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Abstract. This study presents a comprehensive investigation of star classification based on the 

Stellar Classification Dataset-SDSS17, employing machine learning algorithms including 

Random Forest, Gradient Boosting, and Support Vector Machine (SVM), along with Shapley 

Additive Explanations (SHAP) feature importance analysis. The research found that among the 

17 features studied, redshift consistently emerged as the most significant feature. Additionally, 

the feature importance or SHAP value of Redshift obtained in various models is significantly 

higher than that of other features. The angles of Right Ascension (alpha) and Declination (delta), 

in contrast, showed the least importance. Models with higher accuracy tend to exhibit lower 

importance for Redshift. For the classifier result, Random Forest yielded the highest accuracy 

and SVM had the lowest accuracy. Most models perform best when classifying the "star" class 

and worst when classifying the "quasar" class. These findings provide valuable insights for 

automated star classification and underscore the critical role of redshift, thereby aligning with 

astronomical theories. Further research could include investigating more sophisticated models, 

like neural networks, and conducting a more profound analysis of feature interactions. 
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1.  Introduction 

Stellar classification has been a fundamental aspect of astronomical research, providing a deeper 

understanding of celestial bodies and the overall structure of the universe. The Sloan Digital Sky Survey 

(SDSS) has brought a paradigm shift in this field, producing vast quantities of high-quality observational 

data and improving the way researchers study the cosmos [1]. This paper focuses on the Stellar 

Classification Dataset-SDSS17, a collection of 100,000 observations [2]. 

Notably, the dataset encompasses the class feature, specifying the classification of the astronomical 

object - whether it is a star, galaxy, or quasar. This mix of photometric, astronomical measurement, 

spectroscopic, and observational identifiers in the dataset fosters a comprehensive understanding of 

celestial objects, aiding in more accurate and robust stellar classification. 

The objective of this research is to scrutinize the importance of these features in classifying a celestial 

object as a star, galaxy, or quasar, utilizing an assortment of machine learning algorithms. The 

classification methods used in this study include Random Forest, Gradient Boosting, and Support Vector 

Machine (SVM), which are well-regarded for their robustness and versatility in handling complex 

classification tasks [3,4]. Further, to interpret the results of these models and understand the contribution 
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of individual features, SHapley Additive exPlanations (SHAP), an effective tool for model-agnostic 

interpretation, is leveraged [5]. 

This paper's findings will not only shed light on key features influencing stellar classification but 

also demonstrate the efficacy of various machine learning techniques in astronomical studies. As the 

field of astronomy becomes increasingly data-driven, the research will underscore the indispensable role 

of advanced data analysis and interpretation methodologies. 

The paper is structured as follows: The "Method" section will detail the data preprocessing steps and 

the implementation of the classification algorithms. The "Results" section will present the output of the 

classification algorithms and the feature importance analysis using SHAP. The "Discussion" section will 

interpret these results, critically examining the implications and the interplay between various features. 

Finally, the "Conclusion" section will provide a summary of the findings, potential applications, and 

directions for future research. 

This study's contribution is twofold: it employs advanced machine learning algorithms to classify 

celestial bodies, thereby contributing to the methodological development in the field, and it explores the 

significance of various observational features, enriching the understanding of the factors that influence 

the classification of celestial bodies. 

2.  Method 

This section delves into the methodology employed in this research, including a brief description of the 

dataset used, the preprocessing steps undertaken, and the details of the machine learning algorithms and 

interpretation methods implemented. 

2.1.  Dataset 

The Stellar Classification Dataset-SDSS17 utilized in this study consists of 100,000 observations of 

celestial bodies, each described by 17 feature columns and one class column which includes a variety 

of features like photometric filter data (u, g, r, i, z), right ascension and declination angles (alpha, delta), 

and identifiers for specific scans and fields (run_ID, rerun_ID, cam_col, field_ID. The dataset also 

incorporates identifiers such as obj_ID and spec_obj_ID, which uniquely classify the celestial objects 

in the image catalog used by CAS and optical spectroscopic objects, respectively. Moreover, the dataset 

contains redshift values (redshift), which offer crucial insights into the Doppler effect related to the 

observed celestial bodies and are essential for astronomical distance calculations and the study of cosmic 

expansion. Furthermore, the dataset is enriched with other observational details like the plate identifier 

