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Abstract. This paper proposes a novel model named TrajTransGCN for taxi trajectory prediction, 

which leverages the power of both graph convolutional networks (GCNs) and Transformer. 

TrajTransGCN first passes the input through the GCN layer and then combines the GCN outputs 

with one-hot encoded categorical features as input to the transformer layer. This paper evaluates. 

TrajTransGCN uses real-world taxi trajectory datasets in Porto and compares it against several 

baselines. The experimental results show that TrajTransGCN outperforms all the other models 

in terms of both RMSE and MAPE. Specifically, the model achieves an RMSE of 0.0247 and a 

MAPE of 0.09%, which are significantly lower than those of the other models. The results 

demonstrate the effectiveness of the proposed model in predicting taxi trajectories, indicating the 

potential of leveraging both GCN and transformer layers in trajectory prediction tasks. In 

addition, this paper includes ablation experiments to demonstrate the effectiveness of using one-

hot encodings of classification labels in complex real-time scenarios. In addition, a parameter 

study is carried out to examine how the TrajTransGCN's performance is impacted by the learning 

rate, the quantity of Transformer layers, and the size of the hidden dimension of the Transformer 

layer. 

Keywords: trajectory prediction, deep learning, transformer, graph convolutional network.  

1.  Introduction 

Trajectory prediction is a crucial task in many applications, such as autonomous driving, pedestrian 

tracking, and unmanned aerial vehicles [1-3]. The high accuracy of trajectory prediction entitles 

governments to contribute appropriate portions of investments in construction in different regions. 

Besides, predicting the trajectory of various vehicles enables autonomous driving vehicles smarter like 

humans, as they are provided with more valuable data, which is an essential base for smart cities. 

Deep learning methods, such as Recurrent Neural Networks, Convolutional Neural Networks 

(CNNs), and Generative Adversarial Networks, have been extensively used in this field recently [4-5]. 

Recurrent Neural Networks show a great advantage in historical time series. Convolutional Neural 

Networks are highly capable of considering trajectory data as a two-dimensional image so that the spatial 

relationship of objects can be well processed and Generative Adversarial Networks can generate 

multiple possible trajectories and choose the most likely one. 

Processing sequence coordinates through GNNs can utilize their powerful ability to extract and 

encode features of nodes in the sequence, thus obtaining richer feature representation. The transformer 
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model excels at capturing the temporal correlation between nodes and specializes in processing elements 

in the sequence in parallel and has a fast-processing speed. It has shown excellent performance in long 

sequence modeling tasks with its strong parallel computing ability and powerful interpretability.  

By combining these two methods, our approach aims to capture both the spatial-temporal 

dependencies and the relationships between objects in a scene and therefore achieve real-time trajectory 

prediction in various scenarios that require it. However, these methods often struggle with modeling 

long-term dependencies and spatial-temporal information. 

One limitation of GNNs in trajectory prediction is that the performance of GNN may be affected by 

the structure of the graph. For example, if the graph structure is highly sparse or contains isolated nodes, 

GNN may not be able to adequately propagate information to nodes. Additionally, GNN is also 

susceptible to the influence of noise and outliers in the input data, like the loss and inaccuracy of GPS 

coordinates when locating the vehicles, which may lead to a decrease in model performance. Although 

the transformer model has shown promise in fields such as natural language processing and others, it 

might be restricted in how it treats time-series data. For example, if there are long-term dependencies in 

the time series, the transformer may not be able to capture them. Additionally, if the distribution of the 

input data is uneven, appropriate adjustments may need to be made to the transformer model, which 

requires high skills and a long time. 

This paper proposes a novel approach for trajectory prediction that combines the power of 

Transformer networks and Graph Convolutional Networks (GCNs) for their powerful ability to handle 

dynamic graph data, scalability, interpretability, and flexibility, developing a Transformer-enhanced 

Graph Convolutional Network (TrajTransGCN) for Trajectory Prediction. 

2.  Related work 

2.1.  Trajectory prediction 

Early methods for trajectory prediction were primarily based on algorithms that utilized machine 

learning, including linear regression, logistic regression, and decision trees[6-8]. These methods 

typically relied on statistical features of trajectory data, such as mean, standard deviation, maximum, 

minimum, and similarity between trajectories, to make predictions. Additionally, some rule-based 

systems, such as path planning based on traffic rules, were used for predicting pedestrian and vehicle 

trajectories. However, due to the limited data collection and processing capabilities available at the time, 

trajectory data usually only contained basic location information, such as the starting point, endpoint, 

and route taken, making it difficult to extract more information for prediction. If inputs of machine 

learning models are poorly labeled, then the algorithm’s outputs will directly reflect these inaccuracies 

[9]. Furthermore, the method of data processing is likely to result in multicollinearity of the input data. 

