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Abstract. With the rapid development of robotics technology, path planning is a crucial aspect 

of autonomous robot systems. Among them, planning paths involves using the A* algorithm, 

which is a common method. However, traditional A* algorithm has several limitations in path 

planning, such as poor real-time performance, large amount of computation per node, long 

computation time, low algorithmic search efficiency. Based on this, two improved approaches 

for the A* algorithm are proposed. The first is expanding the obstacles in the map by increasing 

their expansion radius. The second is the Hybrid A* algorithm, which optimizes the A* 
algorithm by modifying its heuristic function. Specifically, the Hybrid A* algorithm combines 

two heuristic functions: one based on non-holonomic constraints and the other based on dynamic 

programming. Experimental tests are conducted under various map expansions and branching 

parameters to compare the performance of these two algorithms in terms of path length, 

execution time, and path smoothness at corners. The results demonstrate that, with smaller 

branching parameters, the Hybrid A* algorithm generates shorter paths. However, in highly 

complex mazes, the path length of the Hybrid A* algorithm may be longer, but it exhibits 

smoother movements at corners.  
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1.  Introduction 

With the continuous development of related technologies, robots have been utilized in a wide range field 
such as manufacturing, aerospace, deep-sea exploration, and healthcare. To enhance the intelligence and 

autonomy of robots in task handling, researchers have proposed various path-planning methods. After 
years of research, there are two types of route planning techniques: conventional path-planning 
algorithms and clever biomimetic path-planning algorithms. A*, D*, artificial potential field method, 
and RRT are examples of traditional route planning techniques. Biomimetic path planning techniques 
include ant colony algorithm, particle swarm optimization algorithm, and genetic algorithm, among 
others. Among these methods, one of the most established and widely used path-planning techniques is 
the A* algorithm. It is a Dijkstra algorithm extension that has several uses in manufacturing and 
pathfinding in video games., among other areas [1]. 

The A* algorithm, by considering both actual costs and estimates from heuristic functions, can find 
the optimal path in graph search problems. It has been widely applied in the fields of computer science 
and artificial intelligence for path-planning, game AI, and decision-making in intelligent systems [2]. 
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However, when dealing with complex issues and continuous spaces, the conventional A* method has 
several drawbacks. These limitations include constraints on the search space size, challenges in selecting 
appropriate heuristic functions, and concerns regarding completeness and optimality guarantees. 
Additionally, traditional A* algorithm may encounter issues such as an excessive number of turning 

points, lack of path smoothness, and longer path distances [3]. 
This paper aims to overcome the limitations of traditional A* method. An optimization method is 

proposed in this study to enhance the performance and efficiency of the A* algorithm. These 
optimization techniques include improving heuristic functions and adjusting obstacle distances in the 
map. By optimizing the A* algorithm, the quality and efficiency of path planning can be improved, 
enabling robots to intelligently plan their trajectories and achieve better performance in real-world tasks. 

2.  The traditional A* algorithm 

An efficient algorithm for finding the optimal path in the same environment is the traditional A* 
algorithm, which is derived from the Dijkstra algorithm [4]. While ensuring the optimal planned path, 

it swiftly approaches the goal guided by the evaluation function 𝑓(𝑛) [5]. The A* algorithm's heuristic 
function is written as follows: 

𝑓(𝑛) = 𝑔(𝑛)+ ℎ(𝑛) (1) 

𝑓(𝑛) - The heuristic function that estimates the cost from a node through node n to the destination 
[6]; 

𝑔(𝑛) - The actual cost function from a point to node n [6]; 

ℎ(𝑛) - The actual cost function from a point to node n [6]; 

If ℎ(𝑛) = 0, the A* algorithm becomes equivalent to the Dijkstra algorithm, and it may be utilized to 
find the shortest distance. The A* method can still look for the shortest path in circumstances when the 

anticipated value of ℎ(𝑛) is smaller than the actual cost from the current node to the destination node. 
However, as ℎ(𝑛) decreases, the efficiency of the search decreases due to an increase in expanded nodes 

