
ML-based SDN performance prediction

Zihao Liu

School of Computer Science and Technology, Wuhan University of Science and

Technology, Wuhan 430081, China

ZihaoLiu0314@163.com

Abstract. Software-defined networking (SDN), a new type of network architecture with the

advantages of programmability and centralized management, has become a promising solution

for managing and optimizing network traffic in modern data centers. However, designing

efficient SDN controllers and applications requires a deep understanding of their network

performance characteristics. In this work, we implement a machine learning-based method for

SDN performance prediction. Our method uses supervised learning to build a training model

based on a set of publicly available real network traffic datasets and then uses the model to

predict future network performance metrics, such as RTT, S2C, and C2C. Our method is

evaluated in two different SDN distributed deployment structures, demonstrating its

effectiveness in network performance prediction. We observed that XGBoost achieves the lowest

error in most of the cases in terms of MAE, RMSE and MAPE, and feature selection through

PCA fails to further improve the prediction performance of XGBoost.

Keywords: machine learning, software-defined networking, computer networks, performance

prediction.

1. Introduction

In recent years, the scale and application of networks have shown explosive growth, which has brought

many challenges to current network operations, such as the rapid expansion of network scale,

increasingly complex network equipment, and unpredictable traffic models. The software-defined

network (SDN) decouples the control plane and the data forwarding plane of the traditional network,

making network management and control more flexible and efficient, making it programmable and

centralized management, and has become a new paradigm of network management. In SDN, the

interface between the data plane and the control plane is realized through the southbound communication

protocol, and the most widely used protocol is the OpenFlow protocol. The network control plane is

managed by a centralized controller that can dynamically configure network traffic based on changing

network conditions. SDN has been widely used in modern data centers as a means to improve network

scalability, flexibility, and performance. SDN has also been used in 5G and 6G networks, satellite

networks and the Internet of Things (IoT) [1-3].

With the widespread application of SDN, the performance prediction of SDN networks has become

increasingly important. The performance prediction of SDN networks can provide strong support for

network management and optimization and can also improve the performance and reliability of SDN

networks. If the network traffic data are analyzed and predicted in advance, it is possible to know in

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

57

advance which traffic data will affect the network performance index (QoS) to find the optimal network

deployment strategy, reduce engineering overhead, and improve network transmission efficiency.

However, due to the complexity of modern network dynamics, the diversity of network applications,

and the unpredictability of network traffic patterns, predicting network performance is a challenging

task. However, unlike traditional networks, due to the characteristics of SDN's own architecture, it has

the advantages of easy collection of training data and easy deployment of strategies for performance

prediction on SDN networks.

At present, research on SDN network performance prediction is mainly based on statistical analysis

and mathematical modeling. However, these methods have certain limitations in terms of the complexity

and dynamics of SDN networks. Statistical analysis and mathematical modeling are a huge challenge in

the face of factors such as a huge amount of network data and constantly changing network parameter

configurations. At the same time, its method cannot adapt to the ever-changing virtual network

environment, and it no longer has scalability and analysis capabilities. In recent years, machine learning,

as a powerful data analysis tool, has been widely used in various research fields, e.g., financial and

transportation domains [4-7]. The development of machine learning also provides new ideas for SDN

network performance prediction [8-12]. Machine learning technology can learn and extract rules from

a large amount of historical data, thereby predicting future SDN network performance, and can be

adapted to different network environments [13-15].

In this paper, we propose a method for SDN performance prediction based on machine learning

techniques. This method uses a public network dataset constructed by performing simulations based on

different network configurations and collecting corresponding network performance indicators. We tried

to change the parameters of the feature selection method of PCA and machine learning models such as

AdaBoost, decision tree, random forest, and XGBoost and considered the accuracy and effectiveness of

its predictions in multiple dimensions. We observed that XGBoost achieves the lowest error in most of

the cases in terms of MAE, RMSE and MAPE, and feature selection through PCA fails to further

improve the prediction performance of XGBoost.