The existence of multicollinearity in traditional machine learning trajectory prediction can lead to 

inaccurate parameter estimation, overestimation or underestimation of the effects of explanatory 

variables, decreased predictive ability and interpretability of the model. It may prevent the model from 

fully utilizing the information in the trajectory data, thus affecting the accuracy and stability of the 

prediction results. 

With the advancement of deep learning technology, trajectory prediction research is increasingly 

starting to turn to deep learning techniques. There has been a significant amount of research in the field 

of trajectory prediction. One of the most popular approaches is to use Recurrent Neural Networks, such 

as Long Short-Term Memory networks to predict time series data [10]. Another approach is to utilise 

generative adversarial networks so as to generate a multimodal trajectory prediction model [11-12]. 

These methods can not only handle high-dimensional, nonlinear, non-stationary, and unconventional 

trajectory data, but also automatically learn the feature representation and patterns of trajectory data, 

improving the accuracy and stability of trajectory prediction. 
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2.2.  Transformer in trajectory prediction 

In the area of trajectory prediction, the Transformer network has become more well-known recently. It 

was initially used as a translation model in 2017 in Natural Language Processing (NLP) [13]. With its 

encoder-decoder structure, complete reliance on self-attention, and capacity for parallel computation, it 

was able to solve the issues of long-term dependencies in input and output while significantly reducing 

the consumption of computational resources. However, it is right due to the parallel computing 

capability of Transformer, its ability to capture global information through self-attention, and its 

capacity to model long-term dependencies in sequences that it has shown excellent performance in 

sequence modeling tasks and it has enormous potential in various fields. As a result, people have 

gradually applied Transformers to other fields such as image processing and prediction Trajectory 

prediction is one of the typical applications of predictive modeling, and trajectory prediction based on 

the Transformer model has also been thriving. In 2018, Zhang et al. proposed a convolutional sub-

network to control each attention head's importance to learn on Large and Spatiotemporal Graphs, which 

is a pioneer of transformer prediction works [14]. The Graph-based Spatial Transformer in 2022 can 

predict numerous paths based on a historical trajectory by simulating multiscale graph-based spatial 

transformers in conjunction with the trajectory smoothing algorithm "Memory Replay" which makes 

use of a memory graph [15]. Transformer networks have been an ascending trend in the deep learning 

field. 

The attention mechanism has been increasingly applied in the field of trajectory prediction to improve 

the interpretability of the model. The attention mechanism assigns weights to different parts of the input 

sequence according to their importance, and the weighted sum of the sequence is then used to make 

predictions. In trajectory prediction, the attention mechanism permits the model to selectively 

concentrate on the most relevant parts of the trajectory history, such as areas with high traffic congestion 

or frequent changes in direction. This helps to improve the accuracy and interpretability of the model, 

making it easier to understand why certain predictions are made. 

2.3.  GNNS in trajectory prediction 

Graph Neural Networks (GNNs) are a family of deep learning models built on graph-structured data, 

with origins in the PageRank algorithm in graph theory and convolutional operations in Convolutional 

Neural Networks (CNNs). 

Early GNN models were relatively simple, such as the spectral convolution model based on the graph 

Laplacian matrix. The concept of GNN was first proposed by Marco Gori et al in 2005 [16]. They 

proposed a novel neural network model that can handle graph inputs that are cyclic, directed, undirected, 

or even a mixture of these. Nonetheless, how to deal with domains where the linkages, which were not 

known beforehand, remained to be inferred. With the advent of deep learning, GNN models have, 

moreover, received a great deal of study and application in recent years. In 2016, Kipf, T. N., & Welling 

et al simplified the Graph Convolutional Network (GCN) to extract and learn representations of graph-

structured data through convolutional operations [17]. A GCN learns node representations by 

aggregating information from neighboring nodes in the graph, which captures the local structure of the 

graph. And it can operate on graphs of arbitrary sizes and shapes, making them very flexible and 

applicable to a wide range of problems. GAT is a type of graph neural network introduced by Veličković 

et al. in 2018 [18]. It employs a multi-head attention mechanism to aggregate information from 

neighboring nodes in a graph, allowing it to capture complex and non-linear relationships between nodes. 

In the field of trajectory prediction, GNNs have also been widely applied. Socially Acceptable 

Trajectories with Generative Adversarial Networks (GAN) is a GAN-based trajectory prediction model 

that uses a GNN-based social pooling operation to model neighboring pedestrians [19]. Combining tools 

from sequence prediction and generative adversarial networks, it can capture the inherently multimodal 

human motion. Spatial-Temporal Graph Convolutional Networks is a model of dynamic skeletons based 

on spatiotemporal graph convolutional neural networks that can predict city traffic flows at specific time 

intervals [20]. It surpasses the constraints of previous methods by automatically acquiring spatial and 

temporal patterns from data through autonomous learning. 
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3.  Preliminaries 

3.1.  Dataset 

The dataset includes the trajectories of all 442 taxis operating in the Portuguese city of Porto for the 

entire year (from 01/07/2013 to 06/30/2014). Using mobile data terminals that have been installed in the 

cars, these taxis are controlled by a dispatch center for taxis. Each data sample represents a finished trip. 