[7]. If the estimated distance ℎ(𝑛) is equal to the actual cost between a node and the destination node, 
the A* algorithm can efficiently and accurately search for the optimal path without generating additional 

nodes. This results in high search efficiency and yields the optimal path. However, if the value of ℎ(𝑛) 
exceeds an alternative value between the node and the target location, it may not find the optimal path 
but can still improve relative search efficiency. The A* algorithm transforms into the Breadth-First 

Search (BFS) algorithm when 𝑔(𝑛) = 0. Considering the main characteristics of the A* algorithm's 

scoring function, striking a balance between 𝑔(𝑛) and ℎ(𝑛) is crucial for refining the A* algorithm [8]. 

3.  Improvement methods for the A* algorithm 

3.1.  Expansion of obstacle 
The traditional A* algorithm may generate paths that are in close proximity to obstacles, and it can 
potentially lead to situations of collision or "pass-through" in simulations. If a mobile robot relies solely 
on A* for path planning, it poses a significant risk. Applying such a method in real-world scenarios 
would likely result in persistent collisions or frequent encounters with obstacles [9]. Hence, in path 

planning, it is essential to introduce an expansion radius for obstacles in the map. This not only enables 
the mobile robot to navigate more precisely toward the target but also reduces the computational time 
required. The mobile robot operates within a binary maze, as depicted in Figure 1, where it traverses 
and adapts to the environment. For this experiment, the robot model chosen is circular, and the grid size 
was selected as the extent of the expansion distance.  
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Figure 1. Binary occupancy grid. 

Expanding the distance of obstacles essentially alters the sensing range of the mobile robot. This 
allows for a more precise path between the robot and the obstacles. During this process, it is important 
to ensure that the robot has sufficient space to maneuver while maximizing efficiency in the chosen path. 
The size of the expansion radius is determined by the radius of the robot itself. Figure 2 illustrates the 
map after radius expansion. 

 

Figure 2. Map of the expanded radius. 
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3.2.  Optimized search algorithm 

 

                            (A)                                               (B)                                              (C) 

Figure 3. Comparison of search algorithms visually. (A): A* only travels to states that have grid-cell 
centers in common with their expenses. (B): Field D* (Ferguson and Stentz 2005) and Theta* (Nash et 
al. 2007) enable arbitrary linear pathways between cells and correlate costs with cell corners. (C): Hybrid 
A* assigns a continuous state to each cell, and the value of that continuous state's cost determines the 

cell's score [10]. 

A path-planning method utilized in autonomous driving is called the Hybrid A* algorithm. It combines 
both continuous state space and discrete state space to solve path-planning problems. The fundamental 
idea behind this approach is to include continuous state data into the discrete search nodes of the A* 
algorithm, allowing for the use of continuous state data throughout the search process. The method 
entails discretizing the search space and linking each grid cell to the vehicle's continuous 3D state. The 

related continuous state receives numerous steering actions when a node from the open list of A* is 
popped, and new child states are created using the kinematic model of the moving vehicle. The matching 
grid cell for each continuous kid state is calculated.  The continuous status of the node is updated and 
the node is reinserted into the open list for consideration if a node with the same grid cell already exists 
and the new node has a lower cost [11]. In order to follow the vehicle's minimal turning radius and avoid 
obstructions, this method fixes the length of the motion primitives that must be created each time. 

By connecting each grid cell with the continuous 3D state of the vehicle, the Hybrid A* algorithm, 
an upgraded version of the conventional A* method, increases the path planning accuracy. The Hybrid 

A* method, in contrast to the conventional A* algorithm, uses a continuous motion model to expand 
nodes and provide workable pathways. It is distinguished by creating extremely viable pathways but 
does not ensure the discovery of the overall ideal solution. The algorithm utilizes the A* search in the 
discrete state space and leverages the continuous state space to address discretization errors. Specifically, 
the Hybrid A* algorithm utilizes a heuristic function that is the maximum of two heuristic functions, 
one based on nonholonomic constraints and the other on dynamic programming. Furthermore, the 
algorithm utilizes analytical expansions to enhance search speed and precision. 

