
Modified A* algorithm for path smoothing and obstacle

avoidance

Hui Geng

School of Mechanical Engineering and Automation, Dalian Polytechnic University,
Dalian, Liaoning, 116034, China

S20004310@MAILGLYNDWRAC.onmicrosoft.com

Abstract. With the rapid development of robotics technology, path planning is a crucial aspect

of autonomous robot systems. Among them, planning paths involves using the A* algorithm,

which is a common method. However, traditional A* algorithm has several limitations in path

planning, such as poor real-time performance, large amount of computation per node, long

computation time, low algorithmic search efficiency. Based on this, two improved approaches

for the A* algorithm are proposed. The first is expanding the obstacles in the map by increasing

their expansion radius. The second is the Hybrid A* algorithm, which optimizes the A*
algorithm by modifying its heuristic function. Specifically, the Hybrid A* algorithm combines

two heuristic functions: one based on non-holonomic constraints and the other based on dynamic

programming. Experimental tests are conducted under various map expansions and branching

parameters to compare the performance of these two algorithms in terms of path length,

execution time, and path smoothness at corners. The results demonstrate that, with smaller

branching parameters, the Hybrid A* algorithm generates shorter paths. However, in highly

complex mazes, the path length of the Hybrid A* algorithm may be longer, but it exhibits

smoother movements at corners.

Keywords: path-planning, A* algorithm, Hybrid A* algorithm, optimization methods.

1. Introduction

With the continuous development of related technologies, robots have been utilized in a wide range field
such as manufacturing, aerospace, deep-sea exploration, and healthcare. To enhance the intelligence and

autonomy of robots in task handling, researchers have proposed various path-planning methods. After
years of research, there are two types of route planning techniques: conventional path-planning
algorithms and clever biomimetic path-planning algorithms. A*, D*, artificial potential field method,
and RRT are examples of traditional route planning techniques. Biomimetic path planning techniques
include ant colony algorithm, particle swarm optimization algorithm, and genetic algorithm, among
others. Among these methods, one of the most established and widely used path-planning techniques is
the A* algorithm. It is a Dijkstra algorithm extension that has several uses in manufacturing and
pathfinding in video games., among other areas [1].

The A* algorithm, by considering both actual costs and estimates from heuristic functions, can find
the optimal path in graph search problems. It has been widely applied in the fields of computer science
and artificial intelligence for path-planning, game AI, and decision-making in intelligent systems [2].

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

167

However, when dealing with complex issues and continuous spaces, the conventional A* method has
several drawbacks. These limitations include constraints on the search space size, challenges in selecting
appropriate heuristic functions, and concerns regarding completeness and optimality guarantees.
Additionally, traditional A* algorithm may encounter issues such as an excessive number of turning

points, lack of path smoothness, and longer path distances [3].
This paper aims to overcome the limitations of traditional A* method. An optimization method is

proposed in this study to enhance the performance and efficiency of the A* algorithm. These
optimization techniques include improving heuristic functions and adjusting obstacle distances in the
map. By optimizing the A* algorithm, the quality and efficiency of path planning can be improved,
enabling robots to intelligently plan their trajectories and achieve better performance in real-world tasks.

2. The traditional A* algorithm

An efficient algorithm for finding the optimal path in the same environment is the traditional A*
algorithm, which is derived from the Dijkstra algorithm [4]. While ensuring the optimal planned path,

it swiftly approaches the goal guided by the evaluation function 𝑓(𝑛) [5]. The A* algorithm's heuristic
function is written as follows:

𝑓(𝑛) = 𝑔(𝑛)+ ℎ(𝑛) (1)

𝑓(𝑛) - The heuristic function that estimates the cost from a node through node n to the destination
[6];

𝑔(𝑛) - The actual cost function from a point to node n [6];

ℎ(𝑛) - The actual cost function from a point to node n [6];

If ℎ(𝑛) = 0, the A* algorithm becomes equivalent to the Dijkstra algorithm, and it may be utilized to
find the shortest distance. The A* method can still look for the shortest path in circumstances when the

anticipated value of ℎ(𝑛) is smaller than the actual cost from the current node to the destination node.
However, as ℎ(𝑛) decreases, the efficiency of the search decreases due to an increase in expanded nodes

[7]. If the estimated distance ℎ(𝑛) is equal to the actual cost between a node and the destination node,
the A* algorithm can efficiently and accurately search for the optimal path without generating additional

nodes. This results in high search efficiency and yields the optimal path. However, if the value of ℎ(𝑛)
exceeds an alternative value between the node and the target location, it may not find the optimal path
but can still improve relative search efficiency. The A* algorithm transforms into the Breadth-First

Search (BFS) algorithm when 𝑔(𝑛) = 0. Considering the main characteristics of the A* algorithm's

scoring function, striking a balance between 𝑔(𝑛) and ℎ(𝑛) is crucial for refining the A* algorithm [8].