Nine features altogether are present. Table 1 provides an illustration of a trip ID and description. 

Table 1. One example of a trip ID and descriptions of features. 

Feature Value Description 

TRIP_ID 1372636858620000589 A distinct identifier for each taxi travel 

CALL_TYPE C 

How to request this service 

‘A’ (from the central) 

‘B’ (to a taxi driver) 

‘C’ (on a stochastic street) 

ORIGIN_CALL NaN Whether a phone call is used 

ORIGIN_STAND NaN Whether a call stand was utilized 

TAXI_ID 20000589 A distinguishing mark for the taxi driver 

TIMESTAMP 1372636858 Unix Timestamp (in seconds). 

DAY_TYPE A The daytype on which each trip began. 

MISSING_DATA False 
After the GPS data stream is finished, FALSE 

When one (or more) locations are absent, TRUE 

POLYLINE 

[[-8.618643,41.141412],[-

8.618499,41.141376],…,[-

8.620326,41.14251],…,] 

A list of GPS coordinates. Each pair of 

coordinates is also identified by the same 

brackets as [LONGITUDE, LATITUDE]. The 

last list item corresponds to the trip’s destination 

while the first one represents its start. The 

scatters of the first polylines and the last 

polylines can be clearly seen in Figure 1 

 

 

Figure 1. Scatters of the first polylines and the last polylines of each trip. 
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3.2.  Definitions 

Definition 1 (Time-series spatial coordinates of Trajectory). This paper partitions 𝑵 trajectories into a 

series of coordinates(𝒍𝒐𝒏, 𝒍𝒂𝒕) for time intervals 𝒕 = 𝟏, … . . 𝑻, … , 𝑻 + 𝟒 and the unit of t is 15 seconds. 

Each coordinate describes a spatioal region of a taxi. These coordinates are represented as nodes in the 

graph neural networks and connected in a time-dependent graph structure. 

Definition 2 (Categorical features). A set of categorical features  𝑪 = 𝑪𝟏, 𝑪𝟐, … , 𝑪𝟓  that describe 

different characteristics of the geographic area under consideration. These features are processed as one-

hot encoding vectors and combined with the GCN layer output of the time series GPS coordinates, and 

then they enter the transformer layer together.  

Definition 3 (Graph). A graph is a mathematical depiction of a collection of things called nodes 

connected by a collection of edges. Each taxi's GPS point is treated as a node in the TrajTransGCN, and 

the edges between the nodes indicate their geographic and temporal interactions. 

3.3.  Problem definition 

Taking 𝑋 consisting of certain categorical features, a sequence of former longitude and latitude values 

as the input dataset. This paper presents each id in 𝑋 as: 

 𝑋𝑖 = {𝐶1,𝑖, 𝐶2,𝑖, 𝐶5,𝑖, 𝑙𝑜𝑛𝑇,𝑖, 𝑙𝑎𝑡𝑇,𝑖, … , 𝑙𝑜𝑛1,𝑖, 𝑙𝑎𝑡1,𝑖}, (1) 

where 𝐶 = 𝐶1,𝑖, 𝐶2,𝑖, … , 𝐶5,𝑖  are categorical features which respectively refer to call, location, stand, 

season, and day types. The problem is to precisely predict the last 4 longitude and latitude coordinates: 

 𝑦𝑙𝑜𝑛,𝑙𝑎𝑡 = {(𝑙𝑜𝑛𝑇+1 𝑙𝑎𝑡𝑇+1), … , (𝑙𝑜𝑛𝑇+4 𝑙𝑎𝑡𝑇+4)}, (2) 

where 𝑦𝑙𝑜𝑛,𝑙𝑎𝑡 is the predicted trajectory coordinates of all samples and each coordinate consists 𝑙𝑜𝑛 and 

𝑙𝑎𝑡, which refers to longitude and latitude, respectively. 

4.  Methodology 

4.1.  Overview 

This paper aims to accurately forecast the future trajectory of taxis. Simply expressed, this paper 

approaches it by meticulous data preprocessing, integrating GCN with the transformer model and taking 

classification features as additional inputs, and combining the inputs to GCN to enter the transformer 

layer. This paper also lists some possible applications of the work which contains urban traffic 

management, ride-hailing and logistics, and so on. The whole process is depicted in Figure 2. 

