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Abstract. This paper delves into the issues related to handling high-dimensional data in massive datasets,
such as computational challenges and uneven data distribution owing to diminished data point density.
Various dimensionality reduction techniques such as Principal Component Analysis (PCA), Kernel Principal
Component Analysis (KPCA), and Diffusion Maps are discussed and evaluated for their efficiency in
extracting crucial data features. This aids in gaining a comprehensive understanding of the data. The
study also examines unsupervised clustering methods like K-means, DBSCAN, and spectral clustering. By
integrating these clustering methods with dimensionality reduction techniques, we aim to uncover potential
synergies. The principles and methodology behind spectral clustering and unsupervised nonlinear diffusion
learning are further dissected. Various datasets are employed to evaluate the efficiency of these techniques
empirically. The final section of the paper comprises an evaluation of the clustering results and a discussion
on potential avenues for future research.

Keywords: Dimensionality Reduction, Unsupervised Clustering, Machine Learning.

1. Introduction
The presence of high-dimensional data is a common phenomenon when dealing with large datasets.
Such data can lead to computational challenges and uneven data distribution due to reduced data point
density. In addition, acquiring labels for high-dimensional data points can be a costly affair without
effective dimensionality reduction. Therefore, reducing dimensionality aids in better understanding and
data exploration. Extracting useful information from data for analysis often requires a comprehensive
understanding of the data. By aiding in key feature extraction, dimensionality reduction can enhance our
data understanding and yield improved results.

Clustering methods, which divide a large set of unlabeled data into multiple categories based on
inherent similarities, prove effective for reducing data dimensionality. In this report, we apply K-means,
Mean-shift, and DBSCAN clustering algorithms.

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

218



Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230153

Effective dimensionality reduction and clustering techniques are critical due to the complex and high-
dimensional nature of data in various fields like bioinformatics, image processing, and natural language
processing. Such techniques facilitate a better understanding and visualization of data structure and
relationships and aid in predictions and discoveries. They are integral tools in data analysis and machine
learning.

In this paper, we review several dimensionality reduction and clustering techniques, including Principal
Component Analysis (PCA), Kernel Principal Component Analysis (kPCA), and Diffusion Maps, along
with unsupervised clustering algorithms like K-means, Mean-shift, and DBSCAN. We also explore
Spectral Clustering, a technique that combines clustering and dimension reduction concepts, bridging the
gap between these two crucial fields.

We apply these techniques on the Breast Cancer dataset, commonly used in machine learning for
binary classification tasks. The dataset, with its high dimensionality, is ideal for testing the techniques
discussed in this study.

The report starts with a review of the research materials and methodologies, followed by an in-depth
discussion of each dimensionality reduction method and their mathematical underpinnings. We then
overview the clustering algorithms examined in this study. Subsequently, we detail the setup and results
of our experiments and discuss the efficiency and performance of each method. The report concludes
with a summary of our findings and suggestions for future research.

2. Methods and Materials

2.1. Data Dimensionality Reduction

Data dimensionality reduction is a vital technique in machine learning and data science for handling
high-dimensional data. The goal of this process is to trim down the feature space by preserving the most
valuable features and eliminating the less important ones. This approach can significantly speed up data
processing. By reducing the number of data dimensions, we can optimize computational resources, filter
out noise, and enhance the interpretability of extracted features.

2.1.1. Understanding Principal Component Analysis Principal Component Analysis (PCA) is a linear
procedure that effectively reduces data dimensionality. It performs an orthogonal transformation,
converting possibly correlated variable observations into a set of linearly uncorrelated variables called
principal components. PCA is a key tool for analyzing multivariate statistical distributions with
characteristic values. It can reveal the underlying structure of the data, aiding in a more insightful
interpretation of data variables.

PCA is particularly insightful when dealing with a high number of samples. In PCA plots, samples
with similar compositions tend to cluster together. PCA assesses the similarity of sample composition by
examining the dispersion or aggregation patterns among the samples.

However, PCA has certain limitations. It requires a mean removal process before constructing the PCA
covariance matrix, which can be problematic in specific fields where all signals should be non-negative.
PCA also assumes the linearity of the data, so non-linear patterns can potentially skew the analysis.
Moreover, the transformed variables might not be as interpretable as the original data since they are
linear combinations of the initial variables. An improperly conducted PCA can also lead to significant
information loss.

