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Abstract. The fluctuation of exchange rates holds paramount importance for a country's 

economic and trade activities. Due to the non-stationary and nonlinear structural characteristics 

of exchange rate time series, accurately predicting exchange rate movements is a challenging 

task. Single machine learning models often exhibit lower precision in exchange rate prediction 

compared to combined machine learning models. Hence, employing a combined model approach 

aims to enhance the predictive performance of exchange rate models. Both Long Short-Term 

Memory (LSTM) and Extreme Learning Machine (ELM) exhibit intricate structures, making 

their direct integration challenging. To address this issue, an innovative weighted approach is 

adopted in this study, combining LSTM and ELM models and further refining the combination 

weights using an improved Marine Predators Algorithm. This paper encompasses both univariate 

and multivariate prediction scenarios, employing two distinct allocation strategies for training 

and testing datasets. This is done to investigate the influence of different dataset allocations on 

exchange rate prediction. Finally, the proposed LSTM-ELM weighted combination exchange 

rate prediction model is compared with SVM, Random Forest, ELM, LSTM, and LSTM-ELM 

average combination models. Experimental results demonstrate that the LSTM-ELM weighted 

combination exchange rate prediction model outperforms the others in both univariate and 

multivariate prediction settings, yielding higher predictive accuracy and superior fitting 

performance. Consequently, the LSTM-ELM weighted combination prediction model proves to 

be effective in exchange rate forecasting. 

Keywords: Exchange rate prediction; Long Short-Term Memory neural network; Extreme 

Learning Machine 

1.  Introduction 

In recent years, China has continuously pushed forward with the reform of its exchange rate 

marketization. As the status of the Renminbi (RMB) has risen in the international market, its exchange 

rate fluctuations have become more pronounced than before. These fluctuations not only affect investors' 

investment decisions but also have significant implications for enterprises' cross-border investments, 

arbitrage hedging, risk management, and other crucial determinations. Furthermore, they are factors that 

demand particular consideration when the government formulates economic policies and manages 

exchange rate risks. Particularly, the escalation of China-US trade tensions since 2018 and the outbreak 

of the COVID-19 pandemic in 2019, followed by its global spread, have further intensified the risks in 
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the RMB foreign exchange market [1]. As a result, research related to the prediction of exchange rate 

fluctuations has garnered extensive attention from various sectors. 

Currently, scholars have conducted substantial research on the RMB exchange rate, and the methods 

for predicting RMB exchange rates are continuously being updated and optimized. Due to the influence 

of numerous intricate factors on exchange rates, predicting them remains a challenging issue. An 

analysis of existing literature reveals that exchange rate predictions often focus on research related to 

the driving forces of economic fundamentals [2], as well as technical studies based on the temporal 

characteristics of exchange rates themselves [3][4][5][6]. 

2.  Theoretical Foundations 

2.1.  LSTM Network 

The Long Short-Term Memory (LSTM) network is a specialized type of recurrent neural network that 

relies on three "gates" to selectively process input information. The structure of a single LSTM neuron 

is depicted in Figure 2.1. 

 

Figure 2.1. the structure of LSTM 

In this figure, 𝑋𝑡 represents input data entering the LSTM unit from the external environment, ℎ𝑡 

denotes the output of this LSTM unit, 𝐶𝑡−1  signifies the state of the previous LSTM unit at the 

preceding time step, ℎ𝑡−1 represents the output of the previous LSTM unit, and 𝑖𝑡, 𝑂𝑡, 𝑓𝑡 denote the 

input gate, output gate, and forget gate respectively. The LSTM unit computes the current state and 

output based on these input data. 