 

Figure 2. Overall framework. 
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4.2.  Trajectory preprocessing 

This paper takes several steps to ensure the quality and integrity of our dataset. First of all, this paper 

starts with the data cleaning process, where this paper drops the samples with missing values or abnormal 

values during data cleaning to make the initial quality and the reliability of the data. As for categorical 

features, this paper categorizes whether a phone call was used, whether a call stand was utilized, and 

whether data is missing into two categories with values of 0 and 1. Additionally, this paper categorizes 

call types into three categories with values of 1, 2, and 3, and extracts month and hour information from 

timestamps. Months (1-12) are classified into four categories based on seasons: spring (1-3), summer 

(4-6), autumn (7-9), and winter (10-12), while hours (1-24) are categorized into four groups based on 

time of day: early morning (1-6), morning (7-12), afternoon (13-18), and night (19-24). The features 

after categorization are summarized in Table 2 

Table 2. Features after categorization. 

Feature Value 

ORIGIN_CALL 
‘0’ (yes) 

‘1’ (no) 

ORIGIN_STAND 
‘0’ (yes) 

‘1’' (no) 

CALL_TYPE 

‘1’ (from the central) 

‘2’ (to a taxi driver) 

‘3’ (on a random street) 

SEASON 

‘1’ (spring) 

‘2’ (summer) 

‘3’ (autumn) 

‘4’ (winter) 

DAY 

‘1’ (before dawn) 

‘2’ (morning) 

‘3’ (afternoon) 

‘4’ (night) 

After categorizing the indicators, this paper performs the one-hot encoding on them, whose 

importance lies in converting categorical features into fixed-length vectors where only one element is 1 

and the rest are 0s and ensuring that the distances between different values are equal. These 0-or-1 values 

are abundant categorical information about the real-time situation, which will later be one kind of input 

data of transformer layers. 

In terms of time-series values, this paper extracts the coordinates (longitudes, latitudes) in the 

condition of taxis driving for 11 minutes, which is the average travel time for all samples, resulting in 

63191 samples of dataset. Due to the GPS positioning interval of taxi trajectory data being 15 seconds, 

this paper obtains 44 time-series longitude and latitude coordinates in each sample. Then this paper takes 

out the last 4 time series of longitude and latitude coordinates among these 44 as the prediction values 

and uses the remaining 40 as a part of the input data. 

To construct the adjacency matrix for our graph-based trajectory prediction models, this paper 

created edges between all pairs of time steps within each sample. Specifically, this paper iterated over 

each sample, represented by 40-time steps, and created edges between each time step and the next four 

consecutive time steps, resulting in a total of 1560 edges per sample. The resulting edge list was then 

used to construct the adjacency matrix for our graph convolutional network (GCN). 

Overall, this paper has rich input data: each sample has 40 time series of latitude and longitude 

coordinates, an adjacency matrix, and one-hot encoded values for the classification indicators, laying a 

solid foundation for future model training and evaluation.  
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4.3.  TrajTransGCN 

This paper proposes a neoteric model in taxi trajectory prediction field using a combination of 

Transformer and Graph Neural Networks (GNN).  

The spatial connections between the GPS locations are recorded using the GNN module. This paper 

chooses a Graph Convolution Network (GCN) model. By representing the data as a graph, with the 

locations as nodes and the taxis' movements as edges, GCNs can learn to capture the spatial patterns and 

dependencies between different locations. Specifically, this paper uses a two-layer GCN to encode the 

graph structure of the GPS coordinates. The first layer takes the time series GPS coordinates and the 

related adjacency matrix as input and outputs a hidden representation of size 16, while the second layer 

further refines the hidden representation to size 2. The output of the GCN is then concatenated with the 

one-hot encoded values of classification features and fed into the Transformer module. 

This paper further processes the trajectory encoding using a Transformer model which is used to 

capture the temporal dependencies among the GPS coordinates. The Transformer model consists of 1 

Transformer Encoder layer where this paper uses one Multi-head Attention layer, two fully connected 

layers, as well as Layer Normalization and Dropout operations. Combining the result from the GCN 

layer and the one-hot coding values of categorical features as input, this paper fully leverages the 

advantages of the transformer model.  Finally, this paper uses a fully connected layer to transform the 

Encoder output into the final prediction result with a dimension of 8. 

4.3.1.  Graph convolutional network. GCNs are a type of neural network that can handle graph-

structured data. They perform convolution operations on graphs by transforming the graph structure into 

matrix operations. Specifically, GCN's convolutional operation includes 

1. Information propagation: according to the graph structure, the features of each node are weighted 

and summed with the features of its neighboring nodes, i.e., the aggregation of the features of the 

neighboring nodes. The aggregation method can be a simple weighted sum or a transformation of the 

neighboring node features followed by summing. 

