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Abstract. With the continuous development of time and technology, the control system has thus 

evolved in the direction of great complexity. In the field of path control, once control algorithms 

cannot absolutely meet the requirements of all people, so this paper introduces an alternative 

algorithm-MPC. This article focuses on the development of MPC from when it is invented and 

its application in aerospace today with specified examples, and then lists and analyses the 
mainstream MPC algorithms, namely LTI, LTV, LPV, PWA and nonlinear systems. Article 

below also illustrates the derivation of sample of non-parametric model-based algorithms 

(Dynamic matrix control) and parametric model-based algorithms (Generalized Predictive 

Control) and the elaboration of mainstream systems and their applications in the form of an 

overview. Eventually gives a conclusion to the current situation of MPC and relationships among 

various algorithms. Note that this article is mainly aimed at scholars who are new to MPC 

algorithms. 
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1.  Introduction 

The origin of MPC can be traced back to "Self-tuning regulators for multivariable systems: the Quadratic 
Regulator Case" published in 1966, which is a computer control algorithm developed in the early 1980s. 

It has the advantages of low accuracy to the model, robustness and good control due to its use of forward 
feedback such as multi-part prediction, roll optimization and feedback correction. And because of the 
large number of scenarios in which the processes are characterized by non-linearity and uncertainty, it 
makes the classical control algorithms such as PID, i.e., the modern control theory, achieve 
unsatisfactory results. PID algorithms are suitable for control loops and cannot couple variables, making 
them slightly inferior to control systems. The advantages of MPC in controlling multiple loops and 
constraints have led to its development in aerospace and chemical production systems. MPC has proved 

itself to be a state-of-the-art control framework, which has penetrated deeply into the industrial and 
academic control domains and has had a great impact on them. Its ability to handle multiple constraints 
at the same time and its stepwise optimization approach have made it popular in the aerospace industry. 

The aerospace control system is limited by such conditions as special environment, long working 
time, high precision requirement and energy consumption limitation, which is a system with multiple 
state variables and there is also a relationship between the states. Since the 1950s, a set of gradually 
improved modern control theory has been gradually established in the control field, which makes the 
aerospace control system have a theoretical basis. Afterwards, MPC was born in such an atmosphere. 
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The general MPC algorithm can be both suitable on linear and nonlinear models. Consequently, MPC 
is able to take into account complex nonlinearities and couplings, and it is easy to generalize the benefits 
to scenarios such as time-delay, non-minimum phase, and nonlinearity. Examples include control of 
structural interactions, rocket wobble modes and mission-specific modes of spacecraft, which are key 

features of aerospace system dynamics [1]. In addition, MPC is usually applicable to any type of 
SISO/SIMO/MISO/MIMO system. From the algorithm itself, the step-by-step optimization of MPC is 
able to compensate the uncertainties due to factors such as model fit and disturbances in a timely manner, 
possesses high dynamics, and has better overall robustness and stability. 

Nowadays, MPC appears in many fields of aerospace. In the last five years, MPC has served to 
maximize the thermal durability of aircraft, by incorporating the guardian maps (GM) theory to establish 
a transient trajectory design methodology, reconstructing the trajectory on-line and correcting the 
tracking commands [2,3]. Furthermore, one paper examines the problem of coupled orbit-attitude 

control for the flight of solar sail formation. [4]. This paper is aimed at scholars who are new to MPC. 
The paper gives a general overview of MPC, then discusses the mainstream control algorithms, and then 
resolves the system modelling at the level of the aerospace domain. 

2.  Brief overview of MPC 

2.1.  MPC information 
MPC is mainly used for autonomous navigation of spacecraft [5], i.e., it collects its own speed, angle, 
position and other remaining parameters without relying on ground equipment, and combines dynamics 
and kinematics to calculate, immediately predict and optimize the speed, angle, position and such kinds 
of variables of the spacecraft. 

The mainstream predictive control algorithms that currently exist are MAC (Model Algorithm 
Control), DMC (Dynamic Matrix Control), GPC (Generalized Predictive Control), and GPP 
(Generalized Predictive Pole Placement Control). Among them, MAC uses the impulse response model, 
meanwhile, DMC applies the step response model of the object, while the other two (GPP, GPC) use 
the CARIMA model to neutralize the predictive thought control and adaptive control [6]. 

