

TrajTransGCN: Enhancing trajectory prediction by fusing

transformer and graph neural networks

Haojun Pan

Department of Information Science and Technology, Jinan University, Guangzhou,

511486, China

2499869178@qq.com

Abstract. This paper proposes a novel model named TrajTransGCN for taxi trajectory prediction,

which leverages the power of both graph convolutional networks (GCNs) and Transformer.

TrajTransGCN first passes the input through the GCN layer and then combines the GCN outputs

with one-hot encoded categorical features as input to the transformer layer. This paper evaluates.

TrajTransGCN uses real-world taxi trajectory datasets in Porto and compares it against several

baselines. The experimental results show that TrajTransGCN outperforms all the other models

in terms of both RMSE and MAPE. Specifically, the model achieves an RMSE of 0.0247 and a

MAPE of 0.09%, which are significantly lower than those of the other models. The results

demonstrate the effectiveness of the proposed model in predicting taxi trajectories, indicating the

potential of leveraging both GCN and transformer layers in trajectory prediction tasks. In

addition, this paper includes ablation experiments to demonstrate the effectiveness of using one-

hot encodings of classification labels in complex real-time scenarios. In addition, a parameter

study is carried out to examine how the TrajTransGCN's performance is impacted by the learning

rate, the quantity of Transformer layers, and the size of the hidden dimension of the Transformer

layer.

Keywords: trajectory prediction, deep learning, transformer, graph convolutional network.

1. Introduction

Trajectory prediction is a crucial task in many applications, such as autonomous driving, pedestrian

tracking, and unmanned aerial vehicles [1-3]. The high accuracy of trajectory prediction entitles

governments to contribute appropriate portions of investments in construction in different regions.

Besides, predicting the trajectory of various vehicles enables autonomous driving vehicles smarter like

humans, as they are provided with more valuable data, which is an essential base for smart cities.

Deep learning methods, such as Recurrent Neural Networks, Convolutional Neural Networks

(CNNs), and Generative Adversarial Networks, have been extensively used in this field recently [4-5].

Recurrent Neural Networks show a great advantage in historical time series. Convolutional Neural

Networks are highly capable of considering trajectory data as a two-dimensional image so that the spatial

relationship of objects can be well processed and Generative Adversarial Networks can generate

multiple possible trajectories and choose the most likely one.

Processing sequence coordinates through GNNs can utilize their powerful ability to extract and

encode features of nodes in the sequence, thus obtaining richer feature representation. The transformer

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

43

model excels at capturing the temporal correlation between nodes and specializes in processing elements

in the sequence in parallel and has a fast-processing speed. It has shown excellent performance in long

sequence modeling tasks with its strong parallel computing ability and powerful interpretability.

By combining these two methods, our approach aims to capture both the spatial-temporal

dependencies and the relationships between objects in a scene and therefore achieve real-time trajectory

prediction in various scenarios that require it. However, these methods often struggle with modeling

long-term dependencies and spatial-temporal information.

One limitation of GNNs in trajectory prediction is that the performance of GNN may be affected by

the structure of the graph. For example, if the graph structure is highly sparse or contains isolated nodes,

GNN may not be able to adequately propagate information to nodes. Additionally, GNN is also

susceptible to the influence of noise and outliers in the input data, like the loss and inaccuracy of GPS

coordinates when locating the vehicles, which may lead to a decrease in model performance. Although

the transformer model has shown promise in fields such as natural language processing and others, it

might be restricted in how it treats time-series data. For example, if there are long-term dependencies in

the time series, the transformer may not be able to capture them. Additionally, if the distribution of the

input data is uneven, appropriate adjustments may need to be made to the transformer model, which

requires high skills and a long time.

This paper proposes a novel approach for trajectory prediction that combines the power of

Transformer networks and Graph Convolutional Networks (GCNs) for their powerful ability to handle

dynamic graph data, scalability, interpretability, and flexibility, developing a Transformer-enhanced

Graph Convolutional Network (TrajTransGCN) for Trajectory Prediction.

2. Related work

2.1. Trajectory prediction

Early methods for trajectory prediction were primarily based on algorithms that utilized machine

learning, including linear regression, logistic regression, and decision trees[6-8]. These methods

typically relied on statistical features of trajectory data, such as mean, standard deviation, maximum,

minimum, and similarity between trajectories, to make predictions. Additionally, some rule-based

systems, such as path planning based on traffic rules, were used for predicting pedestrian and vehicle

trajectories. However, due to the limited data collection and processing capabilities available at the time,

trajectory data usually only contained basic location information, such as the starting point, endpoint,

and route taken, making it difficult to extract more information for prediction. If inputs of machine

learning models are poorly labeled, then the algorithm’s outputs will directly reflect these inaccuracies

[9]. Furthermore, the method of data processing is likely to result in multicollinearity of the input data.

