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Abstract. For a long time, search and rescue operations during natural disasters and man-made 

catastrophes have been a major challenge. Due to the rapidly changing environment in disasters, 

deploying rescue teams for search missions entails significant risks. With advancements in 

technology, the latest innovations can be applied to search and rescue tasks to reduce these risks. 

LiDAR (Light Detection and Ranging) sensors can be installed on unmanned search and rescue 

vehicles to explore the space. This article utilizes solid-state LiDAR technology, along with 

various algorithms like SLAM (Simultaneous Localization and Mapping) and EKF (Extended 

Kalman Filter), to design a remotely controlled unmanned exploration vehicle. By capturing 

point cloud data, it enables modelling and recording of indoor or outdoor spaces, allowing for 

space exploration and the identification of trapped individuals and other important rescue-related 

information before rescue personnel enter the premises. This significantly reduces the risks and 

time involved in search and rescue operations. The prototype vehicle designed in this paper 

possesses the advantages of low cost and high flexibility, making it feasible for direct 

deployment after minor optimization. Finally, the author provides a summary and outlook for 

this research. 
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1.  Introduction 

It had been long speculated that novel technologies may be incorporated into rescue missions in critical 

situations such as earthquakes and tsunamis. In major earthquakes, it is possible to identify opportunities 

in using autonomous robotic exploration vehicles in exploring, charting, and modelling the interior 

spaces of collapsed buildings, or even to lo cate survivors, increasing the efficiency and safety of the 

rescue mission, which in turn improves the chances of survival and the safety of the emergency response 

personnel. This is a major improvement over the previous system of personnel plus rescue dogs since it 

decreases the risks involved in a fully manual extraction operation. A significant example of this may 

be seen in the Wenchuan earthquake of 2008, which measured 8.0 on the Richter Scale and caused major 

damage to structures in the vicinity of ground zero. According to Hakami et al. [1], for such events, 

there is a decreasing rate of survival as time spent before rescue increases, where the survival rate 

quickly drops off to less than 20% or even 5-10% after 72 hours, as illustrated by Figure 1 below. This 

is known as the Golden 72 Hours. Since the rate of survival drops significantly with time, it is important 

to extract trapped survivors shortly after the incident to ensure a high survival rate, preferably in under 

3 days. However, search teams are often overwhelmed by the number of tasks needed to be done at the 
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site. By utilizing the combinations of technologies listed above, it is possible to improve the overall 

speed of the extraction process by scanning and charting the structures before manual exploration, thus 

decreasing the fatality rate by enabling the extraction team to locate and extract survivors with higher 

efficiency. 

 

Figure 1. Rescuing was difficult after the 2008 Wenchuan earthquake. 

 

Figure 2. The relationship between time and survival rate [1]. 

With these possible applications in mind, with advances in the field of robotics and LiDAR  (Light 

Detection and Ranging) technology, the possibilities of combining the two tech neologies and applying 

them in real scenarios are becoming more achievable by the day. By utilizing a combination of 

possibility-based SLAM (Simultaneous Localization and Mapping) algorithms and LiDAR point-cloud 

modelling technologies, it is possible to create relatively small autonomous vehicles that possess the 

ability to scan, record, and explore interior spaces before the extraction team becomes involved. The 

LiDAR camera possesses the ability to accurately chart the surroundings using point-cloud modelling 

technologies, while the SLAM algorithms utilize the above data and orient the vehicle accordingly by 

using a combination of mapping through observations, starting with a set “beacon” for marking the 

deploying location for calibration, and localization through the recorded mapping data and odometrical 

modelling. Artificial intelligence algorithms may be applied to navigate through the terrain and even 

return to the entrance with the observation data collected in the exploration process for use in another 

mission. 
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LiDAR sensors are similar to echolocation techniques used by bats and dolphins in the natural world 

[2], but with light waves instead of sound. By actively generating pulses of laser beams that reflect off 

of surfaces and measuring the time it takes for the laser beam to return to the sensor, the LiDAR sensor 

is able to measure the distance of objects in the path of the laser beam. This is achieved by applying the 

following equation. 