The PCA process starts with data standardization.

_ x — mean(x)
— var(x)

ey

Subsequently, the covariance matrix is calculated.
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Then, the covariance matrix undergoes an eigenvalue decomposition.
Y = uhu” 3)

Once the eigenvalues and eigenvectors of the covariance matrix are obtained, the eigenvalues are sorted
in descending order, the top k ones are selected, and the corresponding k eigenvectors are assembled into
an eigenvector matrix. Finally, the data is mapped into a new space formed by these k eigenvectors.

2.1.2. Exploring Kernel Principal Component Analysis Kernel Principal Component Analysis (KPCA)
extends PCA by employing a kernel method to handle non-linear separability in the dataset. In KPCA, the
data is projected into a higher-dimensional space using a kernel function, making it possible to capture
non-linear correlations between variables. KPCA essentially seeks a linear projection of the data in this
higher-dimensional space that preserves the most variance.

KPCA is able to detect non-linear patterns in the data, which may remain hidden in the original
feature space, providing a key advantage over traditional PCA. However, KPCA can be computationally
demanding, especially for larger datasets, due to the calculation of the kernel matrix. Moreover, KPCA
is sensitive to outliers, which can disrupt the computation of the kernel matrix and affect the extraction
of principal components.

Kernel Functions KPCA uses various kernel functions, including:

e Gaussian kernel function:

“)

252
These kernel functions give KPCA the ability to project the data into a higher-dimensional feature
space where it can be projected onto the principal components and then linearly separated.

2
G(x,y>=exp(—' y')

Gaussian Kernel Function The Gaussian kernel function, often referred to as a radial basis function
(RBF) kernel, is a commonly used kernel function in KPCA. Given any two input vectors x; and x, the
Gaussian kernel function with parameter sigma is defined as:

|xi —Xj|2)

252

y(xi,x;) = exp (— )

2.1.3. Diffusion Mapping Diffusion mapping is a versatile technique for dimensionality reduction,
particularly effective in addressing non-linear systems. It takes advantage of the data manifold’s
intrinsic geometric properties to form lower-dimensional representations [1]. The algorithm constructs
embeddings in Euclidean space using the eigenvalues and eigenvectors of a diffusion operator applied to
the data. The core idea is that the Euclidean distance within this embedded space reflects the “diffusion
distance” in the original data points. In this section, we will elaborate on the essential mathematical
concepts underpinning the diffusion mapping technique.

Understanding Euclidean Distance Assume that we have points in an n-dimensional Euclidean
space, denoted by Cartesian coordinates «; ..., and 8; ... 8,. The distance between these points can
be calculated as:

d(a,B) = (@1 = 1)? + (a2 — o) ++ -+ (an — Bu)? ©)

The Euclidean distance can also be concisely depicted as the Euclidean norm of the vector difference
between the two coordinates[2]:

d(a,p) = |a - pBl. (N
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Concept of Connectivity Connectivity denotes the transition probability from one data point, «, to
another, £, in a single random walk step[3]:

connectivity (a, 8) = n(a, B) 8)
This probability can be defined relative to a kernel function, «, termed the diffusion kernel:
connectivity(a, 8) « k(a, B) )

The kernel function provides a local similarity measure, restricted to a specific neighborhood and fading
beyond its limits. The matrix k € R™V*" evaluates this similarity based on the Euclidean distance between
data points using a Gaussian kernel:

202 (19

2
Ko = eXp (_M)

Here, o determines the kernel’s scope, with larger values leading to broader embeddings and smaller
values highlighting local structures.

Interpreting Diffusion Distance The row-normalized diffusion matrix, ®, has elements defined as:
@l‘jzﬂ(Xi,Xj) (11)

Each matrix element, ©i, j, signifies the transition probability between data points i and j. The
diffusion metric, derived from this matrix, quantifies the similarity between two points based on their
connectivity[4]:

D, (Xi,Xj)? = Z veX|n (Xi,v)—m (Xj,v) = Z «|®ik' - Okj'[ (12)

Constructing a Diffusion Map Diffusion mapping constructs a transformation between the data and
diffusion spaces, effectively organizing the data in accordance with the diffusion metric. The map is
formed as[1]:

Yi = [ e (Xin X1) 70 (X, Xo) ity (X, XN) ] = 0! (13)

In this arrangement, the Euclidean distance between two mapped points, Y; and Y;, resembles the
diffusion distance between the original data points X; and X;. The diffusion distances can be related to
the eigenvalues and eigenvectors of ® as:

Y/ = [ w1 (1) w2 (i):when (i) ] .

