
Accurate and efficient galaxy classification based on mobile 

vision transformer 

Xinrui Tan 

School of Electrical Engineering and Computer Science, The University of 

Queensland, Brisbane, QLD, 4072, Australia 

 

xinrui.tan@uqconnect.edu.au 

Abstract. Understanding the formation and evolution of galaxies in observational cosmology 

heavily relies on galaxy morphological classification. Nevertheless, the continuously growing 

volume of astronomical data has surpassed human capacity for manual classification. In this 

context, deep learning presents a promising approach to enhancing classifying galaxies. In this 

paper, the Mobile Vision Transformer (MobileViT) is introduced to construct an efficient and 

accurate galaxy classifier. Transfer learning is introduced to assist in model fine-tuning. 

MobileViT combines the features of MobileNet and Visual Transformer (ViT). A lightweight 

model is used to effectively analyse the relationships between sequences for efficient and 

accurate classification. Experiments are built on Galaxy10 DECals dataset. Excellent 

performance is achieved in identifying galaxy types compared to other lightweight models. The 

model achieves an accuracy of over 87% and maintains a high speed of inference of less than 50 

milliseconds per step. Experimental results show that the introduction of MobileViT is the best 

solution for efficient galaxy classification. The model can be deployed on any portable device 

for instant observation and classification. 

Keywords: morphological classification, mobile vision transformer, transfer learning, 

lightweight. 

1.  Introduction 

The galaxy morphological classification plays a key role in the field of observational cosmology. It is 

the cornerstone for building a comprehensive catalogue of galaxies. By systematically examining the 

different shapes and structures exhibited by galaxies, astronomers can gain valuable insights into the 

underlying mechanisms of their formation and evolution. However, the vast amount of data available 

from modern astronomical observations has far exceeded the ability of humans to classify galaxies 

comprehensively and manually. In response, machine learning (ML) has been introduced for decades to 

enhance the classification of galaxy morphology. Nowadays, deep learning models have become 

prominent contributors. Notably, recent advances have produced powerful models leading to the 

development of multiple highly accurate classifiers. However, this has been accompanied by 

increasingly complex time requirements associated with training and inference procedures. Efficient 

models easily available on portable devices can substantially aid astronomy study and instruction, saving 

a great deal of time and energy. 
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The incorporation of ML into the field of galaxy classification has a significant and extended history. 

Artificial neural networks (ANNs), decision trees, and other basic machine learning techniques were 

used in the early research into this topic [1, 2]. Deep learning techniques, notably convolutional neural 

networks (CNN), were increasingly popular for galaxy classification as large-scale models became more 

prevalent in the field of image classification in the 2010s. Dieleman et al. first used a seven-layer CNN 

and exploited the translational and rotational invariance of galaxy images to classify galaxy morphology 

[3]. Building on this work, Kim et al. extended their investigation of galaxy classification by employing 

a more extensive model similar to VGG [4]. In addition, Zhu et al. modified the ResNet architecture to 

classify galaxies into five different classes, achieving an impressive accuracy of over 95% [5]. Lately, 

Lin et al. made a significant breakthrough by introducing Vision Transformers (ViT) to the field of 

galaxy classification, demonstrating the superior performance of Transformers in analyzing small-sized 

and faint galaxies [6]. 

This study identifies an efficient and accurate classifier for galaxy classification, enabling it to be 

implemented directly on the observatory's data reception equipment. The focus is on achieving high 

efficiency while maintaining high accuracy by using a lightweight model with fewer parameters. In this 

study, Mobile Vision Transformer (MobileViT) is fine-tuned [7]. This is a hybrid model combining 

CNN and transformer features. MobileViT is pre-trained on ImageNet [7]. It is subsequently fine-tuned 

for the specific task of dividing galaxies into ten discrete classes. During the training of this model, 

transfer learning is utilised to save time and effort. Additionally, to lessen the danger of overfitting, data 

augmentation techniques are used on the dataset. Meanwhile, a comprehensive analysis and comparison 

of the predictive performance and inference speed of models of similar size are performed. The 

experimental findings demonstrate that MobileViT performs better at accurately recognising galaxy 

types than other lightweight CNN or ViT models. 