 
2

ct
R =  (1) 

In the above equation, R is the distance measured, c is the speed of light, and t is the time between 

the transmission and reception. Essentially, this allows the sensor to measure the distance of an object 

by measuring the time it takes for its laser beam to reach and return, similar to a sonar system naturally 

found on bats and applied on underwater survey vessels. Naturally, this system is heavily affected by 

noise data, generated by the noise in the location of the sensor, the accuracy and precision of the laser 

beams, and the density of air which affects the local speed of light [3]. This could be accounted for in 

the product by applying an anti-noise algorithm that attempts to reconstruct the data by treating the noise 

data with a distribution-based correction algorithm, likely that of a Gaussian distribution. LiDAR 

sensors are suitable for this task since this task requires mapping the shape of a space. By using LiDAR 

sensors, a system of points in a virtual 3D space known as point cloud that corresponds to the real space 

can be created. Individual points in the 3D space is created with individual laser pulses, which then can 

be reconstructed into a 3d model of the space of the rescue environment. 

More commonly used conventional spinning LiDAR sensors are more suitable in an autopilot driving 

application on urban roads, for example Velodyne, Hesai and Ouster. There are a series of problems 

when they are applied to rescue tasks, since the mechanical spinning sensors are relatively heavy and 

large, resulting in high requirements for the size and structure the chassis, which conflict with the 

objectives of this system. Data comparisons can be seen in table 1. Thus, a solid-state LiDAR is chosen 

instead. 

This system yields several benefits compared to other applicable systems of navigation and terrain 

modelling when applied in this scenario. One common alternative system of localizing is the Global 

Positioning System (GPS) [4]. However, GPS signals require open access to satellite signals, which may 

be unavailable for indoor environments where survivors may be expected to be found, causing drops in 

accuracy or even complete losses of localization data. In applied scenarios, losing localization data may 

have catastrophic consequences, which may result in the loss of the vehicle. Furthermore, a GPS system 

does not allow the scanning of surfaces to create a point-cloud model, thus a scanning system must be 

attached externally, which may increase cost and weight. In comparison, the local system of LiDAR 

may be more stable under application scenarios and allows scanning and localizing to be packaged into 

one tool, simplifying the system while improving robustness. Another common alternative system is the 

use of conventional cameras as scanning devices coupled with depth algorithms or two cameras placed 

a certain distance apart to emulate the binocular vision of human eyes [5], similar to the technique used 

on certain smartphones. However, this system is less accurate compared to LiDAR systems as it does 

not use a reliable physical system to measure the distances. Rather, it relies on post-processing 

algorithms to approximate the distance, which relies heavily on the robustness of the algorithm to 

function [3]. When a high amount of noise sources is present, camera systems may not work at their full 

capacity. Furthermore, cameras are essentially passive measuring tools that can only receive light, 

limiting their capability of operating in dark environments, where they would need an external light 

source to function. LiDAR, in comparison, uses the speed of light to measure the distance from an object. 

By using a universal constant that could be calculated instead of relying on computer analysis, the 

robustness of the LiDAR could be significantly higher than that of depth algorithms. By generating the 

laser beams itself instead of relying on external sources, the LiDAR sensor essentially functions as its 

own flashlight, negating the requirement of an external light source. Thus, by using a LiDAR sensor to 

map and localize, it is possible to avoid the flaws of other commonly used localization and mapping 

methods, improving the accuracy, efficiency, and robustness of the product. 
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Concretely, the contributions of this paper include: 

1. To design a low-cost and flexible rescue vehicle. The solid-state LiDAR is installed upon a 

standard servo on the rescue vehicle to solve the limitation of small and fixed FOV (Field of View) 

caused by a compromise of using the solid-state LiDAR; 

2. To design an extended Kalman filter capable of combining different sources of information to 

accurately reconstruct localization data; 

3. To design an experiment to accurately model the noise/uncertainty of the LiDAR measurement. 

2.  Related works 

2.1.  Robotic rescue systems 

There are existing works on this subject, which include theories regarding the design of rescue vehicles 

for emergencies from different perspectives, which this paper aims to incorporate into the design of the 

final product. There are different categories of papers written around the subject, which will be discussed 

below. Since this paper incorporates a wide variety of areas of research, the papers reviewed is also 

comprehensive, factoring in a large number of papers. 