The specific calculation formulas are as follows: 

 𝑖𝑡 = 𝑠(𝑊𝑖𝑋𝑋𝑡 +𝑊𝑖𝑀𝑀𝑡−1 +𝑊𝑖𝑐𝐶𝑡-1 + 𝑏𝑖), (2.1) 

 𝑓𝑡 = 𝑠(𝑊𝑓𝑋𝑋𝑡 +𝑊𝑓𝑀𝑀𝑡−1 +𝑊𝑓𝐶𝐶𝑡−1 + 𝑏𝑓), (2.2) 

 𝐶𝑡 = 𝑓⊗ 𝐶𝑡−1 + 𝑖𝑡 ⊗𝑔(𝑊𝐶𝑋𝑋𝑡 +𝑊𝐶𝑀𝑀𝑡−1 + 𝑏𝐶), (2.3) 

 𝑂𝑡 = 𝜎(𝑊𝑂𝑋𝑋𝑡 +𝑊𝑂𝑀𝑀𝑡−1 +𝑊𝑂𝐶𝐶𝑡 + 𝑏𝑂), (2.4)  

 𝑀𝑡 = 𝑂𝑡 ⊗ℎ(𝐶𝑡), (2.5) 

 ℎ𝑡 = 𝑊𝑦𝑀𝑀𝑡 + 𝑏𝑦. (2.6) 

Where 𝜎 is a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function, 𝑊𝑖𝑋 ,𝑊𝑖𝑀 ,𝑊𝑖𝐶 ,𝑊𝑓𝑋,𝑊𝑓𝑀 ,𝑊𝑓𝐶 ,𝑊𝐶𝑋,𝑊𝐶𝑀,𝑊𝑂𝑋,𝑊𝑂𝑀,𝑊𝑂𝐶 ,𝑊𝑦𝑀 

are the weight coefficients for the forget gate, and 𝑏𝑖, 𝑏𝑓 , 𝑏𝐶 , 𝑏𝑂 , 𝑏𝑦 are biases term in the calculations. 

2.2.  Extreme Learning Machine (ELM) 

Extreme Learning Machine (ELM) is a novel neural network with unique characteristics and excellent 

performance. It generates all hidden layer parameters randomly and balances recognition accuracy with 
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algorithm extensibility. It has found widespread applications in various research fields. Figure 2.2 

illustrates the structure of ELM. 

 

Figure 2.2. the structure of ELM 

Considering the sample matrix {𝑥𝑖 , 𝑡𝑖}, where 𝑖 = 1,⋯ ,𝑁 and N is the number of samples, 𝑥𝑖 =
(𝑥𝑖1. 𝑥𝑖2, ⋯ , 𝑥𝑖𝑛)

𝑇 ∈ 𝑅𝑛
𝑚  is the network input vector, 𝑡𝑖 = (𝑡𝑖1. 𝑡𝑖2, ⋯ , 𝑡𝑖𝑚)

𝑇 ∈ 𝑅𝑚  is the 

network output vector, 𝑛,𝑁
𝛬

, 𝑚 are the dimensions of the input layer, hidden layer, and output layer 

respectively, and the activation function 𝑔(𝑥) is typically a 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 type. Then, the mathematical 

expression of ELM is given by: 

                       𝑜𝑗 = ∑ 𝛽𝑖𝑔(𝑤𝑖 ⋅ 𝑥𝑗 + 𝑏𝑖)
𝑁
𝛬

𝑖=1 , 𝑗 = 1,⋯ ,𝑁.       (2.7) 

Where 𝛽𝑖 represents the connection weights between the ith hidden layer node and the output layer, 

𝑤𝑖 denotes the connection weights between the input layer and the 𝑖 -th hidden layer node, and 𝑏𝑖 is 

the bias of the 𝑖 -th hidden layer node. 

The loss function [7] of ELM is as follows: 

 𝐸 = ∑ (𝜀𝑗)
𝐿
j=1 ，𝜀𝑗 = ∑ 𝛽𝑖𝑔(𝑤𝑖 ⋅ 𝑥𝑗 + 𝑏𝑖)

𝑁
𝛬

𝑗=1 − 𝑜𝑗. (2.8) 

Where 𝜀𝑗 = [𝜀𝑗1, 𝜀𝑗2, ⋯ , 𝜀𝑗𝑚] is the error for the 𝑗 -th sample. Achieving zero error approximation 

to 𝑡𝑖 leads to the ideal expectation: ∑ ‖𝑜𝑖
𝑁
𝑖=1 − 𝑡𝑖‖ = 0, which means that there exists 𝛽𝑖, 𝑤𝑖, and 𝑏𝑖 

that makes ∑ 𝛽𝑖𝑔(𝑤𝑖 ⋅ 𝑥𝑗 + 𝑏𝑖)
𝑁
𝛬

𝑗=1 = 𝑡𝑖. 