The existence of multicollinearity in traditional machine learning trajectory prediction can lead to

inaccurate parameter estimation, overestimation or underestimation of the effects of explanatory

variables, decreased predictive ability and interpretability of the model. It may prevent the model from

fully utilizing the information in the trajectory data, thus affecting the accuracy and stability of the

prediction results.

With the advancement of deep learning technology, trajectory prediction research is increasingly

starting to turn to deep learning techniques. There has been a significant amount of research in the field

of trajectory prediction. One of the most popular approaches is to use Recurrent Neural Networks, such

as Long Short-Term Memory networks to predict time series data [10]. Another approach is to utilise

generative adversarial networks so as to generate a multimodal trajectory prediction model [11-12].

These methods can not only handle high-dimensional, nonlinear, non-stationary, and unconventional

trajectory data, but also automatically learn the feature representation and patterns of trajectory data,

improving the accuracy and stability of trajectory prediction.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

44

2.2. Transformer in trajectory prediction

In the area of trajectory prediction, the Transformer network has become more well-known recently. It

was initially used as a translation model in 2017 in Natural Language Processing (NLP) [13]. With its

encoder-decoder structure, complete reliance on self-attention, and capacity for parallel computation, it

was able to solve the issues of long-term dependencies in input and output while significantly reducing

the consumption of computational resources. However, it is right due to the parallel computing

capability of Transformer, its ability to capture global information through self-attention, and its

capacity to model long-term dependencies in sequences that it has shown excellent performance in

sequence modeling tasks and it has enormous potential in various fields. As a result, people have

gradually applied Transformers to other fields such as image processing and prediction Trajectory

prediction is one of the typical applications of predictive modeling, and trajectory prediction based on

the Transformer model has also been thriving. In 2018, Zhang et al. proposed a convolutional sub-

network to control each attention head's importance to learn on Large and Spatiotemporal Graphs, which

is a pioneer of transformer prediction works [14]. The Graph-based Spatial Transformer in 2022 can

predict numerous paths based on a historical trajectory by simulating multiscale graph-based spatial

transformers in conjunction with the trajectory smoothing algorithm "Memory Replay" which makes

use of a memory graph [15]. Transformer networks have been an ascending trend in the deep learning

field.

The attention mechanism has been increasingly applied in the field of trajectory prediction to improve

the interpretability of the model. The attention mechanism assigns weights to different parts of the input

sequence according to their importance, and the weighted sum of the sequence is then used to make

predictions. In trajectory prediction, the attention mechanism permits the model to selectively

concentrate on the most relevant parts of the trajectory history, such as areas with high traffic congestion

or frequent changes in direction. This helps to improve the accuracy and interpretability of the model,

making it easier to understand why certain predictions are made.

2.3. GNNS in trajectory prediction

Graph Neural Networks (GNNs) are a family of deep learning models built on graph-structured data,

with origins in the PageRank algorithm in graph theory and convolutional operations in Convolutional

Neural Networks (CNNs).

Early GNN models were relatively simple, such as the spectral convolution model based on the graph

Laplacian matrix. The concept of GNN was first proposed by Marco Gori et al in 2005 [16]. They

proposed a novel neural network model that can handle graph inputs that are cyclic, directed, undirected,

or even a mixture of these. Nonetheless, how to deal with domains where the linkages, which were not

known beforehand, remained to be inferred. With the advent of deep learning, GNN models have,

moreover, received a great deal of study and application in recent years. In 2016, Kipf, T. N., & Welling

et al simplified the Graph Convolutional Network (GCN) to extract and learn representations of graph-

structured data through convolutional operations [17]. A GCN learns node representations by

aggregating information from neighboring nodes in the graph, which captures the local structure of the

graph. And it can operate on graphs of arbitrary sizes and shapes, making them very flexible and

applicable to a wide range of problems. GAT is a type of graph neural network introduced by Veličković

et al. in 2018 [18]. It employs a multi-head attention mechanism to aggregate information from

neighboring nodes in a graph, allowing it to capture complex and non-linear relationships between nodes.

