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Abstract. With the development of modern technology, people have more and more chance to 
use large storage systems. It is important to keep the reliability of the modern storage system. 
There are different architectures to achieve the goal. Redundant Array of Independent Disks 
(RAID) architectures are one efficient way to recover the storage system from disk failures. From 
different RAID data structures, RAID 6 refers to use two additional parity disks to allow the 
users to recover from up to two disk failures. However, there are different ways to perform the 
RAID 6. For example, the EVENODD code uses an exclusive OR (XOR) operation to calculate 
parity. It has low storage requirements and simple computation. The Row Diagonal Parity (RDP) 
code is an upgraded version of the EVENODD code. Effectively reduce the computational 
consumption of parity-check encoding. On the other hand, the Reed-Solomon code has an 
efficient recovery algorithm and a quantitative calculation process. Plus, there are other 
implementation methods with their advantage and limitations for the RAID 6 architecture. To 
assist the application of RAID6, this paper aims to analyze, implement, and apply different 
RAID6 structures. The methodology of the paper is the exclusive literature review of published 
paper in the field in recent 10 to 20 years. 
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1.  Introduction 
In contemporary storage systems, the technology of Redundant Array of Independent Disks is utilized 
to enhance failure tolerance or performance. Various RAID architectures have been developed to cater 
to distinct requirements [1]. RAID 0, for instance, optimizes hard disk performance by partitioning data 
across multiple disks. Theoretically, a RAID 0 array with n drives can operate n times faster than a single 
drive. This architecture is often employed in personal computers where users prioritize performance 
over security. In contrast, RAID 1 consists of multiple disks and preserves multiple copies of the same 
data on all disks to ensure fault tolerance. As long as one disk remains operational, the data remains 
secure. 

RAID 2 and 3 introduced the concept of parity checking. However, due to early technology limitations, 
they couldn’t handle multiple service requests and thus were infrequently utilized. RAID 4 and 5, though 
similar, use additional parity disks and the exclusive OR operation for error detection. Theoretically, 
they can recover from a single disk failure. The only difference between them is that RAID 4 stores all 
parity on one disk, while RAID 5 distributes them across all disks. 
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In the early days, RAID 4 and 5 were sufficient to meet people’s needs for storage systems. However, 
with the advancement of modern computing systems, the demand for storage systems’ precision and 
performance has increased [2]. As a response, RAID 6 was proposed to extend the RAID 5 structure, 
with an objective to handle dual disk failures. While RAID 0 to 5 are relatively straightforward, and 
their implementation methods are defined by their structure, the complexity of managing double hard 
drive failure left RAID 6 without a specific data structure. Therefore, the exact implementation method 
of RAID 6 has been a longstanding issue since its introduction. This paper aims to list, introduce, and 
analyze different algorithms of RAID 6, which are either widely used in the industry now or have been 
recently proposed with high-performance potential. 

2.  Typical Analysis of algorithms  

2.1.  EVENODD codes 
The EVENODD code is a widely used way to implement RAID architectures. It was first introduced by 
M. Blaum to improve the standard RAID 5 architecture with a better capacity of disk failure tolerance. 
Since then, this data structure that uses two parity disks in RAID to handle double disk failures is defined 
as RAID 6 [2].  

Unlike other structures such as the Reed-Solomon code. The EVENODD is purely based on the 
exclusive or operation (XOR), in which the same inputs result in 0 as output and different inputs result 
in 1 as output. The RAID 6 storage system based on EVENODD code requires a prime number of data 
disks and two parity disks, which means the minimum number of total disks in the system is four. In 
calculations, parity 1, the first parity disk, is the row-wise XOR sum of all data disks, which is similar 
to the parity in RAID 4 and 5 [3]. The critical part of RAID 6 is the calculation of parity 2. The parity 2 
is the XOR sum of a series of data disks in one diagonal and the “missing diagonal S.” To be more 
specific, the parity 2 in one position can be calculated with the formula: 

 𝑎!,#$% = S +% 𝑎&!'()#,(
#'%
(*+,(	!*!$%

. (1) 

In addition, another characteristic of the EVENODD code is that the sum of parity 1 and parity 2 
becomes S due to the characteristics of the XOR operation. In computing, data are often colored to 
separate them into blocks on a diagonal. 