(plate), which distinguishes each plate used in the SDSS. It also provides the Modified Julian Date 

(MJD), signifying the exact time of the data collection by SDSS. The fiber_ID indicates the specific 

fiber directing light at the focal plane in each observation. The class column categorizes the observed 

object as a star, galaxy, or quasar. The feature columns incorporate a mix of identifiers, angles, 

photometric system filters, redshift value, plate ID, Modified Julian Date (MJD), and fiber ID. A detailed 

description of these features can be found in the dataset's documentation. There are three target 

categories, namely star, galaxy, and quasar (QSR). 

2.2.  Data preprocessing 

Prior to the application of the machine learning models, the dataset underwent a series of preprocessing 

steps to ensure optimal model performance. These steps included checking for missing values, dealing 

with outliers, and normalizing the feature values. Categorical variables were appropriately encoded to 

suit the machine learning algorithms. 

In addition, since spec_obj_ID, obj_ID, run_ID, rerun_ID, cam_col, fiber_ID, plate and 

classification results are essentially irrelevant, which should be deleted when processing the 

classification task. And class is the classification target, which should also be deleted in the study of 

feature importance. 
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2.3.  Models 

Three different machine learning models are mainly selected for this study: Random Forest, Gradient 

Boosting, and SVM. These models were chosen for their proven capabilities in handling multi-class 

classification problems effectively. At the same time, simple logistic regression is also used for 

comparison in this research. 

Random Forest: Random Forest is an ensemble learning method that operates by constructing 

multiple decision trees and outputting the class which is the mode of the classes output by individual 

trees. The function “DecisionTreeClassifier” from the sklearn is used, with the principle of Bagging 

integration to complete the Random Forest model with the number of decision trees set to 100, and the 

maximum number of features considered in each split is set to the square root of the total number of 

features [6]. 

Gradient Boosting: Gradient Boosting is another ensemble technique that builds predictive models 

in the form of weak learners, in a stage-wise fashion. It generalizes the model by allowing the 

optimization of an arbitrary differentiable loss function [7,8]. The Gradient Boosting model was 

implemented using the numpy and pandas, with the maximum number of weak learners to be built set 

to 100, the contribution of each weak learner set to 0.1, and the maximum depth of each weak learner 

set to 3. 

SVM: SVM is a powerful algorithm for performing non-linear classification. It maps the input data 

into high dimensional space and finds the hyperplane that maximally separates the classes [9]. SVM 

with the linear kernel is implemented by sklearn. 

2.4.  Feature importance analysis 

Performed Feature Importance analysis is also conducted on the SDSS17 dataset using the three models 

mentioned above. 

First, for Random Forest, a node-impurity-based reduction method is used for analysis. When a 

feature is used to divide the data in a decision tree, the two subsets after division have lower impurity 

than the original dataset before division. For each feature, its average reduction is calculated in impurity 

over all nodes in all trees, and this total represents the importance of the feature. In general, the more 

the impurity is reduced, the more important the feature is. Finally, this value is normalized so that the 

sum of the importance of all features is 1. 

Second, for gradient Boosting, the importance of each feature is calculated based on how much the 

feature improves the performance in each tree division in the model. The more the feature improves the 

prediction performance of the model (reduces the prediction error), the higher its importance. 

The number of times a feature is used in a split node is calculated across all trees in the model, 

multiply it by the average improvement from that split, and sum it over all trees. This sum is then 

normalized such that the importance of all features sums to 1. 

Finally, for SVMs, weight coefficients (coef_properties) are used to calculate feature importance. In 

a linear SVM model, each feature is assigned a weight coefficient, and these coefficients form the normal 

vector of the classification hyperplane. The absolute value of the magnitude of the weight coefficient of 

each feature can be regarded as the importance of the feature because the weight coefficient determines 

the degree of contribution of the feature to the classification hyperplane. The larger the absolute value 

of the weight coefficient, the more the feature contributes to the model and is therefore considered more 

important. 