The Euclidean distance between the transformed points Y/ and y]f also mirrors the diffusion distance.
Dimensionality reduction is carried out by retaining the m dimensions associated with the most significant
eigenvectors, which provide the best approximation of the diffusion distance, D; (X;, X;). Therefore, the
diffusion map that optimally preserves the data’s inherent geometry is Y.

2.2. Unsupervised Clustering

2.2.1. K-means The k-means algorithm aims to partition a cluster C and its respective centers z, in a

manner that reduces the overall dissimilarity as much as possible [5]. The process involves four key steps:
Initially, center points must be established. This is done by randomly choosing k data points as the

central points for each cluster. Here, k should fall between 0 and n (n symbolizing the total objects in the

dataset). If k equals n, the setup becomes insignificant[6].

221



Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230153

Subsequently, each point is allocated to the nearest cluster by calculating its Euclidean Distance as
follows:

dist.d(X,Y) = (15)
Here, consider two samples each with m dimensions:
X =(x1,x2..Xm), Y = (1, Y2.-Ym) (16)

After this, we update the center points by calculating the mean value of all data points present in the
cluster. The new center points are selected so as to minimize the dissimilarity within the newly formed
clusters. This can be quantified as:

k

Sa=), >, (Ci—x)? (17

i=1 xECi

Where S, represents the sum of squared distances from each point to its respective center.

Finally, steps above are repeated in a cycle to create better, more precise clusters through iteration.

The k-means algorithm finds application in various domains like image analysis, and document
processing. However, its performance significantly relies on the initial selection of centers. Inappropriate
initial center choices could lead to imperfect clustering. To overcome this, it is advisable to repeat
the initialization of k-means using different sets of centers. An alternative initialization strategy, called
k-means++, was proposed [7]. In this approach, centers are chosen randomly with the probability being
proportional to the squared distance from already chosen centers.

While k-means is useful in data compression and artificial intelligence, it suffers from a high
computational load, which results in increased time cost.

2.2.2. Mean-shift The mean-shift algorithm is a non-parametric technique used to identify clusters
in a dataset. It iteratively shifts data points towards the mean of points within a specified radius until
convergence is reached [8].

The general formula is:

YaeN(a) K (aj —a)a;
ZajeN(a) K (aj - a)

m(a) = (18)
where N (a) refers the neighborhood of a, a set of points for which K(a; —a) # 0

To initiate the mean-shift algorithm, a kernel function K (x; — x) is chosen with an initial guess x,
which assigns weights to each point for the calculation of the mean shift vector. A Gaussian function is
often chosen as the kernel function, and its bandwidth parameter determines the radius size used in the
mean shift computation.

After this, an initial guess for the cluster centers is made by selecting a subset of data points as starting
points. For every starting point, the mean shift vector is calculated by obtaining the weighted mean of
data points within the radius defined by the kernel function. This starting point is then shifted towards
the mean shift vector, and the process is repeated until convergence.

Convergence is generally considered when the mean shift vector falls below a particular threshold. At
this point, the starting point is recognized as a cluster center, and all points within a certain distance of
the cluster center are assigned to that cluster.

The mean-shift algorithm’s performance heavily relies on the selection of the kernel function and the
bandwidth parameter. A large bandwidth leads to larger clusters, while the choice of the kernel function
could affect the algorithm’s efficacy for different data types.
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The advantage of mean-shift is its ability to automatically determine the number of clusters based on
the data. It is also robust to outliers as the mean shift vector is computed based on the weighted mean of
nearby points rather than the precise location of each point.

However, mean-shift can be computationally demanding for large datasets, as the distance between
each pair of data points needs to be calculated multiple times during the iterative process. It is also
sensitive to the initial starting points as the algorithm may converge to local optima rather than the global
optimum.

Mean-shift is widely used in computer vision, image processing, and the analysis of data. By
identifying clusters in the data, it uncovers underlying patterns and relationships that aid in further
analysis and decision-making.