In the field of trajectory prediction, GNNs have also been widely applied. Socially Acceptable

Trajectories with Generative Adversarial Networks (GAN) is a GAN-based trajectory prediction model

that uses a GNN-based social pooling operation to model neighboring pedestrians [19]. Combining tools

from sequence prediction and generative adversarial networks, it can capture the inherently multimodal

human motion. Spatial-Temporal Graph Convolutional Networks is a model of dynamic skeletons based

on spatiotemporal graph convolutional neural networks that can predict city traffic flows at specific time

intervals [20]. It surpasses the constraints of previous methods by automatically acquiring spatial and

temporal patterns from data through autonomous learning.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

45

3. Preliminaries

3.1. Dataset

The dataset includes the trajectories of all 442 taxis operating in the Portuguese city of Porto for the

entire year (from 01/07/2013 to 06/30/2014). Using mobile data terminals that have been installed in the

cars, these taxis are controlled by a dispatch center for taxis. Each data sample represents a finished trip.

Nine features altogether are present. Table 1 provides an illustration of a trip ID and description.

Table 1. One example of a trip ID and descriptions of features.

Feature Value Description

TRIP_ID 1372636858620000589 A distinct identifier for each taxi travel

CALL_TYPE C

How to request this service

‘A’ (from the central)

‘B’ (to a taxi driver)

‘C’ (on a stochastic street)

ORIGIN_CALL NaN Whether a phone call is used

ORIGIN_STAND NaN Whether a call stand was utilized

TAXI_ID 20000589 A distinguishing mark for the taxi driver

TIMESTAMP 1372636858 Unix Timestamp (in seconds).

DAY_TYPE A The daytype on which each trip began.

MISSING_DATA False
After the GPS data stream is finished, FALSE

When one (or more) locations are absent, TRUE

POLYLINE

[[-8.618643,41.141412],[-

8.618499,41.141376],…,[-

8.620326,41.14251],…,]

A list of GPS coordinates. Each pair of

coordinates is also identified by the same

brackets as [LONGITUDE, LATITUDE]. The

last list item corresponds to the trip’s destination

while the first one represents its start. The

scatters of the first polylines and the last

polylines can be clearly seen in Figure 1

Figure 1. Scatters of the first polylines and the last polylines of each trip.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

46

3.2. Definitions

Definition 1 (Time-series spatial coordinates of Trajectory). This paper partitions 𝑵 trajectories into a

series of coordinates(𝒍𝒐𝒏, 𝒍𝒂𝒕) for time intervals 𝒕 = 𝟏, … . . 𝑻, … , 𝑻 + 𝟒 and the unit of t is 15 seconds.

Each coordinate describes a spatioal region of a taxi. These coordinates are represented as nodes in the

graph neural networks and connected in a time-dependent graph structure.

Definition 2 (Categorical features). A set of categorical features 𝑪 = 𝑪𝟏, 𝑪𝟐, … , 𝑪𝟓 that describe

different characteristics of the geographic area under consideration. These features are processed as one-

hot encoding vectors and combined with the GCN layer output of the time series GPS coordinates, and

then they enter the transformer layer together.

Definition 3 (Graph). A graph is a mathematical depiction of a collection of things called nodes

connected by a collection of edges. Each taxi's GPS point is treated as a node in the TrajTransGCN, and

the edges between the nodes indicate their geographic and temporal interactions.

3.3. Problem definition

Taking 𝑋 consisting of certain categorical features, a sequence of former longitude and latitude values

as the input dataset. This paper presents each id in 𝑋 as:

 𝑋𝑖 = {𝐶1,𝑖, 𝐶2,𝑖, 𝐶5,𝑖, 𝑙𝑜𝑛𝑇,𝑖, 𝑙𝑎𝑡𝑇,𝑖, … , 𝑙𝑜𝑛1,𝑖, 𝑙𝑎𝑡1,𝑖}, (1)

where 𝐶 = 𝐶1,𝑖, 𝐶2,𝑖, … , 𝐶5,𝑖 are categorical features which respectively refer to call, location, stand,

season, and day types. The problem is to precisely predict the last 4 longitude and latitude coordinates:

 𝑦𝑙𝑜𝑛,𝑙𝑎𝑡 = {(𝑙𝑜𝑛𝑇+1 𝑙𝑎𝑡𝑇+1), … , (𝑙𝑜𝑛𝑇+4 𝑙𝑎𝑡𝑇+4)}, (2)

where 𝑦𝑙𝑜𝑛,𝑙𝑎𝑡 is the predicted trajectory coordinates of all samples and each coordinate consists 𝑙𝑜𝑛 and

𝑙𝑎𝑡, which refers to longitude and latitude, respectively.