2.3.  Marine Predators Algorithm (MPA) and Optimization 

The Marine Predators Algorithm (MPA) is a new type of intelligent optimization algorithm proposed 

by Faramarzi et al. [8]. In MPA, each predator acts as a searching individual, and its position represents 

a candidate solution. Predators update their positions using predation and individual dispersion operators 

to ultimately obtain prey (optimal solutions). Compared to existing intelligent optimization algorithms, 

MPA possesses a unique search mechanism and demonstrates significant advantages in solving various 

classical optimization problems. However, during the optimization process involving alternating 

𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 and 𝐿é𝑣𝑦 motions, large step lengths may lead to the intersection of optimal solutions. To 

address this, an adaptive parameter controlling step length, originally expressed as Equation (2.9): 

 max

(2 )

max

(1 )

t

tt
CF

t
= −   (2.9) 

is replaced with Equation (2.10): 
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2

t

t
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 
+

=                     (2.10) 

Furthermore, ideas are presented for addressing the issues of a limited initial population and 

bypassing local optima, as well as providing extensive exploration of the search space by introducing 

the Opposite-Based Learning strategy (OBL) [9]. OBL mitigates the shortcomings of a random 

population and enhances the convergence of the Marine Predators Algorithm. For OBL, assuming 

min max( )Opp X X X= + −  is the inverse function of a real number 
min max[ , ]X X X , with 𝑂𝑝𝑝 

being the inverse variable, the above formula can be written as: 

     min maxi iOpp X X X
→ → → → 

= + − 
 

                (2.11) 

Where 𝑋𝑖
→

 is the component of the 𝑖 -th solution, and 𝑂𝑝𝑝𝑖
→

 is the inverse solution corresponding 

to 𝑋𝑖
→

. 

3.  Empirical Analysis 

3.1.  Data Source 

The daily average price data used in this study is sourced from the S&P Capital IQ database. All other 

data, including daily trading data for USD/CNY exchange rates and indices such as NASDAQ 

Composite Index, Dow Jones Industrial Average, Shanghai Composite Index, and Hang Seng Index, are 

obtained from the Wind database. The daily average price data is used to predict the next trading day's 

USD/CNY exchange rate, while the eight aforementioned variables are used to predict the USD/CNY 

closing price for the following day. Specific data details are as follows: 

(1) USD/CNY Price Data 

This study selects the daily trading data for the USD/CNY exchange rate between January 1, 2015, 

and January 1, 2020. The data includes daily average price, opening price, highest price, lowest price, 

and closing price. 

(2) Stock Price Data 

Stock price data covers the daily trading data of the NASDAQ Composite Index (Code: IXIC.GI), 
Dow Jones Industrial Average (Code: DJI.GI), Shanghai Composite Index (Code: 000001.SH), and 

Hang Seng Index (Code: HSI.HI) between January 1, 2015, and January 1, 2020. 

Excluding weekends, a total of 1305 daily average price data points are used for univariate 

predictions of the USD/CNY exchange rate. For multivariate predictions, a total of 1221 daily data 

points including opening price, highest price, lowest price, closing price, NASDAQ Composite Index, 

Dow Jones Industrial Average, Shanghai Composite Index, and Hang Seng Index are used for the same 

period. 

3.2.  Evaluation Metrics 

Commonly used evaluation metrics to assess the performance of prediction models are 

𝑅2、MAPE、MSE, introduced as follows: 

(1)𝑅2 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦

∧
𝑖)

𝑛
𝑖=1

2
/𝑛

∑ (𝑦
∧
𝑖−𝑦

−
𝑖)
2𝑛

𝑖=1 /𝑛
, (3.1) 
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where 𝑦𝑖
∧

 is the predicted value, 𝑦𝑖 is the true value, 𝑦𝑖
−

 is the mean of 𝑦, and 𝑅2 ranges between 

0 and 1. 