The rest of the paper is organized as follows: Section 2 examines related work. Section 3 describes

the generation and content of the datasets used in this work. Section 4 details the machine learning

models we use and the related methods of operation. Section 5 presents the experiments, model

calculation process, and evaluation results. Finally, Section 6 presents the conclusion and future work.

2. Related work

With the rapid development and wide application of machine learning, many scholars have proposed

research methods for using machine learning in the OpenFlow environment. Its application in SDN

includes many target orientations, including traffic classification, anomaly detection, routing

optimization and final performance. forecast, etc. However, they are all limited. Focusing on network

performance prediction, in this section, we briefly introduce this literature as well as other areas where

machine learning has been used to improve virtual networks.

For network performance prediction, [16] discusses how to use big data and machine learning

technology to analyze and manage network quality of service (QoS) in SDN. This research establishes

and quantifies the relationship between various network traffic data KPIs and QoS and analyzes the

reasons for their association based on the results. In [17], two learning methods, regression tree and

random forest, are used to predict the QoS in the OpenFlow network. The author compares the

advantages and disadvantages of the two methods from different dimensions and finds that reducing the

data dimension during processing has little effect on the estimation accuracy and will greatly shorten

the training time of the model. Both [18] and [19] discuss how to use machine learning-based models to

predict performance in data center networks and use their results to tune relevant parameters. To realize

the efficient performance of Incast and coexistence of long and short traffic in DCN. At the same time,

both papers demonstrated the universality of the machine learning model compared with the traditional

analysis model and extended the model from a single Incast to a mixed Incast and elephant scenario.

Both [20] and [21] proposed a processing scheme to optimize the quality of online video, and [20]

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

58

designed a learning model using a deep recurrent neural network (RNN) and long short-term memory

(LSTM) to predict the future of DASH clients to determine the quality that will be cached. In [21], it

predicts the quality of experience (QoE) of video streaming, aiming at evaluating user satisfaction with

the service. The authors used five different learning algorithms to predict user perception and compared

the results of each method to determine the best learning algorithm.

There are also different interpretations of the other functions of machine learning in SDN. [22]

introduced a network intrusion detection system (IDS) based on a programmable P4 switch, which uses

machine learning algorithms for anomaly detection and implements an anomaly detection mechanism

in high-speed networks. [23] proposed a new routing protocol PFR, which implements path selection

based on dynamic routing topology state and traffic prediction results based on machine learning. [24]

presents a method for modeling and predicting daily traffic patterns in telecommunication networks.

These methods predict and optimize network performance through machine learning algorithms, thereby

improving the efficiency and reliability of SDN networks. In [25], the autoregressive average model

(ARIMA) is used to predict the load of the SDN controller to optimize the migration operation to support

low-latency communication and to adopt the corresponding load balancing strategy through its

prediction results.

In general, these studies show that the application of machine learning in SDN performance

prediction is of great significance and provides inspiration for our research. These methods can provide

decision support and optimization suggestions for network managers and improve network efficiency

and reliability. However, some methods and frameworks in these studies still have limitations. For

example, in past studies, most data simulations exist in a specific network topology, the SDN distributed

architecture is fixed, and the dataset is single. In our work, we use 50 real network topologies, carry

them on two different SDN distributed architectures, and perform network simulation on OpenFlow

based on the OMNeT++ suite, which has better versatility and practicability. At the same time, most of

the current performance prediction methods are based on machine learning to continuously update,

analyze and process data traffic. Our work is forward-looking, using machine learning to make

predictions before SDN deployment, which greatly shortens the data analysis and processing time and

avoids unnecessary network delays during data processing.

3. Dataset description

In our research, we use a publicly available real SDN network traffic dataset to train and validate our

model approach [26]. The dataset contains network traffic data collected from virtual simulation

networks of two different SDN distributed controller deployment structures based on 50 real network

topologies. Because of the supervised learning method we use, each sample is composed of its feature

value and the associated target value. Now, we describe its network system configuration and dataset

input and output.