4. Methodology

4.1. Overview

This paper aims to accurately forecast the future trajectory of taxis. Simply expressed, this paper

approaches it by meticulous data preprocessing, integrating GCN with the transformer model and taking

classification features as additional inputs, and combining the inputs to GCN to enter the transformer

layer. This paper also lists some possible applications of the work which contains urban traffic

management, ride-hailing and logistics, and so on. The whole process is depicted in Figure 2.

Figure 2. Overall framework.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

47

4.2. Trajectory preprocessing

This paper takes several steps to ensure the quality and integrity of our dataset. First of all, this paper

starts with the data cleaning process, where this paper drops the samples with missing values or abnormal

values during data cleaning to make the initial quality and the reliability of the data. As for categorical

features, this paper categorizes whether a phone call was used, whether a call stand was utilized, and

whether data is missing into two categories with values of 0 and 1. Additionally, this paper categorizes

call types into three categories with values of 1, 2, and 3, and extracts month and hour information from

timestamps. Months (1-12) are classified into four categories based on seasons: spring (1-3), summer

(4-6), autumn (7-9), and winter (10-12), while hours (1-24) are categorized into four groups based on

time of day: early morning (1-6), morning (7-12), afternoon (13-18), and night (19-24). The features

after categorization are summarized in Table 2

Table 2. Features after categorization.

Feature Value

ORIGIN_CALL
‘0’ (yes)

‘1’ (no)

ORIGIN_STAND
‘0’ (yes)

‘1’' (no)

CALL_TYPE

‘1’ (from the central)

‘2’ (to a taxi driver)

‘3’ (on a random street)

SEASON

‘1’ (spring)

‘2’ (summer)

‘3’ (autumn)

‘4’ (winter)

DAY

‘1’ (before dawn)

‘2’ (morning)

‘3’ (afternoon)

‘4’ (night)

After categorizing the indicators, this paper performs the one-hot encoding on them, whose

importance lies in converting categorical features into fixed-length vectors where only one element is 1

and the rest are 0s and ensuring that the distances between different values are equal. These 0-or-1 values

are abundant categorical information about the real-time situation, which will later be one kind of input

data of transformer layers.

In terms of time-series values, this paper extracts the coordinates (longitudes, latitudes) in the

condition of taxis driving for 11 minutes, which is the average travel time for all samples, resulting in

63191 samples of dataset. Due to the GPS positioning interval of taxi trajectory data being 15 seconds,

this paper obtains 44 time-series longitude and latitude coordinates in each sample. Then this paper takes

out the last 4 time series of longitude and latitude coordinates among these 44 as the prediction values

and uses the remaining 40 as a part of the input data.

To construct the adjacency matrix for our graph-based trajectory prediction models, this paper

created edges between all pairs of time steps within each sample. Specifically, this paper iterated over

each sample, represented by 40-time steps, and created edges between each time step and the next four

consecutive time steps, resulting in a total of 1560 edges per sample. The resulting edge list was then

used to construct the adjacency matrix for our graph convolutional network (GCN).

Overall, this paper has rich input data: each sample has 40 time series of latitude and longitude

coordinates, an adjacency matrix, and one-hot encoded values for the classification indicators, laying a

solid foundation for future model training and evaluation.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

48

4.3. TrajTransGCN

This paper proposes a neoteric model in taxi trajectory prediction field using a combination of

Transformer and Graph Neural Networks (GNN).

The spatial connections between the GPS locations are recorded using the GNN module. This paper

chooses a Graph Convolution Network (GCN) model. By representing the data as a graph, with the

locations as nodes and the taxis' movements as edges, GCNs can learn to capture the spatial patterns and

dependencies between different locations. Specifically, this paper uses a two-layer GCN to encode the

graph structure of the GPS coordinates. The first layer takes the time series GPS coordinates and the

related adjacency matrix as input and outputs a hidden representation of size 16, while the second layer

further refines the hidden representation to size 2. The output of the GCN is then concatenated with the

one-hot encoded values of classification features and fed into the Transformer module.

This paper further processes the trajectory encoding using a Transformer model which is used to

capture the temporal dependencies among the GPS coordinates. The Transformer model consists of 1

Transformer Encoder layer where this paper uses one Multi-head Attention layer, two fully connected

layers, as well as Layer Normalization and Dropout operations. Combining the result from the GCN

layer and the one-hot coding values of categorical features as input, this paper fully leverages the

advantages of the transformer model. Finally, this paper uses a fully connected layer to transform the

Encoder output into the final prediction result with a dimension of 8.