Prior works have shown that it is possible to construct a system of rescue and logistics in emergency 

situations with analysis. An example of this is Hakami et al. [1], who detailed the structure of an efficient 

rescue effort in “Application of Soft Systems Methodology in Solving Disaster Emergency Logistics 

Problems”, through case studies and logical analysis. It applies SSM (Soft Systems Methodology) to 

construct a disaster emergency logistics system in earthquakes. The efforts of Hakami et al. and others 

of the field to describe rescue procedures provided a robust basis for the applications of this project. 

Previous research has established the fact that the structure and layout of wheeled robots greatly 

affect their cross-country capabilities, perhaps as to be greatly expected. “Mobility evaluation of 

wheeled all-terrain robots” by Thueer et al. [6] proposes a system of mobility evaluation. This paper 

discusses the physical considerations that may go into evaluating wheeled robots. A model for the 

kinematic models of a rover and a model for the control architecture was developed, which was applied 

to static and kinematic analysis in on different modular hardware configurations. It is helpful in that they 

can aid with the development of the hardware system of this project, specifically the chassis and the 

support structure of the vehicle. 

2.2.  LiDAR odometry and mapping 

There are several previous methods to adjust the odometry and mapping systems. One important method 

is by using iterative closest point algorithms, often shortened to ICP. This method calculates the distance 

between points to stitch different point-clouds together. One improved version of this tool is known as 

the G-ICP, G meaning “general”, which utilizes both point-to-point and point-to-plane. However, these 

two methods both rely on data association. Due to a reliance on data association, data matching may 

become unreliable when the data given is not clear enough. Take the L515 for example, it offers 70 

degrees for horizontal FOV. Although enough for most scenarios, low FOVs may cause an issue when 

facing a wall, since the algorithms will find a lack of features for the point-clouds to be accurately 

matched, causing significant errors. 

In addition, these methods face the problem of point cloud distortion caused by the robot’s motion 

during the period of the scanning. To address this problem, LOAM (LiDAR Odometry and Mapping) 

methods were proposed, which fix inconsistencies and aliasing produced due to motion. 

Whilst much study had been committed towards the aforementioned individual sectors of research, 

there is little research done that compiles them together to create a usable product that could be applied 

in a real scenario. There are papers devoted to compiling some of the aforementioned areas of research, 

but many of them were only applied in an abstract and generic scenario while requiring further 

elaboration on creating a usable product. This paper aims to change the aforementioned situation by 

compiling prior research and novel research to create a theoretical structure of LiDAR rescue robot plus 

a usable product that could be used in demonstration real-time. 
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3.  Methodology 

3.1.  Hardware design 

The onboard computer used in this project is Raspberry Pi 4B with 4GB ram. It is chosen for its compact 

size, which means that it could be fitted directly onto the chassis without requiring a larger chassis that 

would decrease manoeuvrability, and its ARM processor, capable of installing Ubuntu 20.04 for 

development and running required software, such as ROS (Robot Operating System) and various 

algorithms used to treat collected data. It serves as a central hub for all other components to be ultimately 

attached to. The Raspberry Pi is mounted near the back of the chassis on a metal floorboard, connected 

to a handheld powerband, while a servo mounted near the centre of the chassis serves as a base of the 

LiDAR sensor, providing a greater FoV with rotation. 