3.1. Settings

First, we selected 50 real and effective network topologies from the network topologies around the world

collected in the Internet Topology Zoo as the topological structure of this simulation architecture to

avoid the error of experimental results caused by the single network structure.

In addition, this SDN simulation experiment uses the OpenFlow network based on the OMNeT++

framework. OMNeT++ is an open source component-based modular development network simulation

platform. With a powerful graphical interface and embedded simulation kernel, it can easily define the

network topology and has functions such as programming, debugging and tracking support. It is mainly

used for the simulation of communication networks and distributed systems. OpenFlow OMNeT++

Suite (OOS) combines these two tools to provide an OpenFlow-based network simulation platform.

Using OOS, it is possible to build topologies containing multiple OpenFlow switches and hosts and to

test various network configurations and policies in simulation. In OOS, controller programs can be

written that can run in simulation and communicate with switches using the OpenFlow protocol for

network control and management. At the same time, OOS also provides a variety of performance

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

59

indicators and analysis tools for evaluating and comparing the performance of different network

configurations and strategies. It can fully meet the needs of this simulation experiment.

To compare the differences in network performance prediction under different SDN distributed

controller deployment structures. We employ two different controller structures, both of which are built

into the OOS system. They are based on the flat structure of HyperFlow, each controller is at the same

level, and there is no need to distinguish between primary and secondary controllers, but there is a

disadvantage of real-time synchronization of information; based on Kandoo's hierarchical structure,

each controller is divided into primary and secondary controllers, namely, a root controller and a local

controller.

This dataset file is constructed by continuously changing relevant network configuration parameters,

performing network simulation on OOS, and collecting relevant network performance indicators. For

each simulation, 21600 observations can be obtained, and the related configuration is as follows:

⚫ The number of controllers in each of the 3 groups of controllers: Number of controller instances

⚫ Solve and generate 3 different controller placement schemes. For example, minimize controller-

to-root latency

⚫ Set 12 sets of TimeOut values: Idle timeout of flow entries, ranging from 5 s to 60 s

⚫ Four simulation experiments were performed for each configuration.

⚫ Simulation using 50 groups of real network topologies

3.2. Input and output variables

During the simulation process, we processed the collected network traffic data features and finally

collected 349 input features. In addition, considering that there are many input features, we will adopt

the PCA data dimensionality reduction method in the future. The input features include two categories.

The first category is static topology metrics, e.g., the number of switches, betweenness, and closeness.

These metrics are always the same for a network and persist through different configurations. The other

category is the semidynamic controller metrics, e.g., timeout, number of controllers, and latency. These

metrics may change per configuration.

The output targets include six variables, namely, the maximum and mean values for RTT,

ControlPlaneTraffic, and SyncTraffic. RTT is the round-trip time of pings. ControlPlaneTraffic is the

switch-to-controller (S2C) traffic caused by mismatched packets or topology discovery. SyncTraffic is

the controller-to-controller (C2C) traffic due to synchronization.

4. Methodology

Following the analysis of the dataset, we investigate methods based on supervised learning. From less

complex to more complex, gradually tune the PCA parameters and apply multiple machine learning

models to arrive at the most promising algorithm. Specifically, we preprocess the input SDN network

dataset, standardize the data, and then use the PCA algorithm to reduce the dimensionality of the features.

Finally, different models are selected for training to select the optimal model and parameter combination

to obtain the optimal prediction results. Some key parts will be described in detail below.

4.1. Preprocessing steps

Standardization step: To ensure the effectiveness of machine learning algorithms, we convert data with

different characteristics into data with the same scale. Using the StandardScaler method of normalization,

it subtracts the value of each feature from its mean and then divides the result by its standard deviation,

thus ensuring that the values of each feature have zero mean and unit variance.

PCA step: To study whether the simplified set of input features will affect the accuracy of the

prediction results, reduce data complexity and noise, and improve the efficiency and accuracy of model

training. We applied a data dimensionality reduction method PCA (principal component analysis) to

reduce the dimensionality of the input features. The basic idea is to calculate the covariance matrix

between the input features, obtain the eigenvalues and eigenvectors, and then select the most

representative eigenvectors to map the original feature space to a new low-dimensional feature space.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

60

In the specific implementation, we can use the PCA class in the Scikit-learn library in Python to

implement the PCA algorithm.