To interpret the results of these models and understand the influence of individual features on the 

predictions, the SHAP method is used, in which flow char is demonstrated in Figure 1. SHAP is a unified 

measure of feature importance that assigns each feature an importance value for a particular prediction 

[10]. It allows for high interpretability without compromising the model performance. The mathematical 

principle and process based on this algorithm are as follows: 

 

φi(v) =  Σ
(|S|!(N − |S|− 1)!)

N!
 ∗  [v(S ∪ {i}) −  v(S)]                                    (1) 
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where S is a feature subset that does not contain feature i, v is a value function that gives the value of a 

feature set in model predictions, N is the total number of features, and |S| is the number of features in 

the feature set S , v(S ∪  {i}) and v(S) are the value of the feature set including feature i and not 

including feature i, respectively, and are usually understood as the predicted value of the model with 

these features. 

 

 

Figure 1. A flowchart illustrating the process of SHAP analysis [11]. 

2.5.  Feature importance analysis 

The performance of each model was evaluated using K-fold cross-validation, with K set to 5. This 

method ensures that every observation from the original dataset has the chance of appearing in the 

training and test set, providing a robust performance estimate. 

The performance metrics used to evaluate the models were accuracy, precision, recall and F1-score. 

These metrics provide a comprehensive evaluation of the model performance from various perspectives. 

3.  Result and discussion 

In this section, the author delves into a detailed analysis of the outcomes derived from machine learning 

models and feature importance interpretation. The performance of the machine learning models — 

Random Forest, Gradient Boosting, SVM and SHAP — is explored first. Subsequently, the author 

scrutinizes the significance attributed to different features in the process of star classification. 

3.1.  Result comparison 

The machine learning models employed in this research offered a spectrum of classification accuracies 

as demonstrated in Table 1. Logistic regression is leveraged as a control. Among these, the Random 

Forest model exhibited the most proficient performance, achieving the highest accuracy. The 

performance of Gradient Boosting is usually next. And the SVM model performed the worst. Also, they 

all significantly outperformed the logistic regression. 
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Table 1. Performance comparison of various models. 

  Precision Recall F1-score Support Accuracy 

Logistic 

Regression 

Star 0.63 0.34 0.00 4343 

75.41% Galaxy 0.80 0.90 0.85 11860 

QSO 0.69 0.76 0.72 3797 

Random 

Forest 

Star 1.00 1.00 1.00 4343 

97.86% Galaxy 0.98 0.99 0.98 11860 

QSO 0.96 0.93 0.95 3797 

Gradient 

Boosting 

Star 1.00 1.00 1.00 4343 

97.64% Galaxy 0.97 0.99 0.98 11860 

QSO 0.96 0.91 0.94 3797 

SVM 

Star 0.96 1.00 0.98 4343 

95.96% Galaxy 0.96 0.97 0.97 11860 

QSO 0.95 0.88 0.91 3797 

 

Besides, the performance of the three machine learning models in the experimental group on 

classifying the 'star' category was superior. Among them, Random Forest and Gradient Boosting 

performed the best. Meanwhile, the performance of the models on classifying the 'Galaxy' category was 

secondary, and the performance on the 'QSO' category was the poorest. 

This table elucidates the intricate differences in each model's performance, offering a broader 

understanding of their capabilities beyond mere accuracy. Precision, recall, and F1 score provide unique 

insights into the model's behavior in terms of false positives and false negatives, and the harmonic mean 

of precision and recall, respectively. 

3.2.  Feature importance analysis 

To further the understanding of how these models distinguish between stars, galaxies, and quasars, a 

feature importance analysis was conducted using the trained models. This analysis facilitates an 

appreciation of which features are more instrumental in the model's decision-making process. 

Interestingly, across all models, the feature 'redshift' consistently exhibited paramount importance, 

thereby signifying its role as a crucial differentiator in the classification task. 

Table 2. Average feature importance across all models. 