In autonomous driving path planning, the Hybrid A* algorithm can be applied to plan vehicle 
trajectories that avoid obstacles and satisfy other constraints. By combining the advantages of discrete 
and continuous state spaces, the Hybrid A* algorithm can effectively handle the requirements of 
continuity and precision in path planning. It generates smooth and efficient trajectories by considering 
the robot's dynamic constraints and dynamic programming information, while avoiding path deviations 
caused by discretization errors. The mapping relationship between the vehicle's continuous state and the 
discrete grid cells in the Hybrid A* algorithm ensures more accurate and precise path planning. By 

strengthening the A* algorithm's heuristics and utilizing continuous state space for path expansion, the 
Hybrid A* algorithm holds significant value in autonomous driving path planning. 
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4.  Simulation experiments 

4.1.  Creating maze map 

Prior to path planning, robots should first ascertain environmental information and construct an 
environmental map. A well-defined environmental map facilitates the establishment of planning 
methods and the selection of search algorithms, ultimately reducing the time wasted in searching for 
satisfactory paths [12]. Based on this study, binary maps were employed for experimentation. Binary 
maps represent map information in binary form (0s and 1s) and serve as a data structure. The binary 
map utilized in this research has dimensions of 263×263 and a resolution of 10 units per grid cell. 

 

Figure 4. Simulation results of different method. 

4.2.  Experimental procedure 
In the initial simulation, the performance of the A* algorithm and the Hybrid A* algorithm was primarily 

compared under two conditions: without inflating obstacles and with a 0.1 inflation radius for obstacles. 
Figure 4 illustrates the simulation results, using a binary map of size 263×263. The obstacles were 
randomly generated by altering the branching of the maze, while still maintaining some level of 
regularity. For the first experiment, a branching parameter of 6 was chosen. To approach real-world data, 
the runtime was obtained by recording three instances and averaging the values, thereby eliminating the 
influence of computer performance. The map resolution was set to 10 for easy recording and calculation 
of the robot's path and turning angles within the maze.  

In the second experiment, under various situations of obstacle inflation, the effectiveness of the A* 
algorithm and the Hybrid A* algorithm were compared. Multiple tests were conducted by repeating the 
following code, observing the performance of both algorithms with varying degrees of map inflation. 
The same map was used in this experiment, with different inflation radii applied to obtain more accurate 
results. Tables 2 and 3 present the results of the inflation ranging from 0.1 to 0.4. 

The maximum turning angle for the A* algorithm was set to 90 degrees, while for the Hybrid A* 
algorithm, it was set to 45 degrees. The path length and runtime were recorded for each scenario, as 

shown in Tables 2 and 3. 
In the third experiment, four sets of experiments were conducted to compare the performance of the 

A* algorithm and the Hybrid A* algorithm under different branching factors: 8, 10, 12, and 14. Based 
on the results of Experiment 2, an inflation radius of 0.1 was selected as a consistent variable. The 
runtime, maximum turning angle, path length, and other variables were compared between A* and 
Hybrid A* algorithms as the basis for evaluating the two algorithms. The average results from each trial 
were utilized as the experimental data in a similar manner to account for the variability in computer 
performance. 
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5.  Experimental Results 

5.1.  First group of experiments  

Table 1. Randomized 263×263 map with branching of 6 and map extension of 0.1. 

Indicators A* A* in map 

expansion 

Hybrid A* Hybrid a* in map 

extension 

Running time/s 0.246683 0.273854 12.033537 12.933158 

Maximum 

steering angle/° 

90 90 45 45 

Path length/m 55.5269 56.3955 54.5201 55.3844 

 
From Table 1, it can be observed that, overall, the map with expanded obstacles requires more runtime 

and results in longer path lengths. However, during the simulation, it was observed that without 
incorporating the robot's perception parameters, the robot would not be able to recognize these obstacles 
and would pass through them, resulting in a phenomenon known as "passing through walls". This issue 
becomes particularly pronounced during turns. 