2. Feature transformation: by transforming the aggregated features, each node obtains a new feature 

representation. The transformation method usually adopts linear transformation, i.e., multiplying the 

aggregated features with a learnable weight matrix to obtain the new feature representation of the node. 

The GCN formulation is rooted on the graph Laplacian matrix, which is defined as: 

 𝐿 = 𝐷 –  𝐴, (3) 

where 𝐴 is the adjacency matrix of the graph and 𝐷 is the degree matrix. The GCN layer takes as input 

the feature vectors of nodes in the graph and propagates them to their neighbors in a message-passing 

manner. The output of each GCN layer is a new set of feature vectors that captures the updated 

information of each node in the graph. Since the input data in our GCN model is a time series of GPS 

coordinates, this paper can stack multiple GCN layers to capture the temporal dependencies of the data. 

The forward pass of a single GCN layer can be defined as follows: 

 𝐻(𝑙+1) = 𝜎 (𝐷̂−
1

2𝐴̂𝐷̂−
1

2𝐻(𝑙)𝑊(𝑙)), (4) 

where 𝐻(𝑙)  denotes the feature matrix of the graph at layer 𝑙 , 𝐴̂ is the adjacency matrix with self-

connections, 𝐷̂ is the degree matrix of 𝐴̂, 𝑊(𝑙) is the weight matrix of the 𝑙-th layer and 𝜎(⋅) is the 

activation function. 

4.3.2.  Transformer. The transformer module of TrajTransGCN consists of TransformerEncoder and a 

linear layer. 

TransformerEncoderLayer is an encoder framework, whose purpose is to encode input features by 

applying a sequence of operations that includes a Multi-Head Self-Attention mechanism and a Feed-

Forward Network. Each TransformerEncoderLayer is made up of a feed-forward network and a multi-

head self-attention mechanism. The Multi-Head Self-Attention mechanism, in particular, enables the 
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model to attend to diverse points in the input sequence and capture relationships between them, whereas 

the Feed-Forward Network transforms the attention output non-linearly. 

The self-attention mechanism can be defined as follows: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎 𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉, (5) 

where 𝑄, 𝐾, 𝑎𝑛𝑑 𝑉 are the query, key, and value matrices respectively, and 𝑑𝑘 is the dimensionality of 

the key vectors. This mechanism helps TrajTransGCN to pay attention to various sections of the input 

sequence, based on their relevance to the current prediction. 

The feed-forward function can be defined as: 

 𝑭𝑭𝑵(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2,  (6) 

where 𝑥 is the input vector with features, 𝑊1, 𝑏1, 𝑊2, 𝑏2 are learnable parameters. The overall operation 

of the TransformerEncoder can be expressed as: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟 𝑚(𝑥 + 𝐷𝑟𝑜𝑝𝑜𝑢 𝑡(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜 𝑛(𝑥) + 𝑥)) +
𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐹𝐹𝑁 (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑥 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑥) + 𝑥)))), (7) 

where  LayerNorm(⋅) and and  Dropout(⋅)  are normalization and dropout functions respectively. 

Transformer model then applies a linear layer to the final encoded features to generate the output. W 

ithout a specific decoder module, TrajTransGCN is a generative model based on autoregression, where 

the previous trajectory sequence elements are generated first, and the next element is predicted based on 

the previous trajectory coordinates, allowing TrajTransGCN to efficiently learn complex dependencies 

in the data and generate accurate predictions. 

5.  Experiments 

5.1.  Dataset 

This paper evaluates the performance of TrajTransGCN on a series of experiments over a taxi-trajectory 

dataset in Porto. After processing, the dataset used in this article contains abundant spatiotemporal 

information, including time-series coordinate values obtained through GPS positioning and categorical 

indicator values encoded through one-hot encoding. Table 3 shows the overall descriptions of the 

processed dataset. 

Table 3. Statistics about the final dataset. 

Trajectories 
Record time 

(min) 

Taxi ID 

numbers 

Avg traj length 

(km) 

Time 

features 

Spatial 

features 

63190 11 440 4.038 15 80 

In this study, the training set is randomly chosen from the dataset at 80%, and the test set is chosen 

from the remaining 20%. 

5.2.  Baselines 

This paper compares TrajTransGCN with the 4 baselines to see the performance. 

MLP [21]: a classic neural network model used to solve regression problems. 

LSTM [22]: a common type of recurrent neural network model that addresses the vanishing gradient 

problem in traditional recurrent neural networks by using specialized neurons.  