 
Logistic 

Regression 
Random Forest 

Gradient 

Boosting 
SVM SHAP 

Redshift 0.3200 0.6500 0.9369 17.3126 0.32793 

g 0.1600 0.0600 0.0367 2.83090 0.00797 

i 0.2500 0.0400 0.0007 0.6014 0.00715 

r 0.1400 0.0200 0.0010 0.5540 0.03606 

u 0.3100 0.0500 0.0100 1.73433 0.02364 

z 0.2800 0.1000 0.0063 0.59146 0.00850 

MJD 0.0000 0.0300 0.0012 0.0554 0.00376 

alpha 0.0000 0.0000 0.0001 0.0358 0.00369 

delta 0.0000 0.0100 0.0002 0.0447 0.01430 

 

This figure encapsulates the average influence of each feature in the classification task, as assessed 

by the four models. This provides a holistic view of feature importance, discounting potential model-

specific biases. 
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However, it is worth noting that the importance attributed to several other factors differed among the 

algorithms. These variations provide an interesting insight into the internal mechanisms of these 

algorithms, demonstrating their unique ways of leveraging information from the feature set. 

 

 

Figure 2. Feature importance of each model (Figure credit: Original). 

Figure 2 provides a model-wise breakdown of feature importance, further illustrating the distinct data 

handling strategies employed by each model. Observing these disparities can aid in understanding 

model-specific biases, feature handling, and predictive power derived from each feature. 

These insights on feature importance are invaluable, shedding light on how celestial measurements 

are utilized by machine learning models to classify an object as a star, galaxy, or quasar. These findings 

underscore the interplay between the features and demonstrate their collective importance in enabling 

accurate astronomical classifications. 

The 'redshift' feature consistently exhibits significant importance across all four models, suggesting 

its pivotal role in celestial body classification. The considerable scores in the SVM, Gradient Boosting, 

and Random Forest models reinforce this finding. 

The other feature importance, however, exhibits more variation between models. For example, the 

features 'u' and 'g' have relatively high importance according to the SHAP and SVM models, whereas 

the 'z' feature is more influential in the Gradient Boosting and Random Forest models. Similarly, the 

feature 'MJD' is identified as relatively more important in the SHAP model but is not as prominent in 

the other three models. These differences might be attributable to the inherent mechanisms of these 

models and how they handle interactions between features. 

Moreover, the Gradient Boosting and Random Forest models indicate significantly high importance 

of 'redshift', much more so than the other features. This could be due to these models' inherent capability 

of handling non-linear relationships and complex interactions between features, causing them to heavily 

lean on this dominant feature. 
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In contrast, the SHAP model provides a more balanced distribution of feature importance, suggesting 

that, while 'redshift' is a key feature, other features also contribute to the model's predictive power. This 

is an advantage of the SHAP method as it considers both the main effects and interaction effects of the 

features, and it provides more interpretable and reliable measurements compared to traditional feature 

importance metrics. 

In conclusion, these results emphasize the significance of the 'redshift' feature in celestial body 

classification tasks. However, they also indicate the necessity of considering other features for a 

comprehensive understanding and an effective prediction. Moreover, these results highlight the value of 

using multiple approaches to feature importance analysis, as different methods can shed light on 

different aspects of the features' contributions. 

Model performance and applications 

In this study, the SHAP values provide insightful interpretations of the model's performance as 

demonstrated in Figure 3. In particular, the 'redshift' feature is prominently influential across all classes, 

as confirmed by its high SHAP value. This confirms the scientific understanding of its role in 

astronomical object classification. 

 

 

Figure 3. Average feature impact on model output magnitude (Figure credit: Original). 

However, there are distinct differences among the classes. For instance, the feature importance for 

class ‘Star’, as indicated by SHAP values, is significantly smaller compared to classes ‘Galaxy’ and 

‘QSO. This suggests that the model's predictions for class ‘star’ are less reliant on the current feature 

set, perhaps due to the distinct distribution or redshift playing a decisive role in the classification results 

of the star class. It indicates a potential area of model improvement: exploring additional features or 

collection of more data specifically for class ‘star’ may enhance the model performance for this class. 

Lastly, while the overall consistency between SHAP values and feature importance from other 

methods was observed, SHAP values offer more nuanced interpretations, thus reinforcing the robustness 

and reliability of the findings. 