4.3.1. Graph convolutional network. GCNs are a type of neural network that can handle graph-

structured data. They perform convolution operations on graphs by transforming the graph structure into

matrix operations. Specifically, GCN's convolutional operation includes

1. Information propagation: according to the graph structure, the features of each node are weighted

and summed with the features of its neighboring nodes, i.e., the aggregation of the features of the

neighboring nodes. The aggregation method can be a simple weighted sum or a transformation of the

neighboring node features followed by summing.

2. Feature transformation: by transforming the aggregated features, each node obtains a new feature

representation. The transformation method usually adopts linear transformation, i.e., multiplying the

aggregated features with a learnable weight matrix to obtain the new feature representation of the node.

The GCN formulation is rooted on the graph Laplacian matrix, which is defined as:

 𝐿 = 𝐷 – 𝐴, (3)

where 𝐴 is the adjacency matrix of the graph and 𝐷 is the degree matrix. The GCN layer takes as input

the feature vectors of nodes in the graph and propagates them to their neighbors in a message-passing

manner. The output of each GCN layer is a new set of feature vectors that captures the updated

information of each node in the graph. Since the input data in our GCN model is a time series of GPS

coordinates, this paper can stack multiple GCN layers to capture the temporal dependencies of the data.

The forward pass of a single GCN layer can be defined as follows:

 𝐻(𝑙+1) = 𝜎 (�̂�−
1

2�̂��̂�−
1

2𝐻(𝑙)𝑊(𝑙)), (4)

where 𝐻(𝑙) denotes the feature matrix of the graph at layer 𝑙 , �̂� is the adjacency matrix with self-

connections, �̂� is the degree matrix of �̂�, 𝑊(𝑙) is the weight matrix of the 𝑙-th layer and 𝜎(⋅) is the

activation function.

4.3.2. Transformer. The transformer module of TrajTransGCN consists of TransformerEncoder and a

linear layer.

TransformerEncoderLayer is an encoder framework, whose purpose is to encode input features by

applying a sequence of operations that includes a Multi-Head Self-Attention mechanism and a Feed-

Forward Network. Each TransformerEncoderLayer is made up of a feed-forward network and a multi-

head self-attention mechanism. The Multi-Head Self-Attention mechanism, in particular, enables the

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

49

model to attend to diverse points in the input sequence and capture relationships between them, whereas

the Feed-Forward Network transforms the attention output non-linearly.

The self-attention mechanism can be defined as follows:

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎 𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉, (5)

where 𝑄, 𝐾, 𝑎𝑛𝑑 𝑉 are the query, key, and value matrices respectively, and 𝑑𝑘 is the dimensionality of

the key vectors. This mechanism helps TrajTransGCN to pay attention to various sections of the input

sequence, based on their relevance to the current prediction.

The feed-forward function can be defined as:

 𝑭𝑭𝑵(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2, (6)

where 𝑥 is the input vector with features, 𝑊1, 𝑏1, 𝑊2, 𝑏2 are learnable parameters. The overall operation

of the TransformerEncoder can be expressed as:

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟 𝑚(𝑥 + 𝐷𝑟𝑜𝑝𝑜𝑢 𝑡(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜 𝑛(𝑥) + 𝑥)) +
𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐹𝐹𝑁 (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑥 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑥) + 𝑥)))), (7)

where LayerNorm(⋅) and and Dropout(⋅) are normalization and dropout functions respectively.

Transformer model then applies a linear layer to the final encoded features to generate the output. W

ithout a specific decoder module, TrajTransGCN is a generative model based on autoregression, where

the previous trajectory sequence elements are generated first, and the next element is predicted based on

the previous trajectory coordinates, allowing TrajTransGCN to efficiently learn complex dependencies

in the data and generate accurate predictions.

5. Experiments

5.1. Dataset

This paper evaluates the performance of TrajTransGCN on a series of experiments over a taxi-trajectory

dataset in Porto. After processing, the dataset used in this article contains abundant spatiotemporal

information, including time-series coordinate values obtained through GPS positioning and categorical

indicator values encoded through one-hot encoding. Table 3 shows the overall descriptions of the

processed dataset.

Table 3. Statistics about the final dataset.

Trajectories
Record time

(min)

Taxi ID

numbers

Avg traj length

(km)

Time

features

Spatial

features

63190 11 440 4.038 15 80

In this study, the training set is randomly chosen from the dataset at 80%, and the test set is chosen

from the remaining 20%.

5.2. Baselines

This paper compares TrajTransGCN with the 4 baselines to see the performance.

MLP [21]: a classic neural network model used to solve regression problems.

LSTM [22]: a common type of recurrent neural network model that addresses the vanishing gradient

problem in traditional recurrent neural networks by using specialized neurons.