SVR [23]: a support vector machine regression approach based on historical trajectory data to predict 

future positions 

GBRT [24]: a gradient boosting regression algorithm to fit non-linear relationships between 

historical trajectory data and future trajectory predictions 
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5.3.  Evaluation metrics 

Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) are two commonly 

utilized metrics in assessments to assess the efficiency of models in trajectory prediction accuracy. The 

average deviation between the values that were anticipated and those that were actually obtained is 

measured by RMSE, which is easily interpreted. Often used to assess the relative inaccuracy between 

expected and actual data, MAPE measures the average percentage difference between the predicted and 

actual values. More prediction accuracy and decreased RMSE are indicators of lesser prediction 

mistakes while more prediction stability and a smaller relative error are both indicated by a lower MAPE. 

Hence, the predictive power and stability of TrajTransGCN may be thoroughly assessed in trajectory 

prediction experiments utilizing both RMSE and MAPE. The equations are shown below: 

 𝑹𝑴𝑺𝑬 = √∑ (𝒚̂𝒊−𝒚𝒊)𝟐𝑵
𝒊=𝟏

𝑵
 (8) 

 𝑴𝑨𝑷𝑬 =
𝟏

𝑵
∑ |

𝒚̂𝒊−𝒚𝒊

𝒚𝒊
|𝑵

𝒊=𝟏  (9) 

where  𝑦̂𝑖 is each predicted coordinate in time series and 𝑦𝑖 is each actual trajectory coordinate. 

5.4.  Experimental results 

The experimental results presented in Table 4 reveal that the proposed TrajTransGCN achieves the best 

performance among all the evaluated models in terms of both RMSE and MAPE. Specifically, the 

RMSE and MAPE values of our model are 0.0247 and 0.09%, respectively, which are significantly 

lower than those of the other models. 

The results demonstrate the effectiveness of the proposed TrajTransGCN in predicting taxi 

trajectories. Compared to the LSTM, MLP, SVR, and GBRT models, our model achieves more accurate 

predictions. The subpar result of the MLP model is due to its inability to capture temporal dependencies. 

The SVR and GBRT models are based on regression techniques and perform reasonably well, but they 

are still outperformed by TrajTransGCN. The LSTM model, which is a popular choice for sequential 

prediction tasks, also lags behind our model in terms of accuracy. 

The success of our model can be attributed to the combination of GCN and Transformer layers, which 

capture both spatial and temporal dependencies in the input data. The GCN layer is used to model the 

spatial relationships among the taxi trajectories, while the Transformer layer leverages the temporal 

dependencies of the trajectories. The joint use of these two layers enables our model to capture both 

local and global patterns in the data, leading to more accurate predictions. 

Table 4. Experimental results. 

Model RMSE MAPE 

LSTM 0.0255 0.13% 

MLP 1.14 3.35% 

SVR 0.04 0.22% 

GBRT 0.027 0.153% 

TrajTransGCN 0.0247 0.09% 

5.5.  Ablation study 

The ablation study conducted in this paper aims to further investigate the impact of removing specific 

modules from the proposed TrajTransGCNon its performance: 

No one-hot coding does not perform one-hot coding on classification features and only uses formal 

values of classification features. 

GCN-only simply uses the time-series coordinates as the structure of the graph and does not adopt 

transformer layers. 

Transformer-only does not adopt GCN layers and makes all features as input at the same time.  

Table 5 reports the performances of three different models that are compared to the TrajTransGCN 
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Table 5. Ablation study results. 

Model RMSE MAPE 

No one-hot coding 28.2523 2.03% 

Transformer-only 0.0275 0.12% 

GCN-only 0.0567 0.43% 

TrajTransGCN 0.0247 0.09% 

As shown in Table 5, “No one-hot coding” that does not use one-hot encoding for the classification 

features achieved the lowest performance with an MAPE of 2.03% and a RMSE of 28.2523, which are 

both dramatically higher than others. This indicates that the one-hot encoding of the classification 

features is an essential component that helps improve the prediction accuracy. "Transformer-only" that 

uses only transformer layers achieves better performance than "GCN-only" that uses only the time-series 

coordinates as the structure of the graph. "Transformer-only" model achieves an RMSE of 0.0275 and 

a MAPE of 0.12%, while "GCN-only" model achieves an RMSE of 0.0567 and a MAPE of 0.43%. It 

shows the importance of the diversity of the spatial and temporal information. However, the proposed 

TrajTransGCN that combines both GCN and transformer layers and incorporates one-hot encoding for 

the classification features obtains the finest performance among all models. The TrajTransGCN achieves 

an RMSE of 0.0247 and a MAPE of 0.09%, which outperforms all other models in terms of prediction 

accuracy. These results suggest that combining both GCN and transformer layers and incorporating one-

hot encoding for the classification features can help to effectively leverage the spatial-temporal details 

in the data as well as improve the prediction accuracy. 