4.2. Machine learning models

In our work, we are mainly based on SDN network traffic data, expecting its related performance

indicators and exploring its regression problem. We introduce the four regression algorithms used in

this work in detail in the next paragraph, and some of the algorithms have the ability to perform

classification tasks. Regression tasks can also be performed, and here, we only discuss regression

problems.

AdaBoost: AdaBoost is a boosting algorithm for ensemble learning. It has certain noise resistance

and is not prone to overfitting problems. The basic idea is to combine multiple weak regression models

into a stronger model. In each iteration, the algorithm assigns higher weights to the next weaker model

based on the error of the current model, giving these weaker models better predictive power when

combined. Specifically, AdaBoost uses a set of basic regression models (such as decision trees, linear

regression, etc.) as weak models. Then, in each iteration, it trains a weaker model again based on the

adjusted sample weights. Finally, the prediction results of all weak models are weighted according to a

certain ratio to obtain the final prediction result of the whole model.

Decision Tree: Decision Tree is an important predictive algorithm for machine learning modeling.

This technology is fast to learn, easy to understand, and can produce more accurate predictions. It is

widely used in machine learning. It uses a binary tree structure to predict continuous variables. The basic

idea of the decision tree is to recursively divide the dataset into subsets, and the model will select an

optimal feature to divide the dataset into two subsets. The data in each subset have similar characteristics,

and this process is repeated until all the subsets are divided or the preset stop condition is reached.

Estimates are made by traversing the partitions of the tree until a leaf node is reached, at which the

predicted value is output. Decision tree is very interpretable and robust and can handle datasets with

nonlinear relationships.

Random Forest: Random Forest is one of the most famous machine learning algorithms and is an

ensemble of decision trees. It combines the prediction results of multiple decision tree models to form a

more accurate and stable overall prediction result. During the construction of each tree, the model uses

a bootstrap sampling method to randomly select a certain proportion of samples from the original dataset

and randomly selects a certain number of features as the basis for the construction of the tree. The basic

idea of the model is to learn simultaneously in multiple decision trees to avoid overfitting of a single

decision tree. Usually, it is trained by the bagging method. When making predictions, random forest

averages or weights the prediction results of all decision trees to obtain the final prediction result. The

model has good robustness and generalization ability and can handle high-dimensional data and missing

data. However, due to the complex structure of the model and the long training time, it is necessary to

properly adjust the model parameters to achieve better prediction performance.

XGBoost: XGBoost is a well-known ensemble learning model based on gradient boosting trees. Like

Adaboost, Gradient Boosted Regression Trees (GBRT) operates by incrementally adding classifiers to

the ensemble, each classifier correcting previous classification results. However, it does not change the

weight of the instance every iteration like Adaboost. This method uses the forward distribution algorithm

for greedy learning and uses a new classifier to fit the residual predicted by the previous classifier.

XGBoost is a series of optimizations to the GBRT algorithm, such as adding regularization items and

tree pruning techniques to prevent overfitting. In each iteration, XGBoost will train a new decision tree

and update the prediction results by combining the prediction results of all previous trees. In addition,

XGBoost can also sample samples and features to increase the robustness of the model. After the training

is completed, XGBoost sorts the features according to the contribution value of the tree to facilitate

feature selection and model interpretation. XGBoost is an efficient and accurate model that can handle

datasets with high dimensions, a large number of samples, and complex structures and can automatically

handle missing values. XGBoost also supports parallel computing and GPU acceleration, enabling fast

training of large-scale datasets.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

61

5. Discussion

To measure the predictive performance of different machine learning algorithms, the accuracy of

predictive models under different PCA parameters is compared at the same time. We run the algorithm

to calculate the evaluation indicators under each model and conduct analysis, comparison and evaluation.