The chassis is a simple aluminium alloy tracked chassis with 3 load wheels at each side. The drive 

wheel installed on top of the side panels provides sufficient power for smooth locomotion with 2 brushed 

motors connected to each wheel, each possessing a decelerating gearbox for increased torque. As this 

product does not require fast locomotion and in fact need to avoid sudden movements to allow the use 

of more efficient constant velocity locomotion models in performing state estimation with a greater 

accuracy and precision, using this setup minimizes the cost of the product without sacrificing 

performance. 

Intel Realsense L515 was chosen to be applied to this project as the LiDAR sensor. Compared to 

mechanical counterparts such as Velodyne VLP-16, L515’s main advantages are dimensions and weight, 

which is essential for small autonomous vehicles that need to be mass-produced. Weighing 95g and 

being comparably smaller [7], it is easier to transport on the chassis compared to VLP-16. Other notable 

advantages are its significantly higher resolution and accuracy, which allows for mapping small details 

that may otherwise be difficult to map, improving the detail of the final point-cloud model [7]. Its main 

disadvantage compared to VLP-16 is the field of view, or FoV for short. Compared to a 360° view 

offered by Velodyne, it only offers a 70° FoV horizontally [7]. However, this would not be a significant 

hindrance, as it is possible to rotate the sensor by attaching it to a servo capable of turning 290° or more, 

allowing 360° mapping without using a mechanical sensor. The data are offered below in Table 1. 

Figure 3, Figure 4 and Figure 5 show the pipeline of this project. 

 

Figure 3. Hardware of the product. 
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Figure 4. Hardware design diagram. 

 

Figure 5. System overview. 

3.2.  Framework overview 

At the software level, an EKF (Extended Kalman filter) was designed for achieving more accurate robot 

localization. 

Table 1. Comparison between Velodyne HDL-32E and Intel Realsense L515 [8][9]. 

Sensor Type Framerate FoV X-Res Y-Res Range Accuracy Dimensions Mass 

Velodyne HDL-32E Mechanical 5-20Hz 360°×41.33° 0.08° 0.33° 100m 2cm 144.2×85.3mm 1000g 

Realsense L515 Solid 30Hz 70°×55° 0.07° 0.07° 9m 1.4cm 61×26mm 95g 

3.3.  Pre-processing 

3.3.1.  Downsampling 

By employing a voxel filtering down-sampling algorithm, the time complexity of point cloud processing 

can be reduced, while simultaneously enhancing the overall compactness of information at the expense 

of lower details. This algorithm initially computes a cubic bounding box that tightly encapsulates the 

point cloud, which is then partitioned into various smaller cubic voxels based on a predetermined 

resolution. Subsequently, the centroid of each point within the voxel is calculated, and its coordinates 

are employed to approximate the position of points within the voxel. The following equation represents 

the indexing of the point cloud: 

  _ _ _ _ _ _i i i iindex z index x size y size y index x size x index=   +  +   

 ( )_ _ / _i ix index x x voxel resolutionmin= −   
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 ( )_ / _x xx size voxel resolutionmax min= −  (2) 

The following is the calculation of the coordinates of the centroid. center_xIs the coordinate of the 

centroid. 

 ( )0 1

0

_ 0,1, ,
n

n

i

x x x
center x n n

n=

+ + +
= =  (3) 

Figure 6 and Figure 7 are samples of downsampling. The algorithm retained many details while 

eliminating large amounts of points. 

 

Figure 6. Pre-downsample point cloud. 

 

Figure 7. Post-downsample point cloud. 

3.4.  State estimation 

3.4.1.  Constant velocity model 

The state x is defined below: 

 
T

G T G T G T G T

t t t t tx R p v  =    (4) 

Through the constant velocity assumption, we can get a pose prior to ˆ
kx  with covariance ˆ

kP  based 

on last state 1kx −  with covariance 1kP − . Let the time interval between kx  and 1kx −  be dt, then the 

predicted rotation and position can be calculated through: 

 1k kR R dR−=   
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 1 1k k kp p v dt− −= +   (5) 

where dR is a rotation matrix defined by the Rodrigues formula [10]: 

 ( )ˆ 2ˆ ˆsin 1 cosrdR e I r r  = = + + −  (6) 

where 1k dt  −= , 1

1

k

k

r



−

−

=  and r̂  is the skew symmetric matrix of r [11]. 