5.6.  Parameter study 

The purpose of this parameter study is to examine how various hyperparameters may affect the 

effectiveness of the proposed TrajTransGCN. This paper especially emphasis on the impact of 3 

hyperparameters: learning rate, number of transformer layers, and transformer hidden dimension size. 

To achieve this, this paper varies each hyperparameter separately while fixing the other two 

hyperparameters, comparing training loss over 50 training epochs to see the performances of different 

parameters. For each hyperparameter setting, this paper calculates the training loss every 10 epochs. The 

training loss results are recoreded in the form of a list and later transformed into graphs to see the overall 

tendancy. The parameter study is conducted by performing the experiments whose range of each 

parameter is depicted in Table 6 

Table 6. Ranges of different parameters. 

Hyperparameter range 

Learning rate [0.1,0.05,0.025,0.01,0.001,0.0001,0.00001,0.000001,0.0000001,0.00000001] 

Transformer 

layers 
[1,2,3,4,5,6,7,8,9,10] 

Transformer 

hidden dims 
[16,32,64,128,256,512] 

5.6.1.  Effect of learning rates. The learning rate controls the size of the step taken in each update of the 

model's parameters during the optimization process. It is one of the most important hyperparameters in 

deep learning, as it directly impacts the convergence speed and performance of the model. Figure 3 

shows the effect of different learning rates while training, where we can pinpoint that the learning rate 

of 0.0001 performs best in training, and training loss explodes with the learning rate descending, 

manifesting that a lower learning rate can lead to slow convergence or even failure to converge. 
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Figure 3. Training loss of all learning rates 0.1 to 0.0001. 

 

Figure 4. Training loss of learning rates ranging from 0.1 to 0.0001. 

Figure 4 illustrates that, in an appropriate range, the optimization process of TrajTransGCN may 

oscillate, resulting in fluctuations during training epochs under the condition of a higher learning rate. 

The line of 0.0001 learning rate is the most smooth and has a down tendency, revealing the improvement 

of weights to have a better performance. 

5.6.2.  Effect of transformer layers. A deeper transformer design can capture more complicated patterns 

and dependencies in the input data, but it also raises the danger of overfitting and slows down training. 

The number of transformer layers is another crucial hyperparameter in models. The notation "NL" is 

used in the legend of Figure 5 to denote the "number of transformer layers" and displays the training 

loss of TrajTransGCNs with various transformer layer counts. 

 

Figure 5. Training loss of transformer layers. 
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In figure 5, it is worth mentioning that TrajTransGCN with 1 transformer layer performs best when 

training, which can help decrease the complexity of the module and the possibility of overfitting. 

TrajTransGCNs with transformer layers 2 and 5 perform relatively better than others, which may be 

effective in some different situations. 

5.6.3.  Effect of transformer hidden dimension size. The hidden dimension size is another 

hyperparameter that is able to have a significant impact on the performance of a model. The hidden 

dimension size determines the number of features that the model can learn, and it directly affects the 

model's ability to represent the input data. A hidden dimension size which is deeper can increase the 

model's capacity to learn complicated patterns, but it is also likely to lead to overfitting and slow down 

the training. A smaller hidden dimension size can result in a simpler model with better generalization, 

but it may not be able to capture all relevant features in the input data. This paper adjusts the transformer 

hidden dimension sizes to see whether TrajTransGCN can well handle the spatial-temporal information 

as one-hot coding of categorical features is new inputs of transformer layers. Figure 6 shows the training 

loss of TrajTransGCNs with different sizes of transformer hidden dimension where the abbreviation 

"HD" is used in the legend to represent "hidden dimension".  

 

Figure 6. Training loss of transformer hidden dimension sizes. 

Figure 6 reveals that TrajTransGCN performs best when transformer hidden dimension sizes are 16, 

which shows predominance over others in training. 

6.  Conclusion 

This paper proposes a model named TrajTransGCN for trajectory prediction with abundant spatial-

temporal information, which combines GCN and Transformer layers. TrajTransGCN takes the output 

of the GCN layer and the one-hot coding of the classification label as the input of the Transformer layer. 

The experiments reveal that TrajTransGCN provides better performance than the baseline model in 

terms of both RMSE and MAPE, indicating the effectiveness of our proposed model. This paper 

conducts an ablation study, indicating the contribution of the one-hot coding of the classification features, 

and highlighting the importance of incorporating time information in trajectory prediction. A parameter 

study is performed to investigate the effects of the learning rate, the number of transformer layers, and 

the hidden dimension size. The optimal parameter settings are found to be a learning rate of 0.0001, one 

transformer layer, and a hidden dimension size of 16. 

