
Exploring and evaluating various data structures within
RAID 6 architecture: An application-oriented study

Pengfei Yan
Henry Samueli School of Engineering, University of California, Irvine, 92697, USA

pengfy2@uci.edu

Abstract. With the development of modern technology, people have more and more chance to
use large storage systems. It is important to keep the reliability of the modern storage system.
There are different architectures to achieve the goal. Redundant Array of Independent Disks
(RAID) architectures are one efficient way to recover the storage system from disk failures. From
different RAID data structures, RAID 6 refers to use two additional parity disks to allow the
users to recover from up to two disk failures. However, there are different ways to perform the
RAID 6. For example, the EVENODD code uses an exclusive OR (XOR) operation to calculate
parity. It has low storage requirements and simple computation. The Row Diagonal Parity (RDP)
code is an upgraded version of the EVENODD code. Effectively reduce the computational
consumption of parity-check encoding. On the other hand, the Reed-Solomon code has an
efficient recovery algorithm and a quantitative calculation process. Plus, there are other
implementation methods with their advantage and limitations for the RAID 6 architecture. To
assist the application of RAID6, this paper aims to analyze, implement, and apply different
RAID6 structures. The methodology of the paper is the exclusive literature review of published
paper in the field in recent 10 to 20 years.

Keywords: RAID 6, EVENODD Code, Row-Diagonal Parity Code, Reed-Solomon Code.

1. Introduction
In contemporary storage systems, the technology of Redundant Array of Independent Disks is utilized
to enhance failure tolerance or performance. Various RAID architectures have been developed to cater
to distinct requirements [1]. RAID 0, for instance, optimizes hard disk performance by partitioning data
across multiple disks. Theoretically, a RAID 0 array with n drives can operate n times faster than a single
drive. This architecture is often employed in personal computers where users prioritize performance
over security. In contrast, RAID 1 consists of multiple disks and preserves multiple copies of the same
data on all disks to ensure fault tolerance. As long as one disk remains operational, the data remains
secure.

RAID 2 and 3 introduced the concept of parity checking. However, due to early technology limitations,
they couldn’t handle multiple service requests and thus were infrequently utilized. RAID 4 and 5, though
similar, use additional parity disks and the exclusive OR operation for error detection. Theoretically,
they can recover from a single disk failure. The only difference between them is that RAID 4 stores all
parity on one disk, while RAID 5 distributes them across all disks.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230140

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

165

In the early days, RAID 4 and 5 were sufficient to meet people’s needs for storage systems. However,
with the advancement of modern computing systems, the demand for storage systems’ precision and
performance has increased [2]. As a response, RAID 6 was proposed to extend the RAID 5 structure,
with an objective to handle dual disk failures. While RAID 0 to 5 are relatively straightforward, and
their implementation methods are defined by their structure, the complexity of managing double hard
drive failure left RAID 6 without a specific data structure. Therefore, the exact implementation method
of RAID 6 has been a longstanding issue since its introduction. This paper aims to list, introduce, and
analyze different algorithms of RAID 6, which are either widely used in the industry now or have been
recently proposed with high-performance potential.

2. Typical Analysis of algorithms

2.1. EVENODD codes
The EVENODD code is a widely used way to implement RAID architectures. It was first introduced by
M. Blaum to improve the standard RAID 5 architecture with a better capacity of disk failure tolerance.
Since then, this data structure that uses two parity disks in RAID to handle double disk failures is defined
as RAID 6 [2].

Unlike other structures such as the Reed-Solomon code. The EVENODD is purely based on the
exclusive or operation (XOR), in which the same inputs result in 0 as output and different inputs result
in 1 as output. The RAID 6 storage system based on EVENODD code requires a prime number of data
disks and two parity disks, which means the minimum number of total disks in the system is four. In
calculations, parity 1, the first parity disk, is the row-wise XOR sum of all data disks, which is similar
to the parity in RAID 4 and 5 [3]. The critical part of RAID 6 is the calculation of parity 2. The parity 2
is the XOR sum of a series of data disks in one diagonal and the “missing diagonal S.” To be more
specific, the parity 2 in one position can be calculated with the formula:

 𝑎!,#$% = S +% 𝑎&!'()#,(
#'%
(*+,(!*!$%

. (1)

In addition, another characteristic of the EVENODD code is that the sum of parity 1 and parity 2
becomes S due to the characteristics of the XOR operation. In computing, data are often colored to
separate them into blocks on a diagonal.