Table 1. Example of EVENODD Code architecture. 

Disk/ 
Block  Data disk 0 Data disk 1 Data disk 2 Data disk 3 Data disk 4 Parity 1 Parity 2 

0 1(Red) 0(Blue) 1(Green) 1(yellow) 0 1 0(Red) 
1 0(Blue) 1(Green) 1(yellow) 0 0(Red) 0 0(Blue) 
2 1(Green) 1(yellow) 0 0(Red) 0(Blue) 0 1(Green) 
3 0(yellow) 1 0(Red) 1(Blue) 1(Green) 1 0(yellow) 

As illustrated in Table 1, the colored blocks signify the color diagonals, whereas the uncolored block 
indicates the absent diagonal S. Consequently, the sum of parity 1 equals the total of all colored blocks 
and S, whereas the sum of parity 2 is the sum of all colored blocks plus four times S. Adding parity 1 
and parity 2, we get S, since the nature of the XOR operation is such that identical inputs always yield 
0. While the calculations under the EVENODD code are not overly complex, this architecture faces 
several challenges. Primarily, the number of data disks causes a degree of trouble because it must be a 
prime number, like 2, 3, 5, 7, 11, and so on. The predicament here is that, aside from 2, dividing a file 
into 3 or 5 parts necessitates the use of the division operation, which is a time-consuming operation in 
computer hardware architecture. This operation typically takes between 7 and 10 clock cycles. 
Furthermore, arranging an even number of disks physically is simpler than configuring an odd number 
of disks [4]. 
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Moreover, the efficiency of the algorithms is restricted by the calculation of the missing diagonal S. 
At the time of Blaum and Bruck’s work, the EVENODD code represented the most efficient method to 
implement RAID 6 since it only necessitated the XOR operation. However, as modern system storage 
evolved, user expectations regarding the performance of hard drives have risen. The EVENODD code 
requires the calculation of the missing diagonal S every time parity 2 is coded. This characteristic 
imposes a limit on its performance. 

2.2.  RDP codes 
The row-Diagonal Parity method was first introduced in about 1994. Then, P. Corbett et al. introduce 
the use of RDP code in RAID 6 architecture in Proc. 3rd USENIX Conf. in 2004 [2]. With similar data 
structures, the RDP code improves on the EVENODD code by reducing the computational cost of 
writing and restoring. The number of disks in a storage system with an RPD data structure is defined by 
the control parameter p as shown below. First, p must be a prime number. Then, a system with 
controlling parameter p has p – 1 data disks and 2 parity disks, which is p + 1 disk in total. Also, the 
number of stripes or columns is also p – 1. 

Table 2. Example of RDP code architecture. 

Data Disk 0 Data Disk 1 Data Disk 2 Row Parity Diag. Parity 
0 1 2 3 0 
1 2 3 0 1 
2 3 0 1 2 

For parity calculations, parity 1, the row parity, is also similar to parity 1 of EVENODD code or 
parity in RAID 4 and 5. It is the XOR sum of the data disks in one row. The parity 2, that is, the diagonal 
parity, calculates the XOR sum of the data disk on a diagonal and the parity 1. Table 2 above shows 
what the data disks and parity 1 in one diagonal look like. What’s more, the blocks with the number “3” 
present the missing diagonal S. However, RDP code does not use the missing diagonal in encoding and 
decoding.  