3. Improvement methods for the A* algorithm

3.1. Expansion of obstacle
The traditional A* algorithm may generate paths that are in close proximity to obstacles, and it can
potentially lead to situations of collision or "pass-through" in simulations. If a mobile robot relies solely
on A* for path planning, it poses a significant risk. Applying such a method in real-world scenarios
would likely result in persistent collisions or frequent encounters with obstacles [9]. Hence, in path

planning, it is essential to introduce an expansion radius for obstacles in the map. This not only enables
the mobile robot to navigate more precisely toward the target but also reduces the computational time
required. The mobile robot operates within a binary maze, as depicted in Figure 1, where it traverses
and adapts to the environment. For this experiment, the robot model chosen is circular, and the grid size
was selected as the extent of the expansion distance.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

168

Figure 1. Binary occupancy grid.

Expanding the distance of obstacles essentially alters the sensing range of the mobile robot. This
allows for a more precise path between the robot and the obstacles. During this process, it is important
to ensure that the robot has sufficient space to maneuver while maximizing efficiency in the chosen path.
The size of the expansion radius is determined by the radius of the robot itself. Figure 2 illustrates the
map after radius expansion.

Figure 2. Map of the expanded radius.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

169

3.2. Optimized search algorithm

 (A) (B) (C)

Figure 3. Comparison of search algorithms visually. (A): A* only travels to states that have grid-cell
centers in common with their expenses. (B): Field D* (Ferguson and Stentz 2005) and Theta* (Nash et
al. 2007) enable arbitrary linear pathways between cells and correlate costs with cell corners. (C): Hybrid
A* assigns a continuous state to each cell, and the value of that continuous state's cost determines the

cell's score [10].

A path-planning method utilized in autonomous driving is called the Hybrid A* algorithm. It combines
both continuous state space and discrete state space to solve path-planning problems. The fundamental
idea behind this approach is to include continuous state data into the discrete search nodes of the A*
algorithm, allowing for the use of continuous state data throughout the search process. The method
entails discretizing the search space and linking each grid cell to the vehicle's continuous 3D state. The

related continuous state receives numerous steering actions when a node from the open list of A* is
popped, and new child states are created using the kinematic model of the moving vehicle. The matching
grid cell for each continuous kid state is calculated. The continuous status of the node is updated and
the node is reinserted into the open list for consideration if a node with the same grid cell already exists
and the new node has a lower cost [11]. In order to follow the vehicle's minimal turning radius and avoid
obstructions, this method fixes the length of the motion primitives that must be created each time.

By connecting each grid cell with the continuous 3D state of the vehicle, the Hybrid A* algorithm,
an upgraded version of the conventional A* method, increases the path planning accuracy. The Hybrid

A* method, in contrast to the conventional A* algorithm, uses a continuous motion model to expand
nodes and provide workable pathways. It is distinguished by creating extremely viable pathways but
does not ensure the discovery of the overall ideal solution. The algorithm utilizes the A* search in the
discrete state space and leverages the continuous state space to address discretization errors. Specifically,
the Hybrid A* algorithm utilizes a heuristic function that is the maximum of two heuristic functions,
one based on nonholonomic constraints and the other on dynamic programming. Furthermore, the
algorithm utilizes analytical expansions to enhance search speed and precision.