Table 1. Example of EVENODD Code architecture.

Disk/
Block Data disk 0 Data disk 1 Data disk 2 Data disk 3 Data disk 4 Parity 1 Parity 2

0 1(Red) 0(Blue) 1(Green) 1(yellow) 0 1 0(Red)
1 0(Blue) 1(Green) 1(yellow) 0 0(Red) 0 0(Blue)
2 1(Green) 1(yellow) 0 0(Red) 0(Blue) 0 1(Green)
3 0(yellow) 1 0(Red) 1(Blue) 1(Green) 1 0(yellow)

As illustrated in Table 1, the colored blocks signify the color diagonals, whereas the uncolored block
indicates the absent diagonal S. Consequently, the sum of parity 1 equals the total of all colored blocks
and S, whereas the sum of parity 2 is the sum of all colored blocks plus four times S. Adding parity 1
and parity 2, we get S, since the nature of the XOR operation is such that identical inputs always yield
0. While the calculations under the EVENODD code are not overly complex, this architecture faces
several challenges. Primarily, the number of data disks causes a degree of trouble because it must be a
prime number, like 2, 3, 5, 7, 11, and so on. The predicament here is that, aside from 2, dividing a file
into 3 or 5 parts necessitates the use of the division operation, which is a time-consuming operation in
computer hardware architecture. This operation typically takes between 7 and 10 clock cycles.
Furthermore, arranging an even number of disks physically is simpler than configuring an odd number
of disks [4].

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230140

166

Moreover, the efficiency of the algorithms is restricted by the calculation of the missing diagonal S.
At the time of Blaum and Bruck’s work, the EVENODD code represented the most efficient method to
implement RAID 6 since it only necessitated the XOR operation. However, as modern system storage
evolved, user expectations regarding the performance of hard drives have risen. The EVENODD code
requires the calculation of the missing diagonal S every time parity 2 is coded. This characteristic
imposes a limit on its performance.

2.2. RDP codes
The row-Diagonal Parity method was first introduced in about 1994. Then, P. Corbett et al. introduce
the use of RDP code in RAID 6 architecture in Proc. 3rd USENIX Conf. in 2004 [2]. With similar data
structures, the RDP code improves on the EVENODD code by reducing the computational cost of
writing and restoring. The number of disks in a storage system with an RPD data structure is defined by
the control parameter p as shown below. First, p must be a prime number. Then, a system with
controlling parameter p has p – 1 data disks and 2 parity disks, which is p + 1 disk in total. Also, the
number of stripes or columns is also p – 1.

Table 2. Example of RDP code architecture.

Data Disk 0 Data Disk 1 Data Disk 2 Row Parity Diag. Parity
0 1 2 3 0
1 2 3 0 1
2 3 0 1 2

For parity calculations, parity 1, the row parity, is also similar to parity 1 of EVENODD code or
parity in RAID 4 and 5. It is the XOR sum of the data disks in one row. The parity 2, that is, the diagonal
parity, calculates the XOR sum of the data disk on a diagonal and the parity 1. Table 2 above shows
what the data disks and parity 1 in one diagonal look like. What’s more, the blocks with the number “3”
present the missing diagonal S. However, RDP code does not use the missing diagonal in encoding and
decoding.

The performance of RDP code is very high for both writing and recovering. First, for writing data,
since the controlling parameter p of the system is a prime number, which is almost all odd numbers, the
number of data disks tends to be an even number. This fact enables RDP code to use the shift operation
rather than the dividing operation to get a high writing speed. In addition, compared with the EVENODD
code, the lack of the calculation of the missing diagonal S makes the computation of parity 2 simple.
The calculation of parity 2 is consistent with the use of multithreading, which is an efficient way to
improve the performance of computers from the perspective of hardware architectures. For example, to
calculate the parities in table 2 above, one thread calculates parity 1 in the third row while the other one
calculates parity 2 in the third row since the data marked with the number 2 are all available for parity
2 computation. These two threads can do that at the same time. Then, after the parities in the third row
are written, two threads can calculate the parities in the second row. Since parity 2 in the second row
only requires data disks and parity 1 in the third row, which is already generated in the last step.
Therefore, with the use of multithreading, the performance of RAID 6 with RDP code structure is close
to other algorithms with single parity such as RAID 4 and RAID 5. In a recent study [3], H. Hou et al.
use specific mathematically model proving that the performance of RPD code compared with other
theoretical code with high performance. They state that their efficient decoding method have the smallest
complexity compared with other existing methods. In addition, they implement the RPD code with one
additional parity disk, which is three parity disks in total. This study shows the potential of RDP code
to be further extended in higher standard than the RAID 6 in the future [5].