2.  Methodology 

2.1.  Dataset description 

This project is based on the Galaxy10 DECals dataset, derived from the Galaxy Zoo (GZ) data version 

2. The dataset consists of approximately 270,000 SDSS galaxy images, which were meticulously 

classified by volunteers. Among these images, around 22,000 were selected based on the top 10 

categories as determined by the votes of the volunteers [8, 9]. The Galaxy10 DECals dataset comprises 

a compilation of 17,736 color galaxy images, each with a pixel size of 256x256 and representing the g, 

r, and z-bands. These images are divided into 10 distinct classes, which are listed in Table 1 [9]. 

Table 1. Architecture of dataset. 

Class Label Name # Images 

0 Barred Spiral Galaxies 2043 

1 Cigar Shaped Smooth Galaxies 334 

2 Disturbed Galaxies 1081 

3 Edge-on Galaxies with Bulge 1873 

4 Edge-on Galaxies without Bulge 1423 

5 In-between Round Smooth Galaxies 2027 

6 Merging Galaxies 1853 

7 Round Smooth Galaxies 2645 

8 Unbarred Loose Spiral Galaxies 2628 

9 Unbarred Tight Spiral Galaxies 1829 

2.2.  Proposed approach  

This study introduces MobileViT as a backbone network. The network is further fine-tuned by weight 

adjustment to facilitate galaxy classification. In addition, preprocessing layers are added for data 

augmentation. Figure 1 visualizes the overall experimental process. The overall process is divided into 
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five steps. First, in the preprocessing stage, images are rescaled and randomly cropped, flipped, and 

rotated to accomplish data augmentation. Second, each batch of images after preprocessing is fed into 

the core network, i.e., the MobileViT architecture. Third, MobileViT performs feature extraction and 

feature fusion on the input data. Additionally, the output is discarded during the training process 

according to a predetermined discard rate, and fourth, the output features are forwarded to the classifier. 

The classifier consists of a fully connected layer using Softmax activation. The resultant output is the 

probability associated with each individual category. 

 
Figure 1. Process of network. 

2.2.1.  Pre-processing. The model's pre-processing layers serve the purpose of data augmentation and 

encompass several operations, namely random crop, rescaling, random flip, random rotation, and 

random zoom (see Figure 2). The picture pixel values are normalised using x=x/127.5-1 (where x 

indicates the pixel values), translating all pixel values into the range of [-1, 1], to guarantee prevention 

of exploding gradients, convergence speed, and model accuracy enhancement. These pre-processing 

layers are integrated at the bottom of the model and are executed on the GPU to avoid potential CPU 

bottlenecks. Additionally, the initial 3-dimensional matrix representation of the images is compressed 

and transposed into tensors, which represent the pixel values. 

 

 
Figure 2. Architecture of pre-processing module. 

2.2.2.  MobileViT. In this study, MobileViT lightweight network is used as the basis for galaxy 

classification. MobileViT combines the advantages of MobileNet and ViT. MobileNet is a CNN with a 

lightweight backbone structure. ViT, based on the self-attention mechanism, is good at capturing global 

feature information. Figure 3 illustrates the network architecture of MobileViT. In the MobileViT block, 

the kernel size "n" is typically set to three. Downward arrow-labelled structures indicate down-sampling 

operations. MobileViT offers three distinct configurations, namely MobileViT-S, MobileViT-XS, 

MobileViT-XXS in descending order of the number of parameters. In this study, MobileViT-S is 
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employed. During this procedure, the pre-processed batch of images undergoes a down-sampling 3-by-

3 convolution before being fed into several MobileNetV2 blocks for feature extraction and down-

sampling. Subsequently, the batch passes through a sequence of combinations of MobileNetV2 blocks 

and MobileViT blocks. The MobileNetV2 blocks facilitate down-sampling, while the MobileViT blocks 

are responsible for capturing the fusion of local and global representations. Finally, the processed batch 

undergoes a 1×1 convolution along with a global average pooling, generating the logits for output. 

 

 

Figure 3. Architecture of MobileViT, in which Conv-n × n denotes a normal n × n convolution and 

MV2 indicates the MobileNetV2 block. Blocks responsible for down-sampling are designated with ↓ 2 

[10]. 

