it with Kubernetes, then

we ran the container through Kubernetes, and finally opened the corresponding port through the web

to see the result.

At the same time, we also our model separately, as shown in Fig. 9 and compared it with other

models, as shown in Table. I. We compare v4, v5, SSD, Faster R-CNN and our model. These models

are all run on the original operating system, and the same dataset is used for experiments. Among

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

8

them, the test of the number of frames is mainly based on the video of mask detection, and the rest of

the video such as vehicle counting is not included in it.

Figure 9. The experimental result of our improved model.

4.2. System performance

As shown in Fig.10, we recorded the operation of each part of the system when the IoT system was

running. When the system starts to run the IoT system and activates a node, the GPU resources

consumed are not large, and as the mask detection begins, the GPU and CPU speed up. Also always

filled. However, compared with the previous v5 model, the detection effect can make better use of gpu

resources. In the same case of full load, our method is faster and has a higher frame rate. Under the

same limited computing power, our improved model can support detection of more objects.

And we need less computing power for the same detection effect, which allows our model to

independently detect other objects concurrently or run two improved models at the same time.

Figure 10. The system performance of our method.

5. Conclusion

In this paper, we successfully combine an IoT system and an improved YOLOv5 model for mask

detection in daily life. Our method can well assist government personnel and antiepidemic workers to

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

9

count the wearing of masks, so as to formulate effective anti-epidemic policies. We use the lightweight

model YOLOv5 and combine Ghost-Net and BiFPN on it, which enables it to exert more computing

power with less computing resources. The improved YOLOv5 combined with our deployed IoT

system can better perform concurrent operations, and different edge nodes can run different projects at

the same time, such as vehicle counting, person tracking, mask detection, etc. Furthermore, this IoT

system combined with YOLOv5 is easy to expand and deploy, and it is very easy to clone on the

server. Its lightweight setting can help people maximize efficiency under the condition of limited

computing power.

References

[1] L. Chettri and R. Bera, ”A Comprehensive Survey on Internet of Things (IoT) Toward 5G

Wireless Systems,” in IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32, Jan. 2020.

[2] G. Xu et al., ”TT-SVD: An Efficient Sparse Decision-Making Model With Two-Way Trust

Recommendation in the AI-Enabled IoT Systems,” in IEEE Internet of Things Journal, vol.

8, no. 12, pp. 9559-9567, 15 June15, 2021.

[3] J. Hwang, L. Nkenyereye, N. Sung, J. Kim and J. Song, ”IoT Service Slicing and Task

Offloading for Edge Computing,” in IEEE Internet of Things Journal, vol. 8, no. 14, pp.

11526-11547, 15 July15, 2021.

[4] F. Hussain, R. Hussain, S. A. Hassan and E. Hossain, ”Machine Learning in IoT Security:

Current Solutions and Future Challenges,” in IEEE Communications Surveys & Tutorials,

vol. 22, no. 3, pp. 1686-1721, thirdquarter 2020.

[5] B. Yuan, J. Wang, P. Wu and X. Qing, ”IoT Malware Classification Based on Lightweight

Convolutional Neural Networks,” in IEEE Internet of Things Journal, vol. 9, no. 5, pp. 3770-

3783, 1 March1, 2022.

[6] B. Mao, Y. Kawamoto and N. Kato, ”AI-Based Joint Optimization of QoS and Security for 6G

Energy Harvesting Internet of Things,” in IEEE Internet of Things Journal, vol. 7, no. 8, pp.

7032-7042, Aug. 2020.

[7] R. He, J. Cao, L. Song, Z. Sun and T. Tan, ”Adversarial Cross-Spectral Face Completion for

NIR-VIS Face Recognition,” in IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 42, no. 5, pp. 1025- 1037, 1 May 2020.

[8] C. Fu, X. Wu, Y. Hu, H. Huang and R. He, ”DVG-Face: Dual Variational Generation for

Heterogeneous Face Recognition,” in IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 44, no. 6, pp. 2938- 2952, 1 June 2022.

[9] K. He, G. Gkioxari, P. Dollar and R. Girshick, ”Mask R-CNN,” in IEEE ´ Transactions on

Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386-397, 1 Feb. 2020.

[10] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh and J. Liang, ”UNet++: Redesigning Skip

Connections to Exploit Multiscale Features in Image Segmentation,” in IEEE Transactions

on Medical Imaging, vol. 39, no. 6, pp. 1856-1867, June 2020.

[11] C. Fan, J. Yi, J. Tao, Z. Tian, B. Liu and Z. Wen, ”Gated Recurrent Fusion With Joint Training

Framework for Robust End-to-End Speech Recognition,” in IEEE/ACM Transactions on

Audio, Speech, and Language Processing, vol. 29, pp. 198-209, 2021.

[12] L. Chai, J. Du, Q. -F. Liu and C. -H. Lee, ”A Cross-Entropy-Guided Measure (CEGM) for

Assessing Speech Recognition Performance and Optimizing DNN-Based Speech

Enhancement,” in IEEE/ACM Transactions on Audio, Speech, and Language Processing,

vol. 29, pp. 106-117, 2021.

[13] Z. Zhang, B. Zhong, S. Zhang, Z. Tang, X. Liu and Z. Zhang, ”Distractor-Aware Fast Tracking

via Dynamic Convolutions and MOT Philosophy,” 2021 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2021, pp. 1024-1033.

[14] N. Wang, W. Zhou, J. Wang and H. Li, ”Transformer Meets Tracker: Exploiting Temporal

Context for Robust Visual Tracking,” 2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2021, pp. 1571-1580.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

10

[15] YOLOv5, https://github.com/ultralytics/yolov5.

[16] M. Tan, R. Pang and Q. V. Le, ”EfficientDet: Scalable and Efficient Object Detection,” 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp.

10778-10787.

[17] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu and C. Xu, ”GhostNet: More Features From Cheap

Operations,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2020, pp. 1577- 1586.

[18] Kubemetes, https://kubernetes.io/.

[19] L. -C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, ”DeepLab: Semantic

Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

40, no. 4, pp. 834-848, 1 April 2018.

[20] L. Sifre and S. Mallat, ”Rigid-motion scattering for texture classification”, arXiv:1403.1687

[cs], Mar. 2014.

[21] A. Howard et al., ”Searching for MobileNetV3,” 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), 2019, pp. 1314- 1324.

[22] S. Liu, L. Qi, H. Qin, J. Shi and J. Jia, ”Path Aggregation Network for Instance Segmentation,”

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 8759-

8768.

[23] T. -Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan and S. Belongie, ´ ”Feature Pyramid

Networks for Object Detection,” 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017, pp. 936-944, doi: 10.1109/CVPR.2017.106.

[24] Real-World Masked Face Dataset, https://github.com/Xzhangyang/Real-World-Masked-Face-

Dataset.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230708

11

https://github.com/ultralytics/yolov5