Then, the motion model is defined as: 

 ( )1 1 1 1 1 1
ˆ , , , ,

T
T T T T T T

t t t t t t tx f x dt dR R p v dt v − − − − − −
 = = +    (7) 

The Jacobian matrix tG  is obtained by differentiating the stable variables and evaluating it at the 

current estimation of the state 1tx − : 

 

ˆ
0 0 0

0 0 0

0 0

0 0

r

t

e

I
F

Idt I

Idt I

 
 
 =
 
 
 

 (8) 

Denote the process noise in the constant velocity model to be tQ , then the covariance of the 

estimated state tX̂ is given by tP̂ : 

 1
ˆ T

t t t t tP F P F Q−= +  (9) 

3.4.2.  Observation model for the LiDAR point cloud 

With the prediction state ˆ
tx  provided by the constant velocity assumption, the LiDAR scan data and the 

already constructed point cloud map, we can build an observation model to correct the pose. Given a 

LiDAR point 
B

iP  in the LiDAR body frame after motion compensation, we first transform this point to 

the global frame as below: 

 
G G B G

i t i tP R P p= +  (10) 

Then, we assume the point 
G

iP  belongs to the closest plane i  fitted by its N nearby points 

( )1 2, , ,G G G G

NQ Q Q Q=  in the global point cloud map. To complete the fitting of this adjacent plane, 

we first extract the partial sub-map from the global map according to the FoV of the LiDAR and the 

pose prior. Then a k-D tree (k = 3) [12] will be constructed on the point cloud of the sub-map. The reason 

for using sub-map is to save computation time in building the k-D tree, since the time complexity of k-

D tree is ( )( )logO m n  where m is the dimension and n is the number of points in the point cloud map. 

For plane fitting of the nearby points, we calculate the point covariance matrix Σ: 

 
1

1 N
G

i

i

Q Q
N =

=  ; ( )( )
1

1 N
T

G G

i i

i

Q Q Q Q
N =

 = − −  (11) 

Let k  denote the k-th largest eigenvalue of matrix. Then we determine that these points form a 

plane when the following conditions are met: 
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 3 1   and 2 2   (12) 

where 1  and 2  are the pre-set hyperparameters. Besides, the eigenvector u correspondent to 3  is 

considered to be the normal vector of the plane. Recall the assumption that the plane i  is where the 

point 
G

iP  truly belongs to, then the point to plane distance should be zero, which constitutes the residual. 

Denoting iu  the normal vector of the corresponding plane with a centriod 
G

iq , then the residual iz  is 

computed as: 

 ( ) ( ) ( ), B T G G T G B G G

i t i i i i i t i t iz h x P u P q u R P p q= = − = + −  (13) 

Similarly to 3.4.1, we compute the Jacobian tH by differentiating the state variables and evaluating 

it in the current estimation ˆ
tx bxt of the state: 

 
1 3 1 3, ,0 ,0

G
T L T

tt i i iH u R p u  

  = −    
 (14) 

If all n LiDAR measurement points are considered together, the residuals iz  and the Jacobian matrix 

tH
 are combined as follows: 

 ( )

( )

( )

( )

1

2

,

,
,

,

B

t

B

tB

t t

B

t n

h x P

h x P
z h x P

h x P

 
 
 

= =  
 
 
  

  

 

1 1 1 1 3 1 3

2 2 2 1 3 1 3

1 3 1 3

, ,0 ,0

, ,0 ,0

, ,0 ,0

G
T L T

t

G
T L T

t

t

G
T L T

tn n n

u R p u

u R p u
H

u R p u

 

 

 

  −   
 

 −   =
 
 
  −   

 (15) 

Considering that each LiDAR point has varying levels of noise, which are represented by covariance 

iw , we optimize the pose to minimize the weighted covariance residuals. As a result, we obtain the 

updated state of the radar observation model, denoted as tx . 