2.2.3.  Loss function. In this work, sparse categorical cross-entropy is employed. It is frequently used in 

classification applications. With only one accurate class considered for each input sample, it calculates 

the difference between the anticipated probability distribution and the actual class label. When the 

classes are mutually exclusive and the target class is represented as an integer index rather than a one-

hot encoded vector, as it is in this study, this loss function is very suitable. In order to help the model 

make accurate class predictions during training, the sparse categorical cross-entropy seeks to reduce the 

discrepancy between projected probability and the actual class label. The mathematical expression is as 

follows, 

 

                                                            𝐿𝑜𝑠𝑠𝑆𝐶𝐶𝐸 = − ∑ 𝑡𝑖 × 𝑙𝑜𝑔(𝑝𝑖)𝐶
𝑖 ,                                                   (1) 

 

where C is the collection of class labels, 𝑡𝑖 is the truth label for the i-th class, and 𝑝𝑖 is the class's Softmax 

probability. 

2.3.  Implementation details  

The model training process utilizes Nvidia's Tesla A100 GPU, along with 80 GB of system memory and 

12 vCPUs. An exponentially declining learning rate scheduler is used to optimise the training process. 

The initial learning rate, decay rate, and number of decay steps were all set to 0.002, 0.01, and 10,000 

respectively. The learning rate is displayed beneath: 

 

                                           𝑙𝑟 = 𝑖𝑛𝑖𝑡_𝑙𝑟 × 𝑑𝑒𝑐𝑎𝑦𝑒𝑑_𝑟𝑎𝑡𝑒(𝑠𝑡𝑒𝑝𝑠/𝑑𝑒𝑐𝑎𝑦𝑒𝑑_𝑠𝑡𝑒𝑝𝑠),                                   (2) 
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where 𝑖𝑛𝑖𝑡_𝑙𝑟 is the initial learning rate, the 𝑑𝑒𝑐𝑎𝑦𝑒𝑑_𝑟𝑎𝑡𝑒, in this case, is 0.01, 𝑠𝑡𝑒𝑝𝑠 is the number of 

steps been taken, and the value for 𝑑𝑒𝑐𝑎𝑦𝑒𝑑_𝑠𝑡𝑒𝑝𝑠, in this case, is 10,000. During the training process, 

the Adam optimizer is employed, incorporating a weight decay rate of 0.01 [10]. In addition, an early 

stop callback mechanism is implemented to monitor the accuracy of the validation. The early stop 

mechanism consists of a 5-calendar-time patience. Starting from the third calendar time, the optimal 

model weights will be automatically restored. 

3.  Result and discussion 

This chapter aims to provide a comprehensive analysis of the results of the model, including 

visualization and discussion of various performance metrics. Specifically, loss and accuracy, 

classification reports, and confusion matrices for each cycle are examined in detail. In addition, a 

comparative analysis of the model's performance with other existing models deployed for the same 

galaxy classification task is presented. This comparative assessment helps to highlight the exceptional 

efficiency that the proposed model has shown in accomplishing the task at hand. 

3.1.  Performance analysis 

For both the Training and Validation datasets, the Loss and Accuracy metrics are shown graphically in 

Figure 4. The Training loss initially exceeds 1 but gradually converges to a value below 0.20. On the 

other hand, the Validation loss exhibits a general convergence trend at approximately 0.49, albeit with 

minor oscillations. Notably, the Training Accuracy demonstrates a gradual and consistent increase, 

starting from below 74% and ultimately reaching a commendable 93%, whereas the Validation 

Accuracy oscillates at around 86% after convergence. Best weights are restored by early-stopping call-

back from the 12th epoch, with a validation accuracy of 87.12%. 

 

 

(a) Train-validation loss     (b) Train-validation accuracy 
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Figure 4. The curve of loss and accuracy, in which the orange and blue curve indicate train and 

validation metrices respectively. 

Table 2 presents the classification report derived from evaluating the model on the test dataset. The 

overall performance is deemed satisfactory, except for class 2, where the model's predictive accuracy 

was notably lower. Notably, for classes 3 to 7, representing "Edge-on with Bulge galaxy," "Edge-on 

without Bulge galaxy," "In-between Round Smooth galaxy," "Merging galaxy," and "Round Smooth 

galaxy," the f1-scores exceeded 0.90. This indicates that the model excels at accurately identifying round 

bright spots and elongated structures characteristic of these classes. Conversely, for distributed galaxies 

that lack these distinctive attributes, the model's predictions were found to be less accurate. 
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Table 2. Classification report. 