In autonomous driving path planning, the Hybrid A* algorithm can be applied to plan vehicle
trajectories that avoid obstacles and satisfy other constraints. By combining the advantages of discrete
and continuous state spaces, the Hybrid A* algorithm can effectively handle the requirements of
continuity and precision in path planning. It generates smooth and efficient trajectories by considering
the robot's dynamic constraints and dynamic programming information, while avoiding path deviations
caused by discretization errors. The mapping relationship between the vehicle's continuous state and the
discrete grid cells in the Hybrid A* algorithm ensures more accurate and precise path planning. By

strengthening the A* algorithm's heuristics and utilizing continuous state space for path expansion, the
Hybrid A* algorithm holds significant value in autonomous driving path planning.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

170

4. Simulation experiments

4.1. Creating maze map

Prior to path planning, robots should first ascertain environmental information and construct an
environmental map. A well-defined environmental map facilitates the establishment of planning
methods and the selection of search algorithms, ultimately reducing the time wasted in searching for
satisfactory paths [12]. Based on this study, binary maps were employed for experimentation. Binary
maps represent map information in binary form (0s and 1s) and serve as a data structure. The binary
map utilized in this research has dimensions of 263×263 and a resolution of 10 units per grid cell.

Figure 4. Simulation results of different method.

4.2. Experimental procedure
In the initial simulation, the performance of the A* algorithm and the Hybrid A* algorithm was primarily

compared under two conditions: without inflating obstacles and with a 0.1 inflation radius for obstacles.
Figure 4 illustrates the simulation results, using a binary map of size 263×263. The obstacles were
randomly generated by altering the branching of the maze, while still maintaining some level of
regularity. For the first experiment, a branching parameter of 6 was chosen. To approach real-world data,
the runtime was obtained by recording three instances and averaging the values, thereby eliminating the
influence of computer performance. The map resolution was set to 10 for easy recording and calculation
of the robot's path and turning angles within the maze.

In the second experiment, under various situations of obstacle inflation, the effectiveness of the A*
algorithm and the Hybrid A* algorithm were compared. Multiple tests were conducted by repeating the
following code, observing the performance of both algorithms with varying degrees of map inflation.
The same map was used in this experiment, with different inflation radii applied to obtain more accurate
results. Tables 2 and 3 present the results of the inflation ranging from 0.1 to 0.4.

The maximum turning angle for the A* algorithm was set to 90 degrees, while for the Hybrid A*
algorithm, it was set to 45 degrees. The path length and runtime were recorded for each scenario, as

shown in Tables 2 and 3.
In the third experiment, four sets of experiments were conducted to compare the performance of the

A* algorithm and the Hybrid A* algorithm under different branching factors: 8, 10, 12, and 14. Based
on the results of Experiment 2, an inflation radius of 0.1 was selected as a consistent variable. The
runtime, maximum turning angle, path length, and other variables were compared between A* and
Hybrid A* algorithms as the basis for evaluating the two algorithms. The average results from each trial
were utilized as the experimental data in a similar manner to account for the variability in computer
performance.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

171

5. Experimental Results

5.1. First group of experiments

Table 1. Randomized 263×263 map with branching of 6 and map extension of 0.1.

Indicators A* A* in map

expansion

Hybrid A* Hybrid a* in map

extension

Running time/s 0.246683 0.273854 12.033537 12.933158

Maximum

steering angle/°

90 90 45 45

Path length/m 55.5269 56.3955 54.5201 55.3844

From Table 1, it can be observed that, overall, the map with expanded obstacles requires more runtime

and results in longer path lengths. However, during the simulation, it was observed that without
incorporating the robot's perception parameters, the robot would not be able to recognize these obstacles
and would pass through them, resulting in a phenomenon known as "passing through walls". This issue
becomes particularly pronounced during turns.

5.2. Second group of experiments

Table 2. A* in a randomized 263×263 map with branching of 10.

Map Extension 0.1 0.2 0.3 0.4

Maximum

steering angle/°

90 90 90 90

Path length/m 42.4434 43.3605 44.2777 45.1948

Running time/s 0.122202 0.123718 0.118807 0.118825

Table 3. Hybrid A* in a randomized 263×263 map with branching of 10.

Map Extension 0.1 0.2 0.3 0.4

Maximum

steering angle/°

45 45 45 45

Path length/m 43.7483 43.9688 44.7554 46.1682

Running time/s 11.797235 10.231245 10.588308 10.076580

The following conclusions may be reached from the study of the data in Table 2 and 3:

Path Length: As the extent of obstacle expansion increases, both algorithms show an increasing trend

in path length. For the A* algorithm, the path length increases from the initial value of 42.4434 to
45.1948 when the obstacles are expanded to 0.4. Similarly, for the Hybrid A* algorithm under the same
conditions, the path length increases from 43.7483 to 46.1682. It can be observed that, at the same level
of expansion, the Hybrid A* algorithm tends to have longer path lengths.