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230140

167

2.3. Reed-Solomon Code
The Reed-Solomon code uses polynomial encoding and decoding that based on the Galois field to
calculate parities. Its theoretical algorithm was first introduced in the 1960s by Reed, I. S., & Solomon,
G [4]. Therefore, when the definition of RAID 6 was proposed, the Reed-Solomon code was the first
widely used implementing method. First, it uses the Galois field to generate the coefficient of parity 2.
After that, parity 2 becomes row-wise, which is similar to parity 1. Then, with such architecture, the
process of decoding becomes a simple equation-solving problem with two unknown variables. From the
perspective of coding, RS code should be the simplest architecture since it only needs to read data in the
same row. There are three types of two-disk failure. If two parities fail, the storage system only needs
to re-calculate the two parities. If one data disk and one parity disk fail, the storage system should
calculate the data disk with the parity that is still working. Then, with all data disks working, the system
can calculate the missing parity again [6]. If two data disks fail, we can use two parities to get two
equations. Since only the data of the same row needs to be read, and the coefficients of each parity check
are known at the beginning, the recovery mechanism of the RS code is efficient. In addition, E. Ben-
Sasson, I. Bentov, Y. Horesh, and M. Riabzev prove the linear arithmetic complexity of advanced RS
code in 2012 ACM Subject Classification [5]. With improved algorithms, the RS code gets better
performance than it was before.

However, everything has two sides, and the RS code is not an exception. The problem with this is
that Galois field-based RS codes involve more 0s and 1s than 0s and 1s compared to the XOR operation.
Parity in RS codes usually requires more storage space. For similar reasons, the original data needs to
be stored in Galois Field form. Two important parameters, the time complexity and the space complexity,
are both limited by its property. Although nowadays, it is widely used for many years, its potential of
performance is not as good as other architectures such as RDP code [7]. Therefore, in the future, the RS
code needs an additional upgrade and development to keep it on the track with the performance required
by modern computer systems.

2.4. RAID 6L
RAID 6L is a further upgraded version of RAID 6 with Reed-Solomon code. It was introduced by C.
Jin [6]. While Ben-Sasson and Bentov also made improvements to the RS code, Jin and Feng used more
aggressive structures to improve write performance. RAID 6L uses an additional log disk with a hash
table to reduce the cost in writing. This hash table has several hash slots corresponding to each data
block. Each slot has four different parts: logical block address, data block’s original physical address,
data block’s current physical address, and a pointer to the next hash slot.

With the log disk, the RAID 6L has three working states: the normal state, the accelerating state, and
the transitional state. In the normal state, in which the log disk is not working, the system is the same as
normal RAID 6 systems. The accelerating state means the system is trying to write data without
calculating parity at this state to improve its speed of coding. At this state, the data should be first
searched in the hash table. If there is not a corresponding hash slot searched in the hash table, it means
the system is in the consistent state. This requires a pre-read operation. Then, when data is pre-read, the
log disk will save the value of the data block. In the transition state, the system will go through the log
disk and calculate the parity stripe of the corresponding address.

For different cases of double disk failure, the RAID 6L can handle all of them. First, if two parity
disks fail, all data disks and the log disk can provide information to recalculate parities. If two data disks
fail, they can be recovered from parity for data in the consistent state and from the origin address in the
log disk for data that is not in the consistent state. If one parity disk and one data disk fail, the system
will try to recover the data first from another parity or the log disk. Then, the system recalculates the
lost parity.

According to Jin and Feng’s theoretical study of the Linux kernel, RAID 6L has significantly
improved performance compared to normal RAID 6 with RS code architecture. From their report, the
number of pre-read blocks and the average response time in writing have decreased up to 48% and 45%,

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230140

168

respectively. In addition, the parity logging in the following process reduces 17% and 27%, respectively.
Overall, the average response time of while system has been reduced by 30%.