 Precision Recall F1-score Support 

Class 0 0.91 0.90 0.90 453 

Class 1 0.75 0.76 0.76 68 

Class 2 0.66 0.50 0.57 216 

Class 3 0.92 0.95 0.93 343 

Class 4 0.94 0.92 0.93 298 

Class 5 0.91 0.94 0.93 407 

Class 6 0.88 0.93 0.90 381 

Class 7 0.92 0.95 0.93 530 

Class 8 0.81 0.76 0.78 478 

Class 9 0.80 0.85 0.83 374 

Accuracy   0.87 3548 

Macro avg 0.85 0.85 0.85 3548 

Weighted avg 0.87 0.87 0.87 3548 

 

The confusion matrix depicting the model's predictions on the test dataset is presented in Figure 5. 

Consistent with the observations made in the classification report, the model exhibited difficulties in 

distinguishing distributed galaxies from other galaxy types, particularly Unbarred Loss Spiral galaxies. 

This confusion can be attributed to the presence of similar blue and white spots in the centre of images 

for both Distributed galaxies and Unbarred Loss Spiral galaxies. However, the model encountered 

challenges in identifying the spiral arms characteristic of Unbarred Loss Spiral galaxies, which can be 

considered a comparatively subtle feature. Additionally, the model displayed some confusion among 

the three types of Spiral galaxies, thereby resulting in relatively lower f1-scores for classes 0, 8, and 9, 

as outlined in Table 2. 

 

 

Figure 5. Confusion matrix. 
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3.2.  Comparison with other models  

Several commonly employed models, namely ViT, the second version of 50-layer Deep Residual 

Networks (ResNet50V2), the lightest version of Dense Convolutional Network (DenseNet121), the 

second generation of the Small version of EfficientNets (EfficientNetV2S) with Self-Attention on top, 

and three generations of MobileNets (MobileNet, MobileNetV2, MobileNetV3-Large), are trained and 

evaluated for the identical task, utilizing similar architectural designs and implementation configurations 

as previously described. Table 3 provides a comprehensive overview of these models, highlighting their 

respective parameter counts, test accuracy achieved after 20 training epochs, and inference speed. 

Notably, MobileViT, the model employed in this study, exhibited significantly superior accuracy 

compared to other lightweight models, while maintaining a commendable inference speed. In contrast, 

when compared to heavyweight models, EfficientNet demonstrates the highest accuracy. However, the 

inference speed of EfficientNet is considerably slower than that of MobileViT. Consequently, 

MobileViT remains the most optimal solution for this particular task, striking a balance between 

extraordinary accuracy and efficient inference performance. 

Table 3. Comparison of model performance and efficiency in galaxy classification. 

Backbone Model # Parameters Test Accuracy 

(%) 

Inference speed 

ViT 85.8M 66.43 765ms/step 

ResNet50V2 24.6M 62.26 59ms/step 

DenseNet121 7.5M 64.49 63ms/step 

EfficientNetV2-

S +Self-Attention 

21.0M 88.16 1s/step 

MobileNet 3.7M 81.09 29ms/step 

MobileNetV2 2.9M 79.74 35ms/step 

MobileNetV3-

Large 

3.5M 14.18 34ms/step 

MobileViT-

S(Mine) 

4.9M 87.12 45ms/step 

4.  Conclusion 

This study introduces a transfer learning approach using MobileViT as a backbone network for the 

classification of galaxies based on morphology. To expedite the model's convergence speed, pre-trained 

weights from ImageNet are employed. Additionally, data augmentation techniques and various 

regularization methods are utilized to mitigate overfitting, while a decayed learning rate strategy is 

implemented to achieve optimal weight configurations. The proposed method is extensively evaluated 

through a series of experiments. The results demonstrate that, following fine-tuning on the galaxy dataset, 

the proposed model strikes a desirable balance between accuracy and inference speed, surpassing other 

efficient or lightweight models as well as some well-known approaches. In the future, further 

enhancements to the model architecture will be pursued as the primary research objective. Specifically, 

attention will be given to replacing and deploying specific network modules to optimize compatibility 

with mobile device hardware. 
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