SVR [23]: a support vector machine regression approach based on historical trajectory data to predict

future positions

GBRT [24]: a gradient boosting regression algorithm to fit non-linear relationships between

historical trajectory data and future trajectory predictions

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

50

5.3. Evaluation metrics

Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) are two commonly

utilized metrics in assessments to assess the efficiency of models in trajectory prediction accuracy. The

average deviation between the values that were anticipated and those that were actually obtained is

measured by RMSE, which is easily interpreted. Often used to assess the relative inaccuracy between

expected and actual data, MAPE measures the average percentage difference between the predicted and

actual values. More prediction accuracy and decreased RMSE are indicators of lesser prediction

mistakes while more prediction stability and a smaller relative error are both indicated by a lower MAPE.

Hence, the predictive power and stability of TrajTransGCN may be thoroughly assessed in trajectory

prediction experiments utilizing both RMSE and MAPE. The equations are shown below:

 𝑹𝑴𝑺𝑬 = √∑ (�̂�𝒊−𝒚𝒊)𝟐𝑵
𝒊=𝟏

𝑵
 (8)

 𝑴𝑨𝑷𝑬 =
𝟏

𝑵
∑ |

�̂�𝒊−𝒚𝒊

𝒚𝒊
|𝑵

𝒊=𝟏 (9)

where �̂�𝑖 is each predicted coordinate in time series and 𝑦𝑖 is each actual trajectory coordinate.

5.4. Experimental results

The experimental results presented in Table 4 reveal that the proposed TrajTransGCN achieves the best

performance among all the evaluated models in terms of both RMSE and MAPE. Specifically, the

RMSE and MAPE values of our model are 0.0247 and 0.09%, respectively, which are significantly

lower than those of the other models.

The results demonstrate the effectiveness of the proposed TrajTransGCN in predicting taxi

trajectories. Compared to the LSTM, MLP, SVR, and GBRT models, our model achieves more accurate

predictions. The subpar result of the MLP model is due to its inability to capture temporal dependencies.

The SVR and GBRT models are based on regression techniques and perform reasonably well, but they

are still outperformed by TrajTransGCN. The LSTM model, which is a popular choice for sequential

prediction tasks, also lags behind our model in terms of accuracy.

The success of our model can be attributed to the combination of GCN and Transformer layers, which

capture both spatial and temporal dependencies in the input data. The GCN layer is used to model the

spatial relationships among the taxi trajectories, while the Transformer layer leverages the temporal

dependencies of the trajectories. The joint use of these two layers enables our model to capture both

local and global patterns in the data, leading to more accurate predictions.

Table 4. Experimental results.

Model RMSE MAPE

LSTM 0.0255 0.13%

MLP 1.14 3.35%

SVR 0.04 0.22%

GBRT 0.027 0.153%

TrajTransGCN 0.0247 0.09%

5.5. Ablation study

The ablation study conducted in this paper aims to further investigate the impact of removing specific

modules from the proposed TrajTransGCNon its performance:

No one-hot coding does not perform one-hot coding on classification features and only uses formal

values of classification features.

GCN-only simply uses the time-series coordinates as the structure of the graph and does not adopt

transformer layers.

Transformer-only does not adopt GCN layers and makes all features as input at the same time.

Table 5 reports the performances of three different models that are compared to the TrajTransGCN

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

51

Table 5. Ablation study results.

Model RMSE MAPE

No one-hot coding 28.2523 2.03%

Transformer-only 0.0275 0.12%

GCN-only 0.0567 0.43%

TrajTransGCN 0.0247 0.09%

As shown in Table 5, “No one-hot coding” that does not use one-hot encoding for the classification

features achieved the lowest performance with an MAPE of 2.03% and a RMSE of 28.2523, which are

both dramatically higher than others. This indicates that the one-hot encoding of the classification

features is an essential component that helps improve the prediction accuracy. "Transformer-only" that

uses only transformer layers achieves better performance than "GCN-only" that uses only the time-series

coordinates as the structure of the graph. "Transformer-only" model achieves an RMSE of 0.0275 and

a MAPE of 0.12%, while "GCN-only" model achieves an RMSE of 0.0567 and a MAPE of 0.43%. It

shows the importance of the diversity of the spatial and temporal information. However, the proposed

TrajTransGCN that combines both GCN and transformer layers and incorporates one-hot encoding for

the classification features obtains the finest performance among all models. The TrajTransGCN achieves

an RMSE of 0.0247 and a MAPE of 0.09%, which outperforms all other models in terms of prediction

accuracy. These results suggest that combining both GCN and transformer layers and incorporating one-

hot encoding for the classification features can help to effectively leverage the spatial-temporal details

in the data as well as improve the prediction accuracy.