2.2.3. DBSCAN DBSCAN forms clusters according to density measurements, as clusters typically
exhibit higher density than the remaining parts of the dataset. Density in the data space is measured
to discern this [9]. A cluster in this method is seen as the maximum set of density-connected points.
Before the process begins, three factors need to be determined: D, a dataset with n objects; R, the radius
parameter; and MinP, the neighborhood density, defined as the minimum number of points that are
within a specified radius of each other [10].

The process of finding clusters involves four steps:

Initially, all neighboring points within E ps are identified and the core points, which have more than
MinP neighbors, are established as per:

Neps(q) : p € Dldist(p,q) <R (19)

Furthermore, core points must have at least MinP within R from themselves as per:

|Neps(p)| = MinP (20)

Subsequently, for each core point that is not part of a cluster, a new cluster is created.

Following this, all neighbor points will be determined recursively. They will be assigned to the nearest
cluster.

Finally, the steps above are repeated until visiting all of the core points. The points which do not
belong to any clusters are considered noise.

DBSCAN is particularly beneficial for dense data and provides better results than the k-means
algorithm. It also identifies outliers.

Despite its wide application in many fields with the advancement of technology, DBSCAN has its
limitations. For high-dimensional data, defining density is more challenging, and computational overhead
can be significant as all nearest neighbor points need to be calculated.

2.2.4. Spectral Clustering In the context of machine learning, spectral clustering is a powerful technique
that uses the eigenvalues of a matrix to perform dimensionality reduction before applying clustering
methods. This method employs the mathematically elegant framework of graph theory, providing effective
results in numerous scenarios. We will discuss some fundamental concepts of spectral clustering: the
undirected weight map, the similarity matrix, the Laplacian matrix, and the undirected graph cut. We
will then walk through the overall process of spectral clustering.

The Undirected Weight Map, a crucial component of spectral clustering, serves as a weighted adjacency
matrix, illustrating the weights of edges connecting pairs of nodes in an undirected graph. If no link exists
between nodes, the corresponding element in the map is typically zero[11]. Formally, we can express
this as:

Wi, j) = 21

weight of the link between nodes i and j if an edge is present
0 otherwise

223



Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230153

Meanwhile, the Similarity Matrix is a symmetric structure encapsulating the resemblance between
pairs of data points, an essential factor in various machine learning algorithms. The matrix elements
represent the similarity between point pairs, with a higher value indicating a stronger likeness[12]. The
formula for similarity is:

Sij = degree of likeness between points i and j 22)

The Laplacian Matrix, frequently referred to as the graph Laplacian, provides a matrix representation
of a graph. We define it as the difference between the graph’s degree matrix and the adjacency matrix
[8], denoted as:

L=D-A (23)

Here, D represents the degree matrix — a diagonal matrix with node degrees on the diagonal, and A
is the adjacency matrix of the graph.

The concept of the Undirected Graph Cut measures the total weight of edges required to partition the
graph into disjoint subsets[13]. We can mathematically express it as:

cut(S,T) = Z Z Wi, j) (24)
ieS jeT

In this equation, § and T are disjoint node subsets of the graph, and W;; is the weight of the edge
linking nodes i and ;.

With the fundamental concepts in place, let’s explore the procedure of spectral clustering:

Constructing Similarity Graph: The first step is to construct a similarity graph given a set of
data points x1,x»,...,x,. In this graph, each data point is represented as a node, and the weight of
the edges signifies the similarity between two data points. Common similarity measures include the
e-neighborhoods, the Gaussian (heat) kernel, and the k-nearest neighbors.

Degree matrix and Laplacian computation: The process continues with the computation of the
degree matrix D and the Laplacian L. The degree matrix in an undirected graph is a diagonal matrix
that encapsulates the degree — the number of edges attached to each vertex. The Laplacian matrix is
calculated as L = D — W, with W being the adjacency matrix of the graph.

Eigenvalues and Eigenvectors: This step involves calculating the eigenvalues and corresponding
eigenvectors of the Laplacian matrix. The eigenvectors that correspond to the smallest eigenvalues are
utilized[14].

New Data Matrix Formation: A matrix Y is formed from the k eigenvectors corresponding to the
smallest k eigenvalues.