Runtime: In terms of runtime, both the A* algorithm and the Hybrid A* algorithm exhibit relatively
stable performance across different levels of expansion. The runtime of both algorithms fluctuates within
a similar range, without any noticeable trend. For example, when the obstacles are expanded to 0.1, the

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

172

average runtime for the A* algorithm is 0.122202 seconds, while for the Hybrid A* algorithm it is
11.797235 seconds.

The following tentative conclusions can be made in light of this analysis: as the extent of obstacle
expansion increases, both algorithms exhibit an increase in path length, but the Hybrid A* algorithm

tends to have longer path lengths. In terms of runtime, both algorithms demonstrate relatively stable
performance without significant differences.

It is important to note that the results of this experiment may be influenced by the experimental setup
and the choice of maps. To provide a more comprehensive and accurate assessment of algorithm
performance, further experiments can be conducted with multiple trials and consideration of additional
factors such as different map structures and parameter settings. The statistical significance and
dependability of the findings would enable a more thorough assessment of the benefits and drawbacks
of the A* algorithm and the Hybrid A* algorithm for path planning.

5.3. Third group of experiments

Table 4. A* in randomized 263×263 map with different branching.

Branching 8 12 14 10

Maximum

steering angle/°

90 90 90 90

Path length/m 41.7948 89.1897 80.7144 38.3345

Running time/s 0.195021 0.141057 0.156715 0.118653

Table 5. Hybrid A* in randomized 263×263 map with different branching.

Branching 8 12 14 10

Maximum
steering angle/°

45 45 45 45

Path length/m 41.3166 31.972064 17.740318 3.986916

Running time/s 5.516480 95.0422 82.5313 37.1491

Figure 5. A* map of branching 10.

Figure 6. Hybrid A* map of branching 10.

In the first set of experiments with a maximum steering angle of 90 degrees, shown on Table 4, the
overall path length was longer, and it showed an increasing trend as the branching factor increased. For

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

173

example, when the branching factor was 12, the path length reached 89.1897, while for a branching
factor of 10, the path length was 38.3345. Fig. 5 and Fig. 6 show the performance of the two algorithms
in branching10. Furthermore, the runtime was relatively short and did not show any significant trend.

In the second set of experiments with a maximum steering angle of 45 degrees, shown on Table 5,

the overall path length was shorter, and it gradually decreased as the branching factor increased. For
instance, when the branching factor was 14, the path length was 17.740318, while for a branching factor
of 16, the path length was only 3.986916. However, in contrast to the path length, the runtime exhibited
noticeable fluctuations, especially when the branching factor was 12, with a runtime of 95.0422 seconds.

Based on the above analysis, the following observations and conclusions can be made:
- The choice of maximum steering angle has a significant impact on path length and runtime. A larger

steering angle (90 degrees) leads to longer path lengths, while a smaller steering angle (45 degrees)
results in shorter path lengths.

- The variation in the branching factor has a noticeable effect on path length. In the first set of
experiments, increasing the branching factor led to longer path lengths, while in the second set of
experiments, increasing the branching factor gradually decreased the path lengths.

- The runtime in the second set of experiments exhibited significant fluctuations, especially when the
branching factor was 12, indicating increased computational complexity at larger branching factors.

6. Discussion

The size of the search space and the efficiency of the heuristic function have the most effects on the A*
algorithm's time complexity. In small-scale maps, the A* algorithm can find the optimal path within a
reasonable time. However, in large-scale maps or complex environments, the A* algorithm may need
to search more nodes, resulting in increased runtime.

The hybrid A* algorithm improves upon the A* algorithm by combining continuous state space and
discrete state space search, reducing the number of nodes to be searched. This makes the hybrid A*

algorithm relatively more efficient in large-scale maps or complex environments, enabling it to find
feasible paths more quickly.

The space complexity of the A* algorithm and the hybrid A* algorithm is relatively similar. Both
algorithms require storing nodes and path information during the search process. In environments with
sufficient memory resources, the space consumption of both algorithms is acceptable. However, the
space utilization of the method must be considered in situations with limited resources, such as
embedded systems or low-power devices.

Both the A* algorithm and the hybrid A* algorithm can be optimized by adjusting the heuristic
function to improve efficiency. The number of nodes that must be searched can be decreased and the
search direction can be efficiently guided by selecting the right heuristic function. In practical
applications, algorithm optimization and adaptive improvements can be made based on different
environments and task requirements to improve efficiency and path planning performance.