This chapter will describe our experiment-related settings and experimental evaluation results in detail.

5.1. Settings

To better train the model and prevent overfitting problems, we use 5-fold cross-validation, which

randomly divides the original data into 5 groups (K-Fold) and makes each subset data a validation set,

and the remaining 4 sets of subset data are used as training sets to obtain 5 models. These five models

evaluate the results in the validation set, and the final error MSE (mean squared error) is summed and

averaged to obtain the cross-validation error. Cross-validation makes efficient use of limited data and

evaluates results as close as possible to the model's performance on the test set. The root mean square

error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are used as the

evaluation metrics. The implementation is based on Python and its packages, e.g., scikit-learn.

 RNSE=√
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑁
𝑖=1 (1)

 MAE=
1

𝑁
∑ |𝑥𝑖 − 𝑦𝑖|
𝑁
1 (2)

 MAPE=
∑ |

𝑥𝑖−𝑦𝑖
𝑦𝑖

|𝑁
𝑖=1

𝑁
× 100 (3)

5.2. Results

In this part, the experimental results from different machine learning models are presented in Tables 1-

6 for both the flat architecture and the hierarchical architecture. For most cases, XGBoost achieves the

lowest error compared with AdaBoost, decision tree and random forest as baselines. However, the

random forest outperforms XGBoost for RTT prediction in the flat architecture.

Table 1. MAE results for the flat architecture.

Model AdaBoost Decision Tree Random Forest XGBoost

RTT Mean Value 8.426 7.540 6.449 6.661

Max Value 90.565 84.499 70.901 71.597

S2C Mean Value 125.475 71.805 56.327 39.165

Max Value 979.585 910.151 876.929 873.007

C2C Mean Value 8.776 5.575 3.841 3.284

Max Value 18.179 19.275 17.056 14.990

Table 2. RMSE results for the flat architecture.

Model AdaBoost Decision Tree Random Forest XGBoost

RTT Mean Value 11.943 13.182 11.417 11.520

Max Value 133.309 145.483 121.719 123.196

S2C Mean Value 143.448 109.932 85.134 61.278

Max Value 1523.534 1660.565 1577.677 1941.336

C2C Mean Value 10.365 8.826 5.972 5.249

Max Value 24.587 27.527 24.829 22.575

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

62

Table 3. MAPE results for the flat architecture.

Model AdaBoost Decision Tree Random Forest XGBoost

RTT Mean Value 65.513 21.633 19.625 23.652

Max Value 140.196 50.608 36.408 34.811

S2C Mean Value 23.016 10.050 7.871 5.292

Max Value 16.766 11.668 11.928 11.205

C2C Mean Value 9.413 5.036 3.569 3.066

Max Value 9.281 9.160 8.024 7.002

Table 4. MAE results for the hierarchical architecture.

Model AdaBoost Decision Tree Random Forest XGBoost

RTT Mean Value 11.379 10.138 8.613 8.336

Max Value 114.167 127.089 114.052 99.003

S2C Mean Value 125.864 71.263 55.906 41.932

Max Value 981.245 1756.097 851.240 864.706

C2C Mean Value 10.246 4.033 2.936 2.607

Max Value 17.874 12.213 9.514 8.327

Table 5. RMSE results for the hierarchical architecture.

Model AdaBoost Decision Tree Random Forest XGBoost

RTT Mean Value 16.667 18.759 15.755 15.091

Max Value 226.124 258.344 238.207 203.710

S2C Mean Value 144.220 108.456 84.051 67.223

Max Value 1532.429 3563.972 1532.113 1927.967

C2C Mean Value 11.519 6.751 4.904 4.092

Max Value 21.710 19.279 14.211 12.438

Table 6. MAPE results for the hierarchical architecture.