Row Normalization: Each row in matrix Y is normalized to have a unit length, meaning that ||y;|| = 1.

Clustering: Each row of Y is treated as a point in R¥, and these points are subsequently clustered
using a method such as k-means.

Spectral clustering, through its employment of graph theory and linear algebra, often outperforms
traditional clustering techniques, especially in situations where the cluster shape is complex or the data is
high-dimensional. Therefore, understanding and implementing spectral clustering is crucial for machine
learning practitioners.

3. Experiments

3.1. Experiment Datasets and Evaluation Measures

Our experiment leveraged the widely recognized Breast Cancer dataset, a traditional binary classification
dataset found in the sklearn.datasets module. The dataset comprises 30 attributes and a target variable
indicating the breast cancer type ('malignant’ or ’benign’). The attributes are derived from a digitized
fine needle aspirate (FNA) image of a breast mass, providing detailed information on the cell nuclei in
the image.
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For assessment of the efficacy of the dimensionality reduction techniques, we used visual inspection
of the scatter plots generated from the data with reduced dimensions, in addition to a comparison of the
dataset’s dimensionality before and after the reduction.

3.2. Outcomes of Dimensionality Reduction

This segment elucidates the outcomes of applying dimensionality reduction methodologies to the Breast
Cancer dataset. The three approaches used were Principal Component Analysis (PCA), Kernel Principal
Component Analysis (kPCA), and Diffusion Map.

3.2.1. Principal Component Analysis (PCA) PCA was performed on the standardized Breast Cancer
dataset with the intention of maintaining 99

3.2.2. Kernel Principal Component Analysis (KPCA) We used KPCA with an RBF kernel to identify
non-linear correlations in the dataset. By adjusting the component number to two, we were able to
represent the dataset in a two-dimensional feature space. The scatter plot showing the modified data is
shown in Figure 1b.

3.2.3. Diffusion Map Lastly, we applied the Diffusion Map approach to the dataset. The parameters
were configured to repeat the algorithm 10 times and calculate the average outcome. As evident in
Figure 1c, the purple color-coded points appear relatively grouped together, albeit with some degree of
scattering. The yellow points, conversely, exhibit a high level of dispersion, hinting at a possibly complex
structure in the dataset that may not be entirely captured by linear or kernel-based methodologies[2, 1].

PCA Result Kernel PCA with RBF Result le-5 Mean Diffusion Map after 10 runs
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(a) PCA scatter plot (b) kPCA with RBF scatter plot (c) Diffusion Map scatter plot

Figure 1: Dimensionality reduction results using PCA, kPCA, and Diffusion Map.

3.3. Clustering Results

In this section, we apply dimensionality reduction techniques to the Breast Cancer dataset and summarize
the obtained results. The scatterplot in figurela shows the data structure captured by PCA in the two-
dimensional principal component space, and the distribution of data points is reasonable. In contrast,
Figure 1b shows the scatter plot obtained by kPCA using the RBF kernel function. It is worth noting
that the distribution of data points in the results of kPCA is more scattered, which may bring certain
challenges in the subsequent cluster analysis, because the degree of overlap between data points increases
and the degree of discrimination between different categories decreases. In summary, our analysis results
show that PCA can effectively capture the underlying structure of the data set and provide a good basis
for clustering tasks; while the results obtained by kPCA using the RBF kernel function show that the data
points are more scattered. features.
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3.3.1. K-Means Clustering K-Means was applied to the PCA and kPCA transformed data. For both
transformations, the K-Means algorithm showed good results with clear separations between the clusters.
The results are shown in Figures 2a and 2d respectively.

3.3.2. DBSCAN Clustering DBSCAN was also applied to both the PCA and kPCA transformed data.
However, the results were not satisfactory. In both cases, the clusters were not well separated and all the
data points ended up in the same cluster. The results are shown in Figures 2b and 2e respectively.

3.3.3. Spectral Clustering Lastly, Spectral Clustering was applied. For the PCA transformed data, the
results were not good. However, when applied to the kPCA transformed data, the Spectral Clustering
algorithm performed well with clear separations between the clusters. The results are shown in Figures
2¢ and 2f respectively.