The performance of RDP code is very high for both writing and recovering. First, for writing data, 
since the controlling parameter p of the system is a prime number, which is almost all odd numbers, the 
number of data disks tends to be an even number. This fact enables RDP code to use the shift operation 
rather than the dividing operation to get a high writing speed. In addition, compared with the EVENODD 
code, the lack of the calculation of the missing diagonal S makes the computation of parity 2 simple. 
The calculation of parity 2 is consistent with the use of multithreading, which is an efficient way to 
improve the performance of computers from the perspective of hardware architectures. For example, to 
calculate the parities in table 2 above, one thread calculates parity 1 in the third row while the other one 
calculates parity 2 in the third row since the data marked with the number 2 are all available for parity 
2 computation. These two threads can do that at the same time. Then, after the parities in the third row 
are written, two threads can calculate the parities in the second row. Since parity 2 in the second row 
only requires data disks and parity 1 in the third row, which is already generated in the last step. 
Therefore, with the use of multithreading, the performance of RAID 6 with RDP code structure is close 
to other algorithms with single parity such as RAID 4 and RAID 5. In a recent study [3], H. Hou et al. 
use specific mathematically model proving that the performance of RPD code compared with other 
theoretical code with high performance. They state that their efficient decoding method have the smallest 
complexity compared with other existing methods. In addition, they implement the RPD code with one 
additional parity disk, which is three parity disks in total. This study shows the potential of RDP code 
to be further extended in higher standard than the RAID 6 in the future [5].  
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2.3.  Reed-Solomon Code 
The Reed-Solomon code uses polynomial encoding and decoding that based on the Galois field to 
calculate parities. Its theoretical algorithm was first introduced in the 1960s by Reed, I. S., & Solomon, 
G [4]. Therefore, when the definition of RAID 6 was proposed, the Reed-Solomon code was the first 
widely used implementing method. First, it uses the Galois field to generate the coefficient of parity 2. 
After that, parity 2 becomes row-wise, which is similar to parity 1. Then, with such architecture, the 
process of decoding becomes a simple equation-solving problem with two unknown variables. From the 
perspective of coding, RS code should be the simplest architecture since it only needs to read data in the 
same row. There are three types of two-disk failure. If two parities fail, the storage system only needs 
to re-calculate the two parities. If one data disk and one parity disk fail, the storage system should 
calculate the data disk with the parity that is still working. Then, with all data disks working, the system 
can calculate the missing parity again [6]. If two data disks fail, we can use two parities to get two 
equations. Since only the data of the same row needs to be read, and the coefficients of each parity check 
are known at the beginning, the recovery mechanism of the RS code is efficient. In addition, E. Ben-
Sasson, I. Bentov, Y. Horesh, and M. Riabzev prove the linear arithmetic complexity of advanced RS 
code in 2012 ACM Subject Classification [5]. With improved algorithms, the RS code gets better 
performance than it was before.  

However, everything has two sides, and the RS code is not an exception. The problem with this is 
that Galois field-based RS codes involve more 0s and 1s than 0s and 1s compared to the XOR operation. 
Parity in RS codes usually requires more storage space. For similar reasons, the original data needs to 
be stored in Galois Field form. Two important parameters, the time complexity and the space complexity, 
are both limited by its property. Although nowadays, it is widely used for many years, its potential of 
performance is not as good as other architectures such as RDP code [7]. Therefore, in the future, the RS 
code needs an additional upgrade and development to keep it on the track with the performance required 
by modern computer systems. 

2.4.  RAID 6L 
RAID 6L is a further upgraded version of RAID 6 with Reed-Solomon code. It was introduced by C. 
Jin [6]. While Ben-Sasson and Bentov also made improvements to the RS code, Jin and Feng used more 
aggressive structures to improve write performance. RAID 6L uses an additional log disk with a hash 
table to reduce the cost in writing. This hash table has several hash slots corresponding to each data 
block. Each slot has four different parts: logical block address, data block’s original physical address, 
data block’s current physical address, and a pointer to the next hash slot.  