References 

[1] Geiger, P. Lenz and R. Urtasun, "Are we ready for autonomous driving? The KITTI vision 

benchmark suite," 2012 IEEE Conference on Computer Vision and Pattern Recognition, 

Providence, RI, USA, 2012, pp. 3354-3361, doi: 10.1109/CVPR.2012.6248074. 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

54



 

 

[2] D. -E. Kim and D. -S. Kwon, "Pedestrian detection and tracking in thermal images using shape 

features," 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence 

(URAI), Goyangi, Korea (South), 2015, pp. 22-25, doi: 10.1109/URAI.2015.7358920. 

[3] Y. Zeng, R. Zhang and T. J. Lim, "Wireless communications with unmanned aerial vehicles: 

opportunities and challenges," in IEEE Communications Magazine, vol. 54, no. 5, pp. 36-42, 

May 2016, doi: 10.1109/MCOM.2016.7470933. 

[4] H. Shafienya and A. Regan, "4D Flight Trajectory Prediction based on ADS-B data: A 

comparison of CNN-GRU models," 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, 

USA, 2022, pp. 01-12, doi: 10.1109/AERO53065.2022.9843822. 

[5] S. Liu, H. Liu, H. Bi and T. Mao, "CoL-GAN: Plausible and Collision-Less Trajectory Prediction 

by Attention-Based GAN," in IEEE Access, vol. 8, pp. 101662-101671, 2020, doi: 

10.1109/ACCESS.2020.2987072. 

[6] Gaffney, S., & Smyth, P. (1999, August). Trajectory clustering with mixtures of regression 

models. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge 

discovery and data mining (pp. 63-72). 

[7] Oh, C., & Kim, T. (2010). Estimation of rear-end crash potential using vehicle trajectory data. 

Accident Analysis & Prevention, 42(6), 1888-1893. 

[8] Türkcan, S., & Masson, J. B. (2013). Bayesian decision tree for the classification of the mode of 

motion in single-molecule trajectories. PloS one, 8(12), e82799. 

[9] Chan, S., Reddy, V., Myers, B., Thibodeaux, Q., Brownstone, N., & Liao, W. (2020). Machine 

learning in dermatology: current applications, opportunities, and limitations. Dermatology and 

therapy, 10, 365-386. 

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, 

pp. 1735–1780, 1997. 

[11] Goodfellow IJ, Pouget-Abadie J, Mirza M (2014) Generative adversarial networks. Adv Neural 

Inf Process Syst 3(11):2672–2680 

[12] Sadeghian A, Kosaraju V, Sadeghian A, Hirose N, Rezatofighi H, Savarese S (2019) Sophie: an 

attentive gan for predicting paths compliant to social and physical constraints. In: IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR) 

[13] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. 

(2017). Attention is all you need. Advances in neural information processing systems, 30. 

[14] Zhang, J., Shi, X., Xie, J., Ma, H., King, I., & Yeung, D. Y. (2018). GaAN: Gated Attention 

Networks for Learning on Large and Spatiotemporal Graphs. In 34th Conference on 

Uncertainty in Artificial Intelligence 2018, UAI 2018. 

[15] Li, L., Pagnucco, M., & Song, Y. (2022). Graph-based spatial transformer with memory replay 

for multi-future pedestrian trajectory prediction. In Proceedings of the IEEE/CVF Conference 

on Computer Vision and Pattern Recognition (pp. 2231-2241). 

[16] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural 

network model. IEEE transactions on neural networks, 20(1), 61-80. 

[17] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional 

networks. arXiv preprint arXiv:1609.02907. 

[18] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph 

attention networks. arXiv preprint arXiv:1710.10903. 

[19] Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., & Alahi, A. (2018). Social gan: Socially 

acceptable trajectories with generative adversarial networks. In Proceedings of the IEEE 

conference on computer vision and pattern recognition (pp. 2255-2264). 

[20] Yan, S., Xiong, Y., & Lin, D. (2018, April). Spatial temporal graph convolutional networks for 

skeleton-based action recognition. In Proceedings of the AAAI conference on artificial 

intelligence (Vol. 32, No. 1). 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

55



 

 

[21] Karlik, B., & Olgac, A. V. (2011). Performance analysis of various activation functions in 

generalized MLP architectures of neural networks. International Journal of Artificial 

Intelligence and Expert Systems, 1(4), 111-122. 

[22] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction 

with LSTM. Neural computation, 12(10), 2451-2471. 

[23] Castro-Neto, M., Jeong, Y. S., Jeong, M. K., & Han, L. D. (2009). Online-SVR for short-term 

traffic flow prediction under typical and atypical traffic conditions. Expert systems with 

applications, 36(3), 6164-6173. 

[24] Li, Y., Zheng, Y., Zhang, H., & Chen, L. (2015, November). Traffic prediction in a bike-sharing 

system. In Proceedings of the 23rd SIGSPATIAL international conference on advances in 

geographic information systems (pp. 1-10). 

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

56