3.4.3.  State update 

After obtaining the prior pose estimate ˆ
tx  and ˆ

tP  based on the assumption of constant velocity model, 

we incorporate n valid measurements from the current frame of the LiDAR. With this information, we 

construct a Maximum A Posteriori (MAP) estimation. 

  (16) 
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where ⊟ denotes the operation defined on the manifold [13]. For rotation matrices 1R  and 2R , as well 

as three-dimensional vectors 1v  and 2v , the operation is defined as follows: 

   

  (17) 

We use the EKF to solve this Maximum A Posteriori (MAP) estimation problem. Considering all n 

valid LiDAR measurements, we define 
1 2, , ,

T
T T T

t nH H H H =    and ( )1 2, , ,t nW diag w w w= . 

The calculation of the Kalman gain tK  is given by the following equation: 

 ( )
1

ˆ ˆT T

t t t t t t tK PH H PH W
−

= +  (18) 

Finally, utilizing the Kalman gain tK , we obtain the optimal updated state tx  and covariance matrix 

tP  as follows: 

   

 ( ) ˆ
t t t tP I K H P= −  (19) 

3.5.  Map update 

Based on the optimized pose tx  obtained from the EKF, we transform each downsampled LiDAR point 

from the LiDAR coordinate frame to the world coordinate frame and store it in the global map. 

4.  Experimentation 

4.1.  Experiment design 

The chassis used in this project is based on a differential drive kinematic model, which means that 

rotational motion is achieved by applying differential acceleration to the tracks. The chassis, including 

the tracks, is approximately 21 cm long, 23 cm wide, and 10 cm high. The L515 LiDAR is mounted on 

a servo near the centre of the chassis. 

4.2.  LiDAR noise modelling 

The LiDAR sensor is subject to certain errors originating from multiple sources. The accuracy of 

distance measurements is influenced by the reflectivity of objects as LiDAR relies on laser reflections. 

According to official data from Intel, for a reflectivity of 15%, the effective range of the L515 LiDAR 

sensor is only 0.25 - 3.9 meters, whereas for a reflectivity of 95%, the effective range extends to 0.25 - 

9 meters [8]. In summary, the accuracy of the L515 decreases significantly when measuring objects with 

lower reflectivity. In practical usage, this means that the precision of the L515 in measuring dark gray 

objects will be much lower compared to measuring white objects. Another noise source associated with 

LiDAR is the ambient light intensity in the environment. In environments with other bright light sources, 

particularly ample sunlight, the L515 may confuse its emitted laser beams with sunlight, resulting in 

random measurement noise. Due to the numerous factors involved, this type of noise is challenging to 

model. However, since this project primarily focuses on indoor usage, the impact of this noise on the 

experimental results is relatively minor. 

Additionally, in accordance with the working principle of LiDAR, when an object is either too close 

or too far from the sensor, the LiDAR sensor is unable to accurately measure the distance. This is 

because LiDAR sensors rely on the speed of light to measure distances, and since the speed of light is 
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extremely fast, the time difference between emission and reception becomes too small to measure 

accurately within very short distances, thus introducing errors. Moreover, due to the lower resolution of 

the laser emitted by LiDAR sensors, details of objects that are farther away cannot be adequately 

reconstructed due to the greater distance between the two laser pulses. Furthermore, the laser beam 

reflected from objects that are farther away is weaker, leading to distance measurement errors. To 

accurately predict and account for these errors, the author conducted distance measurement experiments 

using LiDAR. The following images depict the experimental setup. 

 

Figure 8. Experimental setup for distance measurement experiment. 