Model AdaBoost Decision Tree Random Forest XGBoost

RTT Mean Value 73.843 32.576 23.663 23.576

Max Value 78.158 46.647 43.964 40.785

S2C Mean Value 23.185 9.726 7.781 5.522

Max Value 16.727 30.404 11.402 10.036

C2C Mean Value 106.966 19.367 14.693 14.001

Max Value 40.807 17.894 14.481 12.899

Then, we evaluate the influence of the number of PCA components. Since XGBoost is the best

machine learning model from the above tables, only the results with XGBoost are plotted in Figures 1

and 2. Similar observations are obtained for other machine learning models. For simplicity, only RMSE

is used in Figures 1 and 2. As observed from the results, feature selection through PCA fails to further

improve the prediction performance of XGBoost. The only exception occurs in the case of S2C max

value prediction in the flat architecture. It is also observed that the prediction performance decreases

sharply when the feature number is reduced from 50 to 30. Overall, it is not a good idea to apply PCA

for feature selection in the SDN performance prediction problem considered in this study. More feature

selection techniques should be considered in future studies.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

63

(a) RTT Mean Value Prediction RMSE

(b) RTT Max Value Prediction RMSE

(c) S2C Mean Value Prediction RMSE

(d) S2C Max Value Prediction RMSE

(e) C2C Mean Value Prediction RMSE

(f) C2C Max Value Prediction RMSE

Figure 1. Prediction results of XGBoost for the flat architecture.

(a) RTT Mean Value Prediction RMSE

(b) RTT Max Value Prediction RMSE

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

64

(c) S2C Mean Value Prediction RMSE

(d) S2C Max Value Prediction RMSE

(e) C2C Mean Value Prediction RMSE

(f) C2C Max Value Prediction RMSE

Figure 2. Prediction results of XGBoost for the hierarchical architecture.

6. Conclusion

Network performance prediction is an important research direction in the context of future Internet and

SDN networks. In this paper, we propose a method based on machine learning to predict performance

indicators in SDN networks to achieve optimal network deployment strategies. The goal is to reduce

engineering overhead and improve network transmission efficiency. The approach is to use a publicly

available network dataset derived from different network traffic data collected while constantly

changing network-related configurations. We tried the PCA feature selection method on this dataset,

used four machine learning models such as AdaBoost for training, used the 5-fold cross-validation

method, and finally calculated RMSE, MAE and MAPE to evaluate and compare their predictive

capabilities. After analysis, we found that compared with AdaBoost, decision tree and random forest,

the XGBoost model has the most accurate prediction ability, and the errors of the MAE, RMSE and

MAPE indicators are generally lower. However, we found that PCA feature selection cannot further

improve the prediction performance of the corresponding model. In future research, we can choose other

feature selection methods and try to analyze their performance capabilities, such as using the forward-

stepwise-selection machine learning method to explore whether it can reduce the size of the feature set

without affecting the XGBoost model predictive performance to reduce model training time.

References

[1] Long, Q., Chen, Y., Zhang, H., & Lei, X. (2019). Software defined 5G and 6G networks: a survey.

Mobile networks and applications, 1-21.

[2] Jiang, W. (2023). Software defined satellite networks: A survey. Digital Communications and

Networks.

[3] Turner, S. W., Karakus, M., Guler, E., & Uludag, S. (2023). A Promising Integration of SDN and

Blockchain for IoT Networks: A Survey. IEEE Access.

[4] Jiang, W. (2021). Applications of deep learning in stock market prediction: recent progress.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

65

Expert Systems with Applications, 184, 115537.

[5] Jiang, W., & Zhang, L. (2018). Geospatial data to images: A deep-learning framework for traffic

forecasting. Tsinghua Science and Technology, 24(1), 52-64.

[6] Jiang, W., & Luo, J. (2022). Graph neural network for traffic forecasting: A survey. Expert

Systems with Applications, 117921.

[7] Jiang, W., Luo, J., He, M., & Gu, W. (2023). Graph Neural Network for Traffic Forecasting: The

Research Progress. ISPRS International Journal of Geo-Information, 12(3), 100.

[8] Ohtsuki, T. (2023). Machine Learning in 6G Wireless Communications. IEICE Transactions on

Communications, 106(2), 75-83.