5.6. Parameter study

The purpose of this parameter study is to examine how various hyperparameters may affect the

effectiveness of the proposed TrajTransGCN. This paper especially emphasis on the impact of 3

hyperparameters: learning rate, number of transformer layers, and transformer hidden dimension size.

To achieve this, this paper varies each hyperparameter separately while fixing the other two

hyperparameters, comparing training loss over 50 training epochs to see the performances of different

parameters. For each hyperparameter setting, this paper calculates the training loss every 10 epochs. The

training loss results are recoreded in the form of a list and later transformed into graphs to see the overall

tendancy. The parameter study is conducted by performing the experiments whose range of each

parameter is depicted in Table 6

Table 6. Ranges of different parameters.

Hyperparameter range

Learning rate [0.1,0.05,0.025,0.01,0.001,0.0001,0.00001,0.000001,0.0000001,0.00000001]

Transformer

layers
[1,2,3,4,5,6,7,8,9,10]

Transformer

hidden dims
[16,32,64,128,256,512]

5.6.1. Effect of learning rates. The learning rate controls the size of the step taken in each update of the

model's parameters during the optimization process. It is one of the most important hyperparameters in

deep learning, as it directly impacts the convergence speed and performance of the model. Figure 3

shows the effect of different learning rates while training, where we can pinpoint that the learning rate

of 0.0001 performs best in training, and training loss explodes with the learning rate descending,

manifesting that a lower learning rate can lead to slow convergence or even failure to converge.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

52

Figure 3. Training loss of all learning rates 0.1 to 0.0001.

Figure 4. Training loss of learning rates ranging from 0.1 to 0.0001.

Figure 4 illustrates that, in an appropriate range, the optimization process of TrajTransGCN may

oscillate, resulting in fluctuations during training epochs under the condition of a higher learning rate.

The line of 0.0001 learning rate is the most smooth and has a down tendency, revealing the improvement

of weights to have a better performance.

5.6.2. Effect of transformer layers. A deeper transformer design can capture more complicated patterns

and dependencies in the input data, but it also raises the danger of overfitting and slows down training.

The number of transformer layers is another crucial hyperparameter in models. The notation "NL" is

used in the legend of Figure 5 to denote the "number of transformer layers" and displays the training

loss of TrajTransGCNs with various transformer layer counts.

Figure 5. Training loss of transformer layers.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

53

In figure 5, it is worth mentioning that TrajTransGCN with 1 transformer layer performs best when

training, which can help decrease the complexity of the module and the possibility of overfitting.

TrajTransGCNs with transformer layers 2 and 5 perform relatively better than others, which may be

effective in some different situations.

5.6.3. Effect of transformer hidden dimension size. The hidden dimension size is another

hyperparameter that is able to have a significant impact on the performance of a model. The hidden

dimension size determines the number of features that the model can learn, and it directly affects the

model's ability to represent the input data. A hidden dimension size which is deeper can increase the

model's capacity to learn complicated patterns, but it is also likely to lead to overfitting and slow down

the training. A smaller hidden dimension size can result in a simpler model with better generalization,

but it may not be able to capture all relevant features in the input data. This paper adjusts the transformer

hidden dimension sizes to see whether TrajTransGCN can well handle the spatial-temporal information

as one-hot coding of categorical features is new inputs of transformer layers. Figure 6 shows the training

loss of TrajTransGCNs with different sizes of transformer hidden dimension where the abbreviation

"HD" is used in the legend to represent "hidden dimension".

Figure 6. Training loss of transformer hidden dimension sizes.

Figure 6 reveals that TrajTransGCN performs best when transformer hidden dimension sizes are 16,

which shows predominance over others in training.

6. Conclusion

This paper proposes a model named TrajTransGCN for trajectory prediction with abundant spatial-

temporal information, which combines GCN and Transformer layers. TrajTransGCN takes the output

of the GCN layer and the one-hot coding of the classification label as the input of the Transformer layer.

The experiments reveal that TrajTransGCN provides better performance than the baseline model in

terms of both RMSE and MAPE, indicating the effectiveness of our proposed model. This paper

conducts an ablation study, indicating the contribution of the one-hot coding of the classification features,

and highlighting the importance of incorporating time information in trajectory prediction. A parameter

study is performed to investigate the effects of the learning rate, the number of transformer layers, and

the hidden dimension size. The optimal parameter settings are found to be a learning rate of 0.0001, one

transformer layer, and a hidden dimension size of 16.