5.2.  Second group of experiments 

Table 2. A* in a randomized 263×263 map with branching of 10. 

Map Extension 0.1 0.2 0.3 0.4 

Maximum 

steering angle/° 

90 90 90 90 

Path length/m 42.4434 43.3605 44.2777 45.1948 

Running time/s 0.122202 0.123718 0.118807 0.118825 

Table 3. Hybrid A* in a randomized 263×263 map with branching of 10. 

Map Extension 0.1 0.2 0.3 0.4 

Maximum 

steering angle/° 

45 45 45 45 

Path length/m 43.7483 43.9688 44.7554 46.1682 

Running time/s 11.797235 10.231245 10.588308 10.076580 

 
The following conclusions may be reached from the study of the data in Table 2 and 3: 

Path Length: As the extent of obstacle expansion increases, both algorithms show an increasing trend 

in path length. For the A* algorithm, the path length increases from the initial value of 42.4434 to 
45.1948 when the obstacles are expanded to 0.4. Similarly, for the Hybrid A* algorithm under the same 
conditions, the path length increases from 43.7483 to 46.1682. It can be observed that, at the same level 
of expansion, the Hybrid A* algorithm tends to have longer path lengths. 

Runtime: In terms of runtime, both the A* algorithm and the Hybrid A* algorithm exhibit relatively 
stable performance across different levels of expansion. The runtime of both algorithms fluctuates within 
a similar range, without any noticeable trend. For example, when the obstacles are expanded to 0.1, the 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230262

172



average runtime for the A* algorithm is 0.122202 seconds, while for the Hybrid A* algorithm it is 
11.797235 seconds. 

The following tentative conclusions can be made in light of this analysis: as the extent of obstacle 
expansion increases, both algorithms exhibit an increase in path length, but the Hybrid A* algorithm 

tends to have longer path lengths. In terms of runtime, both algorithms demonstrate relatively stable 
performance without significant differences. 

It is important to note that the results of this experiment may be influenced by the experimental setup 
and the choice of maps. To provide a more comprehensive and accurate assessment of algorithm 
performance, further experiments can be conducted with multiple trials and consideration of additional 
factors such as different map structures and parameter settings. The statistical significance and 
dependability of the findings would enable a more thorough assessment of the benefits and drawbacks 
of the A* algorithm and the Hybrid A* algorithm for path planning. 

5.3.  Third group of experiments 

Table 4. A* in randomized 263×263 map with different branching. 

Branching 8 12 14 10 

Maximum 

steering angle/° 

90 90 90 90 

Path length/m 41.7948 89.1897 80.7144 38.3345 

Running time/s 0.195021 0.141057 0.156715 0.118653 

 

Table 5. Hybrid A* in randomized 263×263 map with different branching. 

Branching 8 12 14 10 

Maximum 
steering angle/° 

45 45 45 45 

Path length/m 41.3166 31.972064 17.740318 3.986916 

Running time/s 5.516480 95.0422 82.5313 37.1491 

 

 

 

Figure 5. A* map of branching 10. 
 

Figure 6. Hybrid A* map of branching 10. 

In the first set of experiments with a maximum steering angle of 90 degrees, shown on Table 4, the 
overall path length was longer, and it showed an increasing trend as the branching factor increased. For 
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example, when the branching factor was 12, the path length reached 89.1897, while for a branching 
factor of 10, the path length was 38.3345. Fig. 5 and Fig. 6 show the performance of the two algorithms 
in branching10. Furthermore, the runtime was relatively short and did not show any significant trend. 