(2)MSE 

 MSE =
1

𝑛
∑ (𝑦𝑖

∧
− 𝑦𝑖)

𝑛
𝑖=1

2

, (3.2) 

where 𝑦𝑖
∧

 is the predicted value, 𝑦𝑖 is the true value, and a lower MSE indicates better predictive 

performance. 

(3)MAPE 

 𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖
∧
−𝑦𝑖

𝑦𝑖
|𝑛

𝑖=1 . (3.3) 

where 𝑦𝑖
∧

 is the predicted value, 𝑦𝑖 is the true value, and a lower MAPE indicates more accurate 

predictions. 

3.3.  LSTM-ELM Weighted Combination Exchange Rate Prediction Model 

3.3.1.  Model Construction 

In this study, the predicted value from the LSTM model is denoted as 𝑌1, and the predicted value from 

the ELM model is denoted as 𝑌2. A combined prediction model is established by multiplying the two 

prediction results by their respective weights and then adding them together to obtain the final result of 

the combined method: 

 𝑌 = 𝑊1𝑌1 +𝑊2𝑌2. (3.4) 

Where 𝑊1,𝑊2 represents the weighting coefficients (𝑊1 +𝑊2 = 1). 

The improved Marine Predators Algorithm (MPA) is employed to determine the optimal ratio of the 

two models in the combination model. Using MPA, with MAPE as the fitness function during the 

optimization process, the weights of the combination are optimized. These optimized weights are 

assigned to the prediction values of each model to obtain the prediction values of the combined model. 

The optimization process is detailed in Figure 3.1. 
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Figure 3.1. Flowchart of the Marine Predators Algorithm (MPA) for Determining Optimal Weights of 

Two Exchange Rate Prediction Models 

3.3.2.  Experimental Results 

Table 3-1 presents the evaluation metrics of the univariate LSTM-ELM weighted combination exchange 

rate prediction model using different training datasets (80% and 90% of the data). 

Table 3-1 Evaluation Metrics of Univariate LSTM-ELM Weighted Combination Exchange Rate 

Prediction Model with Different Training Sets 

Evaluation Metric 80% Training Set Value 90% Training Set Value 

MAPE 0.00164 0.00174 

MSE 0.00035 0.00042 

𝑅2 0.99898 0.99687 

 

 

Figure 3.2. Comparison Chart of Real and Predicted Values of USD/CNY Exchange Rate by the LSTM-

ELM Weighted Combination Model for 80% and 90% Training Sets 

From the tables and figures, it is evident that in both training dataset scenarios, the 80% training 

dataset performs better in terms of prediction accuracy, as indicated by the lower MAPE and MSE values. 
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Additionally, the R2 value is closer to 1 in the 80% training dataset scenario, indicating better fitting 

performance. 

Table 3-2 and Figure 3.3 show the evaluation metrics and comparison of real and predicted values 

for the multivariate LSTM-ELM weighted combination exchange rate prediction model using different 

training datasets (80% and 90% of the data). Similar to the univariate scenario, the 80% training dataset 

outperforms the 90% training dataset in terms of prediction accuracy, as evidenced by the lower MAPE 

and MSE values. The R2 value is also closer to 1 in the 80% training dataset scenario, indicating better 

fitting performance. 

Table 3-2. Evaluation Metrics of Multivariate LSTM-ELM Weighted Combination Exchange Rate 

Prediction Model with Different Training Sets 

Evaluation Metric 80% Training Set Value 90% Training Set Value 

MAPE 0.00226 0.00262 

MSE 0.00022 0.00031 

𝑅2 0.98939 0.98897 

 

Figure 3.3. Comparison Chart of Real and Predicted Values of Multivariate LSTM-ELM Weighted 

Combination Exchange Rate Prediction Model for 80% and 90% Training Sets 

3.4.  Comparison of Prediction Results for Different Models 

Based on the predicted values of the six methods, the evaluation metrics for each method are calculated 

for both univariate and multivariate predictions using both 80% training and 20% testing datasets, as 

well as 90% training and 10% testing datasets. The evaluation results are summarized in Tables 3-3, 3-

4, 3-5, and 3-6. 