The route length of the hybrid A* method is often less than that of the A* algorithm in situations
when the branching factor is low. This may be because the hybrid A* algorithm, with its advantages of
combining continuous and discrete state space, can more efficiently plan shorter paths. However, in

highly complex mazes, the path length of the hybrid A* algorithm may be much longer than that of the
A* algorithm. This may be because the hybrid A* algorithm focuses more on generating smoother paths
rather than just finding the shortest path.

In highly complex mazes, although the path length of the hybrid A* algorithm may be longer, it tends
to have smoother turning points. This means that the hybrid A* algorithm can generate paths that are
more in line with real robot motion, avoiding excessive large directional changes. This is because the
hybrid A* algorithm considers the robot's kinematic constraints and dynamic programming information,

placing more emphasis on path smoothness in path planning, resulting in more elegant and realistic paths.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

174

7. Conclusion

By comparing and analysing the performance of these two algorithms in different scenarios, this paper
proposes better optimization methods for the A* algorithm. The hybrid A* algorithm generally generates
shorter paths when the branching factor is small, which may be attributed to its utilization of both

continuous and discrete state spaces.
In highly complex mazes, the hybrid A* algorithm may have longer path lengths, but it exhibits

smoother turning points, which are more in line with real robot motion. This indicates that the hybrid
A* algorithm emphasizes path smoothness and realism. The hybrid A* algorithm is more efficient than
the A* algorithm in large-scale maps or complex environments, enabling it to find feasible paths faster
and generate paths that better match real robot motion. However, specific application scenarios and
problem requirements still need to be considered for selection and optimization.

References

[1] S. a. J. J. a. S. H. a. Y. Y. Chen, 2023, Improved A-star Method for Collision Avoidance and Path
Smoothing, in 2023 IEEE International Conference on Control, Electronics and Computer
Technology (ICCECT), pp. 32-35.

[2] H. a. Z. L. a. L. H. a. W. C. a. Q. Z. a. Q. Y. Zou, 2010, Optimized Application and Practice of

A* Algorithm in Game Map Path-Finding, in 2010 10th IEEE International Conference on
Computer and Information Technology, pp. 2138-2142.

[3] Z. a. W. S. a. Z. J. Zhang, 2021, A-star algorithm for expanding the number of search directions
in path planning, in 2021 2nd International Seminar on Artificial Intelligence, Networking and
Information Technology (AINIT), pp. 208-211.

[4] F. D. a. A. B. a. M. K. a. P. B. a. M. F. a. T. F. a. L. Jurišica, 2014, Path Planning with Modified
a Star Algorithm for a Mobile Robot, Procedia Engineering, vol. 96, pp. 59-69.

[5] J. Y. J. L. H. T. X. &. G. M. Liu, 2017, An improved ant colony algorithm for robot path planning,

Soft computing, vol. 21, pp. 5829-5839.
[6] D. a. Z. Y. a. L. Q. a. W. T. Huang, 2022, Research on Path Planning of Mobile Robot Based on

Improved A-Star Algorithm, in 2022 International Conference on Informatics, Networking
and Computing (ICINC), pp. 251-255.

[7] J. W. Z. a. H. X. Huiqun, 2018, Path planning based on improved particle swarm optimization
algorithm, Journal of agricultural machinery, vol. 49, no. 12, pp. 371-377.

[8] Chang C, 2020, Research and Application on Path Planning Based on Improved A-Star Algorithm,

Nanjing University.
[9] L. S. J. J. W. Y. L. W. L. T. Wang H, 2022 , The EBS-A* algorithm: An improved A* algorithm

for path planning, PLoS ONE, vol. 17, no. 2.
[10] D. A. Dolgov, 2008, Practical Search Techniques in Path Planning for Autonomous Driving.
[11] D. a. T. S. a. M. M. a. D. J. Dolgov, 2010, Path Planning for Autonomous Vehicles in Unknown

Semi-structured Environments, I. J. Robotic Res., vol. 29, pp. 485-501.
[12] Y. a. W. Z. a. Z. S. Li, 2022, Path Planning of Robots Based on an Improved A-star Algorithm,

in 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and

Automation Control Conference (IMCEC), vol. 5, pp. 826-831.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

175