With the log disk, the RAID 6L has three working states: the normal state, the accelerating state, and 
the transitional state. In the normal state, in which the log disk is not working, the system is the same as 
normal RAID 6 systems. The accelerating state means the system is trying to write data without 
calculating parity at this state to improve its speed of coding. At this state, the data should be first 
searched in the hash table. If there is not a corresponding hash slot searched in the hash table, it means 
the system is in the consistent state. This requires a pre-read operation. Then, when data is pre-read, the 
log disk will save the value of the data block. In the transition state, the system will go through the log 
disk and calculate the parity stripe of the corresponding address.  

For different cases of double disk failure, the RAID 6L can handle all of them. First, if two parity 
disks fail, all data disks and the log disk can provide information to recalculate parities. If two data disks 
fail, they can be recovered from parity for data in the consistent state and from the origin address in the 
log disk for data that is not in the consistent state. If one parity disk and one data disk fail, the system 
will try to recover the data first from another parity or the log disk. Then, the system recalculates the 
lost parity.  

According to Jin and Feng’s theoretical study of the Linux kernel, RAID 6L has significantly 
improved performance compared to normal RAID 6 with RS code architecture. From their report, the 
number of pre-read blocks and the average response time in writing have decreased up to 48% and 45%, 
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respectively. In addition, the parity logging in the following process reduces 17% and 27%, respectively. 
Overall, the average response time of while system has been reduced by 30%. 

3.  Applications 
In recent years, the demand for expansive storage systems has surged significantly. With the 
proliferation of artificial intelligence and machine learning, vast quantities of data are generated daily, 
necessitating robust and capacious storage systems. Additionally, the rising establishment of databases 
by a myriad of organizations, universities, enterprises, and even governments illustrates this growing 
need. In this era of information, these entities must construct databases to bolster their online operations. 
For such databases, the tolerance of hard drives, a feature built into the RAID 6 architecture, is a crucial 
factor. Moreover, social media and entertainment companies are seeking increasingly larger storage 
systems to accommodate high-resolution and high-quality content like music, videos, and movies. These 
scenarios highlight the burgeoning market demand for high-capacity and high-performance storage 
systems [8]. 

RAID 6 offers a variety of approaches to meet specific requirements. Storage systems leveraging 
EVENODD codes and RS codes have been evolving for decades, exhibiting a commendable balance of 
stability and cost-effectiveness. Their fault tolerance safeguards the integrity of invaluable data and files, 
making them suitable for databases, online libraries, and cloud storage applications. On the other hand, 
the newer RDP code and RAID 6L code offer superior performance [9]. However, given their novelty, 
their cost remains high until their manufacturing scale reaches an economical level. These new codes 
cater to large storage systems with stringent performance requirements. For instance, companies training 
artificial intelligence require high storage bandwidth. The sooner their products become available, the 
more competitive they are in the market [10]. In conclusion, there are exceptional development prospects 
for large storage systems and RAID architectures. 

4.  Conclusion 
This paper presents a comprehensive analysis of the various data structures inherent to RAID 6. Reed-
Solomon code has been widely accepted and employed over several decades, given its proven reliability. 
RAID 6L code, which builds upon the foundation of the RS code, utilizes an additional log disk to 
significantly augment the performance of the RS code. Furthermore, to simplify computations, the 
EVENODD code has been introduced. The RDP code, an advanced version of the EVENODD code, 
has also been proposed. 

From a theoretical standpoint, RAID 6L and RDP code exhibit high performance. Each architecture 
holds unique advantages and is intended for specific use cases. Theoretical research, however, doesn’t 
imply that other structures are redundant or less valuable. Users must choose the appropriate 
implementation that suits their specific circumstances and requirements. Nonetheless, it’s essential to 
note that this paper is solely based on a review of existing literature, given the constraints of real-world 
equipment. The author anticipates the opportunity to incorporate more empirical evidence in future 
studies. 
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