Table 3-3. Comparison of Evaluation Metrics for Univariate Six Different Prediction Models with 

80% Training Set and 20% Testing Set 

    Model 

Evaluation  

Metric 
LSTM-ELM Weighted LSTM-ELM Average LSTM ELM Random Forest SVM (Linear Kernel) 

MAPE 0.00164 0.11264 0.00494 0.00377 0.00214 0.00273 

MSE 0.00035 0.01023 0.00041 0.00101 0.00061 0.00039 

𝑅2 0.99898 0.99491 0.97997 0.98592 0.99323 0.98595 
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Table 3-4. Comparison of Evaluation Metrics for Univariate Six Different Prediction Models with 90% 

Training Set and 10% Testing Set 
    Model 

Evaluation  

Metric 

LSTM-ELM 

Weighted 

LSTM-ELM 

Average 
LSTM ELM Random Forest 

SVM 
(Linear 

Kernel) 

MAPE 0.00174 0.12679 0.00683 0.00232 0.00182 0.00273 

MSE 0.00042 0.01155 0.00076 0.00054 0.00051 0.00047 

𝑅2 0.99687 0.97998 0.89034 0.99219 0.99503 0.95400 

Table 3-5. Comparison of Evaluation Metrics for Multivariate Six Different Prediction Models with 80% 

Training Set and 20% Testing Set 

    Model 

Evaluation  

Metric 

LSTM-ELM 
Weighted 

LSTM-ELM 
Average LSTM ELM Random 

Forest 
SVM (Linear 

Kernel) 

MAPE 0.00226 0.11634 0.00342 0.00167 0.00263 0.00281 

MSE 0.00022 0.00038 0.00056 0.00029 0.00061 0.00032 

𝑅2 0.98939 0.98179 0.97441 0.98629 0.98144 0.98464 

Table 3-6. Comparison of Evaluation Metrics for Multivariate Six Different Prediction Models with 90% 

Training Set and 10% Testing Set 

    Model 

Evaluation  
Metric 

LSTM-ELM 

Weighted 
LSTM-ELM 

Average LSTM ELM Random Forest 
SVM 

(Linear 
Kernel) 

MAPE 0.00262 0.12992 0.00297 0.00169 0.00284 0.00272 

MSE 0.00031 0.00057 0.00046 0.00032 0.00091 0.00034 

𝑅2 0.98897 0.90936 0.86368 0.95337 0.98356 0.94890 

 

From the tables, it is clear that among the six methods, the LSTM-ELM weighted combination 

exchange rate prediction model outperforms the others. This model exhibits the lowest MAPE and MSE 

values, indicating superior prediction accuracy. In terms of predictive performance, the R2 value for the 

LSTM-ELM weighted combination model is closest to 1. Thus, the proposed LSTM-ELM weighted 

combination exchange rate prediction model, whether in terms of fitting performance or error values, 

outperforms the other five comparison models. It demonstrates excellent capability in predicting both 

the average USD/CNY exchange rate and the closing price for the following day. 

4.  Conclusion 

In this study, a weighted combination exchange rate prediction model using LSTM and ELM was 

proposed. Through comparison with five other models, it was found that the proposed prediction model 

exhibited superior predictive performance and achieved favorable results in exchange rate forecasting. 

The primary focus of this paper was to investigate the LSTM-ELM weighted combination exchange rate 

prediction model in the context of both univariate and multivariate exchange rate predictions. Two 

testing set allocation schemes were adopted: 90% as training set and 10% as testing set, and 80% as 

training set and 20% as testing set, to explore the impact of different training and testing set distributions 

on exchange rate prediction. Concerning the LSTM-ELM weighted combination exchange rate 

prediction model, the allocation scheme of 80% training set and 20% testing set yielded higher 

prediction accuracy and better fitting results. In the future, the model proposed in this study could also 

be applied to address other complex forecasting problems, such as crude oil price prediction, traffic flow 

prediction, stock index prediction, among others. 
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