We used the Intel Realsense Viewer application running on the Raspberry Pi for data collection. 

By calculating upon these data, we could find the difference between the actual distance and the 

tested distance. 

Table 2. Data processing for calculating average measured distances. 

Actual Distance (m) Measured Distance (m) Average Measured Distance (m) 

0.50 0.508 0.509 0.507 0.508 

1.00 1.006 1.007 1.006 1.006 

1.50 1.504 1.502 1.498 1.501 

2.00 2.001 1.998 1.995 1.998 

2.50 2.494 2.507 2.502 2.501 

3.00 2.987 3.013 3.002 3.001 

3.50 3.500 3.484 3.502 3.495 

4.00 3.986 3.996 3.963 3.982 

4.50 4.517 4.487 4.482 4.495 

5.00 5.016 5.001 4.874 4.964 

Table 3. Calculation of the error of measurement. 

Actual Distance (m) Avg. Measured Distance (m) Difference (m) 

0.50 0.508 -0.008000 

1.00 1.006 -0.006333 

1.50 1.501 -0.001333 

2.00 1.998 0.002000 

2.50 2.501 -0.001000 

3.00 3.001 -0.000667 

3.50 3.495 0.004667 

4.00 3.982 0.018333 

4.50 4.495 0.004667 

5.00 4.964 0.036333 
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It is evident that as the actual distance increases, the testing error gradually amplifies. The overall 

trend is that points within close proximity (2m) are underestimated, while points beyond a certain 

distance (3m) are overestimated, and the overall accuracy of the sampling decreases as the distance 

increases. This indicates that the L515 exhibits higher precision in measuring points in close proximity 

compared to those farther away. Therefore, it is advisable to prioritize the processing of more accurate 

points in the vicinity during measurements and attempt to reduce the error by extrapolating the actual 

distance based on the observed trend. Although this relationship is clearly discernible, the maximum 

error of 0.036m is not significant enough to cause substantial modelling inaccuracies. Hence, the author 

considers the data processing for the encountered measurements unnecessary. 

 

Figure 9. Graph depicting the relationship between actual distance and measurement error. 

4.3.  Real-life environment test 

In this project, the LiDAR sensor needs to create a three-dimensional point cloud model on the rescue 

vehicle, which may operate in various environments. To test the modelling effectiveness of the LiDAR 

sensor in different environments, the author chose to place the LiDAR in different settings and attempted 

modelling in each environment. First, the author conducted a handheld LiDAR modelling experiment 

in a personal room. 

In this experiment, the author processed the raw data using software packages, performing ICP 

(Iterative Closest Point) and downsampling to align the data collected in each capture and reduce the 

overall number of points in the point cloud to a manageable range. The algorithms used can be found in 

the implementation section. 

It can be observed that the LiDAR sensor achieves highly accurate modelling results in confined 

spaces. Nearly all the details in the room are faithfully captured, including furniture, clutter piled up in 

corners, and the slanting of the ceiling. The only area not modelled is the wall with heating pipes, which 

was not captured due to limitations in the LiDAR camera’s positioning on the author’s personal 

computer, as the USB cable restricted movement. 
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Figure 10. Space being modelled. 

Additionally, a series of in-vehicle tests were conducted in various environments, including a 

residential area with dense vegetation (simulating a forest environment), a living room, and a garage. 

Figure 12 and Figure 13 show the data captured in the residential area’s vegetation during night-time. It 

is evident that, despite the illumination provided by a flashlight, only a portion of the nearest trees can 

be seen in Figure 12, while Figure 13 can identify several trees in the farther distance. This is because 

LiDAR’s principle involves actively emitting laser pulses to perceive the environment, whereas 

conventional cameras can only passively recognize reflected light. In real-life rescue scenarios, the 

lighting in a room may be extinguished, resulting in complete darkness. In such cases, LED illumination 

and ordinary cameras are inefficient due to their high-power consumption and lower imaging quality, 

rendering them unsuitable for 3D modelling. In comparison, the LiDAR on the rescue vehicle can 

actively scan the environment without requiring additional illumination, enabling the creation of a 3D 

model and allowing for more precise data acquisition. 