In the second set of experiments with a maximum steering angle of 45 degrees, shown on Table 5, 

the overall path length was shorter, and it gradually decreased as the branching factor increased. For 
instance, when the branching factor was 14, the path length was 17.740318, while for a branching factor 
of 16, the path length was only 3.986916. However, in contrast to the path length, the runtime exhibited 
noticeable fluctuations, especially when the branching factor was 12, with a runtime of 95.0422 seconds. 

Based on the above analysis, the following observations and conclusions can be made: 
- The choice of maximum steering angle has a significant impact on path length and runtime. A larger 

steering angle (90 degrees) leads to longer path lengths, while a smaller steering angle (45 degrees) 
results in shorter path lengths. 

- The variation in the branching factor has a noticeable effect on path length. In the first set of 
experiments, increasing the branching factor led to longer path lengths, while in the second set of 
experiments, increasing the branching factor gradually decreased the path lengths. 

- The runtime in the second set of experiments exhibited significant fluctuations, especially when the 
branching factor was 12, indicating increased computational complexity at larger branching factors. 

6.  Discussion 

The size of the search space and the efficiency of the heuristic function have the most effects on the A* 
algorithm's time complexity. In small-scale maps, the A* algorithm can find the optimal path within a 
reasonable time. However, in large-scale maps or complex environments, the A* algorithm may need 
to search more nodes, resulting in increased runtime. 

The hybrid A* algorithm improves upon the A* algorithm by combining continuous state space and 
discrete state space search, reducing the number of nodes to be searched. This makes the hybrid A* 

algorithm relatively more efficient in large-scale maps or complex environments, enabling it to find 
feasible paths more quickly. 

The space complexity of the A* algorithm and the hybrid A* algorithm is relatively similar. Both 
algorithms require storing nodes and path information during the search process. In environments with 
sufficient memory resources, the space consumption of both algorithms is acceptable. However, the 
space utilization of the method must be considered in situations with limited resources, such as 
embedded systems or low-power devices. 

Both the A* algorithm and the hybrid A* algorithm can be optimized by adjusting the heuristic 
function to improve efficiency. The number of nodes that must be searched can be decreased and the 
search direction can be efficiently guided by selecting the right heuristic function. In practical 
applications, algorithm optimization and adaptive improvements can be made based on different 
environments and task requirements to improve efficiency and path planning performance. 

The route length of the hybrid A* method is often less than that of the A* algorithm in situations 
when the branching factor is low. This may be because the hybrid A* algorithm, with its advantages of 
combining continuous and discrete state space, can more efficiently plan shorter paths. However, in 

highly complex mazes, the path length of the hybrid A* algorithm may be much longer than that of the 
A* algorithm. This may be because the hybrid A* algorithm focuses more on generating smoother paths 
rather than just finding the shortest path. 

In highly complex mazes, although the path length of the hybrid A* algorithm may be longer, it tends 
to have smoother turning points. This means that the hybrid A* algorithm can generate paths that are 
more in line with real robot motion, avoiding excessive large directional changes. This is because the 
hybrid A* algorithm considers the robot's kinematic constraints and dynamic programming information, 

placing more emphasis on path smoothness in path planning, resulting in more elegant and realistic paths. 
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7.  Conclusion 

By comparing and analysing the performance of these two algorithms in different scenarios, this paper 
proposes better optimization methods for the A* algorithm. The hybrid A* algorithm generally generates 
shorter paths when the branching factor is small, which may be attributed to its utilization of both 

continuous and discrete state spaces.  
In highly complex mazes, the hybrid A* algorithm may have longer path lengths, but it exhibits 

smoother turning points, which are more in line with real robot motion. This indicates that the hybrid 
A* algorithm emphasizes path smoothness and realism. The hybrid A* algorithm is more efficient than 
the A* algorithm in large-scale maps or complex environments, enabling it to find feasible paths faster 
and generate paths that better match real robot motion. However, specific application scenarios and 
problem requirements still need to be considered for selection and optimization. 
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