Since redshift plays such an important role in the classification model, the importance of its 

impression on the classification results is further investigated. The redshift is bucketed, calculated the 

classification accuracy on each interval (using Random Forest as an example) and combined to obtain 

the relationship between the redshift value and the accuracy of the classification results, as shown in 

Figure 4. It could be found that when the redshift value is low, the accuracy is quite high. As redshift 

increases, the accuracy gradually decreases and achieves the lowest value at x. And then it increases 

again with increasing redshift. If redshift is analyzed in conjunction with the distribution density of the 
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entire data set, it could be found that the accuracy of the model prediction and redshift are negatively 

correlated in the majority of the sample distribution intervals. 

 

Figure 4. Accuracy and distribution of Redshift (Figure credit: Original). 

4.  Discussion 

Given the surprising importance of the "redshift" feature, there is a need for a more in-depth study of its 

interaction with other features and how it affects the classification results. First, it could be noted that 

based on the classification results, there are only 13,716 data with negative redshift values in the dataset, 

accounting for 13.72% of the total data. Depending on the astronomical significance of the redshift, this 

may suggest the fact that the vast majority of objects are moving away from us, which perhaps serves 

as evidence for the universe's expanding hypothesis. On top of that, according to the Doppler effect, the 

result could be: 

                                                          λobserved  =  λemitted  ∗  (1 +  z)  (2) 

Where λobserved is the observed wavelength, λemitted is the original wavelength emitted by the star, 

and z is the redshift. This formula gives the physical definition of redshift. After performing special 

relativity transformation and Taylor expansion on it in sequence and keeping the first term, the result is: 

λobserved  =  λemitted  ∗  (1 +  
v

c
)                                            (3) 

                                                                            v =  c ∗ z                                                                  (4) 

Where c is the speed of light. Therefore, the velocity of a celestial body is directly proportional to 

the observed redshift. Just by multiplying the redshift value in the dataset by the speed of light and 

following similar steps for training, classifiers could be achieved based on the speed of objects or models 

that analyze feature importance for the speed of objects.  

Similarly, according to Hubble-Lemaître law:  

                                                                  v =  H0  ∗  D                                                                (5) 

Where H0 is the Hubble constant, and D is the distance of the star. After similar simple linear 

transformations, the author can also get classifiers or factor importance analysis models based on the 

distance of celestial objects. 
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This principle could also be used to explain the experimental results in 3.3. That is, the accuracy of 

the model prediction is very high for predicting stars very close to us, while the prediction performance 

is poor for medium-distance objects. And as the distance continues to increase, i.e., an earlier universe 

could be observed, these distant stars may have some special properties (e.g., higher luminosity, special 

spectral features, etc.) that allow the author to classify them more easily in a large sample, so the 

accuracy picks up again. 

For the three algorithms, it is concluded that redshift is the most important factor affecting the star 

classification results, and astronomical conjectures could be made based on this. Because the redshift is 

positively correlated with the moving speed and distance of the celestial body, it is likely that the moving 

speed and distance from the Earth of the three kinds of celestial bodies, stars, galaxies and quasars, are 

quite different. According to the classification results, it can be guessed that most of the observed stars 

are very close to us, while quasars are usually very far away from the Earth. 

The effectiveness of more sophisticated models, such as neural networks, could be an avenue for 

future exploration. However, such models were not utilized in this study due to constraints on the sample 

size and computational resources. Through the findings of this research and their implications, the author 

can envision a roadmap for future advancements in machine learning applications within the realm of 

astronomical research. 

5.  Conclusion 

This research has shed light on the application of machine learning models for star classification and the 

relative importance of different features in such tasks. It was found that the redshift was the most 

influential feature by a significant margin, aligning with astrophysical theories about the universe's 

expansion and the role of redshift in identifying celestial bodies' distances and compositions. Moreover, 

the study highlighted that different models might be suitable for different tasks within astronomy, given 

their unique strengths and weaknesses. 

Future research can explore more advanced models like neural networks and delve deeper into the 

interactions among features, especially the dominant redshift feature. While the current study was 

limited by sample size and computational resources, it nonetheless provides a stepping stone for further 

advancements in machine learning applications within astronomy. This research offers promising 

prospects for improving the efficiency and accuracy of astronomical classification tasks, thereby 

accelerating discoveries in the field. 
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