 

Figure 11. Handheld modelling of the room. 
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Figure 12. The first-person perspective RGB image in the thicket, with a distant bright light coming 

from the window, and illumination from a flashlight. 

 

Figure 13. The depth image in the thicket, pay attention to the orange and green trees in the distance, 

which are not visible in the RGB image. 

Figure 14 shows the point cloud generated from the vegetation. It can be observed that the point 

cloud retains most of the details of the actual vegetation, including the boundaries of the foliage and the 

small path. While the quality is reasonably good, a major issue is the retention of numerous unnecessary 

details during the mapping process, such as small branches and leaves, which makes navigating through 

this point cloud quite challenging. 

 

Figure 14. The point cloud of the thicket reveals that the ICP (Iterative Closest Point) algorithm remains 

effective in handling scenes with a high level of detail. 
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In addition to the vegetation scene, the author conducted experiments in an underground garage and 

a living room. In the underground garage scene, the low reflectivity of the dark-coloured car’s side 

surface resulted in the loss of many points in the car’s direction. Due to the lack of reference objects, 

LiDAR was unable to effectively model the car when facing it directly, resulting in the need to rely on 

points from other angles and directions. 

 

Figure 15. The point cloud of the underground car park, with the car positioned in the direction of the 

viewing angle. 

From this experiment, we can observe the limitations of LiDAR in observing dark-coloured objects. 

The best scanning result was obtained in the author’s living room. The living room contains various 

furniture with different colours, shapes, and positions. The LiDAR camera accurately modelled the 

positions and shapes of the furniture. A comparison reveals that most of the details were accurately 

reproduced, including smaller features like table legs. This implies that in practical use, the rescue 

vehicle can precisely identify smaller obstacles such as wooden sticks, furniture, and trash cans, and 

assist search and rescue teams in detecting the presence of objects and survivors using the point cloud 

data. 

 

Figure 16. Point cloud modelling of the author’s living room. 
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Figure 17. The photo of the author’s living room shows that most of the details have been captured. 

5.  Conclusion and future improvements 

In this paper, the author designed a prototype remote-controlled search and rescue vehicle using 

algorithms such as point cloud downsampling, EKF, and ICP, and conducted various tests. The 

described search and rescue vehicle can enter narrow spaces for data collection and accurately capture 

point cloud spatial data, enabling the rescue team to explore and significantly reduce the risks and time 

involved in search and rescue missions. 

One future opportunity for extension is to install this system on a drone. Compared to a tracked 

chassis, drones have better maneuverability and can fly over obstacles that are difficult to climb. They 

can also access different floors through stairwells. The main challenges of this design are the influence 

of the drone’s speed and vibrations on scanning accuracy, which can be optimized by designing 

algorithms specifically tailored for drones. 

In future research, this study can be combined with pathfinding algorithms to achieve automatic 

exploration of indoor spaces. Previous research has established robust pathfinding algorithms. Yermo 

et al.’s paper “A fast and optimal pathfinder using airborne LiDAR data” [14] provides a detailed 

description of a pathfinding method based on LiDAR data. Although this paper focuses more on aerial 

pathfinding, the described method generates pathfinding results relatively quickly based on LiDAR data 

and can be adjusted according to project requirements. Regarding the use of pathfinding described in 

this article, Zhao et al.’s paper “Weighted octree-based 3D indoor pathfinding for multiple locomotion 

types” [15] explores the application of kD-trees in pathfinding algorithms. This paper demonstrates that 

by using a weighted kD-tree based on height, considering the height and capabilities of the host (in this 

case, the tracked search and rescue vehicle), it is possible to derive a customized pathfinding method for 

specific scenarios, allowing the search and rescue vehicle to autonomously explore a space and further 

enhance automation. 
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