3. Applications
In recent years, the demand for expansive storage systems has surged significantly. With the
proliferation of artificial intelligence and machine learning, vast quantities of data are generated daily,
necessitating robust and capacious storage systems. Additionally, the rising establishment of databases
by a myriad of organizations, universities, enterprises, and even governments illustrates this growing
need. In this era of information, these entities must construct databases to bolster their online operations.
For such databases, the tolerance of hard drives, a feature built into the RAID 6 architecture, is a crucial
factor. Moreover, social media and entertainment companies are seeking increasingly larger storage
systems to accommodate high-resolution and high-quality content like music, videos, and movies. These
scenarios highlight the burgeoning market demand for high-capacity and high-performance storage
systems [8].

RAID 6 offers a variety of approaches to meet specific requirements. Storage systems leveraging
EVENODD codes and RS codes have been evolving for decades, exhibiting a commendable balance of
stability and cost-effectiveness. Their fault tolerance safeguards the integrity of invaluable data and files,
making them suitable for databases, online libraries, and cloud storage applications. On the other hand,
the newer RDP code and RAID 6L code offer superior performance [9]. However, given their novelty,
their cost remains high until their manufacturing scale reaches an economical level. These new codes
cater to large storage systems with stringent performance requirements. For instance, companies training
artificial intelligence require high storage bandwidth. The sooner their products become available, the
more competitive they are in the market [10]. In conclusion, there are exceptional development prospects
for large storage systems and RAID architectures.

4. Conclusion
This paper presents a comprehensive analysis of the various data structures inherent to RAID 6. Reed-
Solomon code has been widely accepted and employed over several decades, given its proven reliability.
RAID 6L code, which builds upon the foundation of the RS code, utilizes an additional log disk to
significantly augment the performance of the RS code. Furthermore, to simplify computations, the
EVENODD code has been introduced. The RDP code, an advanced version of the EVENODD code,
has also been proposed.

From a theoretical standpoint, RAID 6L and RDP code exhibit high performance. Each architecture
holds unique advantages and is intended for specific use cases. Theoretical research, however, doesn’t
imply that other structures are redundant or less valuable. Users must choose the appropriate
implementation that suits their specific circumstances and requirements. Nonetheless, it’s essential to
note that this paper is solely based on a review of existing literature, given the constraints of real-world
equipment. The author anticipates the opportunity to incorporate more empirical evidence in future
studies.

References
[1] Gao S and Fang Z 2020 Multilayer Feature-Rich Satellite Network Analysis: An Application-

Oriented and Time-Evolving Approach IEEE Transactions on Network Science and
Engineering pp.1-1

[2] Liu Z, Cao Y, Pan L, et al. 2020 Exploring and Evaluating Attributes, Values, and Structures for
Entity Alignment

[3] Rodriguez N A, Gomez A, Nava L, et al. 2018 FPGA-Based Data Storage System on NAND
Flash Memory in RAID 6 Architecture for In-Line Pipeline Inspection Gauges IEEE
Transactions on Computers pp.1-1

[4] Brunel-Saldias N, Ferrio J P, Elazab A, et al. 2020 Root Architecture and Functional Traits of
Spring Wheat Under Contrasting Water Regimes Frontiers in plant science vol.11 581140

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230140

169

[5] Chatterjee P, Mahalingam A, Mallavaram V, et al. 2023 Systems, methods and devices for
performing fast RAID re-synchronization using a RAID sandwich architecture US Patent
US10229014B1

[6] Enz M and Kamath A 2023 Lock-free raid implementation in multi-queue architecture US Patent
US10430336B2

[7] Anderson C R, Natera-Cordero N, Guarochico-Moreira V H, et al. 2023 Exploring room
temperature spin transport under band gap opening in bilayer graphene Scientific Reports
vol.13 no.1

[8] Tiwari R, Nigro A, Bondada M V 2023 Analysing Urban Form on Transit Oriented Development
(TOD) Principles International Review for Spatial Planning and Sus Development vol.11 no.1
pp.141-157

[9] Likai W 2018 Digital Representation of Architecture: An Outline of Exploring Artificial
Intelligence Oriented Architectural Digital History New Architecture

[10] Zhou B, Jiang H, Cao Q, et al. 2021 A-Cache: Asymmetric Buffer Cache for RAID-10 Systems
under a Single-Disk Failure to Significantly Boost Availability IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems pp.1-1.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230140

170