[9] Jiang, W. (2022). Cellular traffic prediction with machine learning: A survey. Expert Systems

with Applications, 117163.

[10] Jiang, W. (2022). Graph-based deep learning for communication networks: A survey. Computer

Communications, 185, 40-54.

[11] Cao, Z., Zhang, H., Liang, L., & Li, G. Y. Machine Learning for Wireless Communication: An

Overview. APSIPA Transactions on Signal and Information Processing, 11(1).

[12] Kanakis, M. E., Khalili, R., & Wang, L. (2022). Machine Learning for Computer Systems and

Networking: A Survey. ACM Computing Surveys, 55(4), 1-36.

[13] Jiang, W. (2022). Internet traffic matrix prediction with convolutional LSTM neural network.

Internet Technology Letters, 5(2), e322.

[14] Jiang, W. (2022). Internet traffic prediction with deep neural networks. Internet Technology

Letters, 5(2), e314.

[15] Jiang, W., He, M., & Gu, W. (2022). Internet Traffic Prediction with Distributed Multi-Agent

Learning. Applied System Innovation, 5(6), 121.

[16] Jain, S., Khandelwal, M., Katkar, A., & Nygate, J. (2016, October). Applying big data

technologies to manage QoS in an SDN. In 2016 12th International Conference on Network

and Service Management (CNSM) (pp. 302-306). IEEE.

[17] Pasquini, R., & Stadler, R. (2017, July). Learning end-to-end application qos from openflow

switch statistics. In 2017 IEEE Conference on Network Softwarization (NetSoft) (pp. 1-9).

IEEE.

[18] Nougnanke, K. B., Labit, Y., Bruyere, M., Ferlin, S., & Aivodji, U. (2021, March). Learning-

based incast performance inference in software-defined data centers. In 2021 24th Conference

on Innovation in Clouds, Internet and Networks and Workshops (ICIN) (pp. 118-125). IEEE.

[19] Nougnanke, B., Labit, Y., Bruyere, M., Aïvodji, U., & Ferlin, S. (2022). ML-based performance

modeling in SDN-enabled data center networks. IEEE Transactions on Network and Service

Management.

[20] Kheibari, B., & Sayıt, M. (2020, November). Quality estimation for DASH clients by using Deep

Recurrent Neural Networks. In 2020 16th International Conference on Network and Service

Management (CNSM) (pp. 1-8). IEEE.

[21] Abar, T., Letaifa, A. B., & Asmi, S. E. (2020). Quality of experience prediction model for video

streaming in SDN networks. International Journal of Wireless and Mobile Computing, 18(1),

59-70.

[22] Gray, N., Dietz, K., Seufert, M., & Hossfeld, T. (2021, June). High performance network metadata

extraction using P4 for ML-based intrusion detection systems. In 2021 IEEE 22nd

International Conference on High Performance Switching and Routing (HPSR) (pp. 1-7).

IEEE.

[23] Hardegen, C., & Rieger, S. (2020, November). Prediction-based flow routing in programmable

networks with P4. In 2020 16th International Conference on Network and Service

Management (CNSM) (pp. 1-5). IEEE.

[24] Goścień, R., Knapińska, A., & Włodarczyk, A. (2021). Modeling and prediction of daily traffic

patterns—WASK and SIX case study. Electronics, 10(14), 1637.

[25] Filali, A., Mlika, Z., Cherkaoui, S., & Kobbane, A. (2020). Preemptive SDN load balancing with

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

66

machine learning for delay sensitive applications. IEEE Transactions on Vehicular

Technology, 69(12), 15947-15963.

[26] Dietz, K., Gray, N., Seufert, M., & Hossfeld, T. (2022, April). ML-based performance prediction

of SDN using simulated data from real and synthetic networks. In NOMS 2022-2022

IEEE/IFIP Network Operations and Management Symposium (pp. 1-7). IEEE.

Proceedings of the 5th International Conference on Computing and Data Science
DOI: 10.54254/2755-2721/29/20230803

67