PCA-KMeans Results PCA-DBSCAN Results PCA-SpectralClustering Results
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Figure 2: Clustering results using PCA and kPCA with KMeans, DBSCAN, and Spectral Clustering
algorithms.

3.3.4.  Comparative Analysis of Dimensionality Reduction and Clustering Combinations The
performance of different combinations of dimensionality reduction and clustering techniques on the
dataset varied. PCA, when paired with KMeans, yielded good results with clear separation of the two
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main components (Figure 2a), but it did not perform as well when paired with DBSCAN or Spectral
Clustering, which resulted in plots with insufficient cluster separation (Figures 2b and 2c). In contrast,
KPCA showed consistent performance when paired with both KMeans and Spectral Clustering, resulting
in clear separation of the two main components (Figures 2d and 2f). However, similar to PCA, KPCA did
not yield satisfactory results when paired with DBSCAN, leading to a lack of clear clusters (Figure 2e).

3.4. Analysis of Spectral Clustering results:

By comparing 2- (¢ ), 2- (f), 2- (i), we can conclude that pca and spectrl clustring do not work
well together for breast cancer data, and the two non-linear dimensionality reduction are more effective
than linear dimensionality reduction, where kpca is more effective after dimensionality reduction using
spectral clustring.

3.5. Analysis of diffusion map results:
By comparing 2- (g),2-(h),2- (i), it can be concluded that diffsuion and kmeans work best together
for breast cancer data.The results of diffsuion and spectral clustring pairing are unstable.

3.6. Evaluation of clustering results

Purity Results for breast cancer datataset:

PCA KPCA DiffusionMaps
DBSCAN 0.862917 0.627417 0.627417
KMeans 0.906854 ©0.905097 0.699649
SpectralClustering ©.903339 0.901582 0.668366

ARI Results for breast cancer datataset:

PCA KPCA DiffusionMaps
DBSCAN 0.464049 ©0.000000 0.000000
KMeans 0.659231 0.654857 0.161859
SpectralClustering 0.648825 0.643464 0.101467

Figure 3: Evaluation of clustering results for breast cancer

The breast cancer dataset is a common set used for classification tasks. We employed three different
dimensionality reduction methods: PCA (a linear method), KPCA (a non-linear method), and Diffusion
Map (a non-linear method), and applied three different clustering algorithms: DBSCAN, K-Means, and
Spectral Clustering.

Firstly, from the perspective of Purity metric, both PCA and KPCA scored highly (; 0.9) when paired
with K-Means and Spectral Clustering. This suggests that these two reduction methods could capture
both linear and non-linear structures of the breast cancer dataset effectively, and K-Means and Spectral
Clustering could perform well in clustering on the reduced data. However, the Diffusion Map performed
poorly across all clustering methods, which may indicate that this reduction method didn’t fully capture
the intrinsic structure of the data, or further adjustments to its parameters may be needed.

Looking at ARI (Adjusted Rand Index), a measure of the consistency between clustering results and
true labels, again PCA and KPCA exhibited higher ARI scores when paired with K-Means and Spectral

227



Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/31/20230153

Clustering, indicating a high consistency between clustering results and actual labels. However, the
results from Diffusion Map were considerably poorer across all clustering methods.

In summary, PCA and KPCA demonstrated to be the more effective dimensionality reduction methods
for this breast cancer dataset, while DBSCAN generally performed poorly. This could be due to
DBSCAN’s sensitivity to noise and the shape of clusters, while the breast cancer dataset may contain
significant noise or its cluster shapes may not be suitable for DBSCAN.

4. Conclusion

High-dimensional data can lead to computational challenges and uneven data distribution due to reduced
data point density. Therefore, reducing dimensionality aids in better understanding and data exploration.
Clustering methods prove effective for reducing data dimensionality. In this paper, we review several
dimensionality reduction and clustering techniques, We also explore Spectral Clustering, a technique that
combines clustering and dimension reduction concepts. According to the clustering results, we evaluate
the efficiency of these techniques empirically.

For future research, on the one hand, we could further adjust parameters of Diffusion Map to see if
performance could be improved. On the other hand, we could also try more non-linear dimensionality
reduction methods such as Isomap or t-SNE to see how they perform on this dataset. Additionally, more
clustering algorithms like hierarchical clustering or density peak clustering could be employed for more
comprehensive experimental results.
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