References

[1] Geiger, P. Lenz and R. Urtasun, "Are we ready for autonomous driving? The KITTI vision

benchmark suite," 2012 IEEE Conference on Computer Vision and Pattern Recognition,

Providence, RI, USA, 2012, pp. 3354-3361, doi: 10.1109/CVPR.2012.6248074.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

54

[2] D. -E. Kim and D. -S. Kwon, "Pedestrian detection and tracking in thermal images using shape

features," 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence

(URAI), Goyangi, Korea (South), 2015, pp. 22-25, doi: 10.1109/URAI.2015.7358920.

[3] Y. Zeng, R. Zhang and T. J. Lim, "Wireless communications with unmanned aerial vehicles:

opportunities and challenges," in IEEE Communications Magazine, vol. 54, no. 5, pp. 36-42,

May 2016, doi: 10.1109/MCOM.2016.7470933.

[4] H. Shafienya and A. Regan, "4D Flight Trajectory Prediction based on ADS-B data: A

comparison of CNN-GRU models," 2022 IEEE Aerospace Conference (AERO), Big Sky, MT,

USA, 2022, pp. 01-12, doi: 10.1109/AERO53065.2022.9843822.

[5] S. Liu, H. Liu, H. Bi and T. Mao, "CoL-GAN: Plausible and Collision-Less Trajectory Prediction

by Attention-Based GAN," in IEEE Access, vol. 8, pp. 101662-101671, 2020, doi:

10.1109/ACCESS.2020.2987072.

[6] Gaffney, S., & Smyth, P. (1999, August). Trajectory clustering with mixtures of regression

models. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 63-72).

[7] Oh, C., & Kim, T. (2010). Estimation of rear-end crash potential using vehicle trajectory data.

Accident Analysis & Prevention, 42(6), 1888-1893.

[8] Türkcan, S., & Masson, J. B. (2013). Bayesian decision tree for the classification of the mode of

motion in single-molecule trajectories. PloS one, 8(12), e82799.

[9] Chan, S., Reddy, V., Myers, B., Thibodeaux, Q., Brownstone, N., & Liao, W. (2020). Machine

learning in dermatology: current applications, opportunities, and limitations. Dermatology and

therapy, 10, 365-386.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,

pp. 1735–1780, 1997.

[11] Goodfellow IJ, Pouget-Abadie J, Mirza M (2014) Generative adversarial networks. Adv Neural

Inf Process Syst 3(11):2672–2680

[12] Sadeghian A, Kosaraju V, Sadeghian A, Hirose N, Rezatofighi H, Savarese S (2019) Sophie: an

attentive gan for predicting paths compliant to social and physical constraints. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR)

[13] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I.

(2017). Attention is all you need. Advances in neural information processing systems, 30.

[14] Zhang, J., Shi, X., Xie, J., Ma, H., King, I., & Yeung, D. Y. (2018). GaAN: Gated Attention

Networks for Learning on Large and Spatiotemporal Graphs. In 34th Conference on

Uncertainty in Artificial Intelligence 2018, UAI 2018.

[15] Li, L., Pagnucco, M., & Song, Y. (2022). Graph-based spatial transformer with memory replay

for multi-future pedestrian trajectory prediction. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (pp. 2231-2241).

[16] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural

network model. IEEE transactions on neural networks, 20(1), 61-80.

[17] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907.

[18] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph

attention networks. arXiv preprint arXiv:1710.10903.

[19] Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., & Alahi, A. (2018). Social gan: Socially

acceptable trajectories with generative adversarial networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 2255-2264).

[20] Yan, S., Xiong, Y., & Lin, D. (2018, April). Spatial temporal graph convolutional networks for

skeleton-based action recognition. In Proceedings of the AAAI conference on artificial

intelligence (Vol. 32, No. 1).

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

55

[21] Karlik, B., & Olgac, A. V. (2011). Performance analysis of various activation functions in

generalized MLP architectures of neural networks. International Journal of Artificial

Intelligence and Expert Systems, 1(4), 111-122.

[22] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction

with LSTM. Neural computation, 12(10), 2451-2471.

[23] Castro-Neto, M., Jeong, Y. S., Jeong, M. K., & Han, L. D. (2009). Online-SVR for short-term

traffic flow prediction under typical and atypical traffic conditions. Expert systems with

applications, 36(3), 6164-6173.

[24] Li, Y., Zheng, Y., Zhang, H., & Chen, L. (2015, November). Traffic prediction in a bike-sharing

system. In Proceedings of the 23rd SIGSPATIAL international conference on advances in

geographic information systems (pp. 1-10).

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230785

56