The MPC consists of three main components consisting of a predictive model, a controller and a 
corrector, where the reference trajectory and roll optimization are incorporated into the controller. The 
prediction of the future output values is determined by the model system, the controller determines the 

dynamic properties of the system output, and the corrector works only when there is an error in the 
prediction. A large closed-loop negative feedback system is formed by these three. 

2.2.  Predictive model 
The core of the MPC algorithm is the predictive model it applies. The responsibility of the predictive 
model is to obtain the current and past deviation values from the ideal values to get the future state and 

response of the system. Models are categorized into parametric and nonparametric models. The former 
includes differential equations, difference equations, etc. The latter include impulse response, step 
response, etc. 

𝑦(𝑘) = 𝑓(𝑥, 𝑢) (1) 

Where 𝑦(𝑘) ∈ 𝑅  is the output, i.e., the successor state; 𝑥 ∈ 𝑅 and 𝑢 ∈ 𝑅 symbolize current state and 
current control respectively. 

2.3.  Rolling optimization 

The original thought of Moving Horizon Estimation (MHE) is to give a solution to a specific 
optimization problem during each time step using the information at the current moment t to obtain the 
optimal control policy from the current moment to sometime in the future and to execute the first control 
input of the control horizon, also known as the optimal input. At time t+1, the information at the current 
moment is reused to update the optimization problem, obtain the optimal control policy for the prediction 
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horizon, and execute the first control input, and so on iteratively, to realize the real-time control and 
optimization of the system state. 

𝐽 = ∑ 𝑤𝑦(𝑥𝑖 − 𝑦𝑖)2 + ∑ 𝑤𝑝𝑖∆𝑝𝑖
2

𝑁

𝑖=1

𝑁

𝑖=1

(2) 

2.4.  Error correction 
Autonomous navigation measurement errors are usually one of the major factors affecting the state 

estimation accuracy. Measurement errors are generally categorized into random and systematic errors, 
which can generally be eliminated by means of weighted averaging or filters, whereas systematic errors, 
as a significant bottleneck to improve accuracy, are generally resolved by mounting errors and 
measurement biases. The errors are eliminated at the technical level by modeling-compensation. Among 
the modeling methods broadly include geocentric orientation systematic error modeling method [6], 
spatial geometric phase mapping model [7], and Fourier transform modeling [8]. And the main 
compensation methods are information-assisted correction, on-orbit correction of systematic errors 

based on state separation estimation, compensation methods for error distribution estimation, and self-
correction methods for systematic errors. 

3.  MPC classification 

The main focus of this chapter is centered around an overview of parametric model-based algorithms 
and nonparametric model-based algorithms, as well as their use in the aerospace field. 

3.1.  Model algorithm control 
Model algorithm control is a class of predictive control algorithms proposed by Richalet and Mehra et 
al. in the late 1970s, based on impulse response and consisting of three components: an internal model, 
a reference trajectory and a control algorithm. 

3.1.1.  Predictive model. For a linear system, if the sampling values𝑥1,  𝑥2, … , 𝑥𝑁  of the unit impulse 

response are known, the predictive model description of the system can be approximated by a finite term 
convolution using the discrete convolution formula: 

𝑦𝑀(𝑘 + 𝑖) = ∑ 𝑥(𝑗) ∗ 𝑢(𝑘 + 𝑖 − 𝑗)

𝑁

𝑗=1

(3) 

3.1.2.  Reference track. The desired output of the control system in MAC is specified by a reference 

trajectory starting from the actual output 𝑦(𝑘) at the present time and smoothly overshooting to the set 

value 𝑦𝑠𝑝, which can improve the system robustness. At moment k, the future reference trajectory is 

represented by 𝑦𝑟(𝑘 + 𝑖). and there are 

𝑦𝑟(𝑘 + 𝑖) = (1 − 𝛼 𝑖)𝑦𝑠𝑝 + 𝛼 𝑖𝑦(𝑘) (4) 

Where 𝛼 𝑖 is the smoothness coefficient and 0 < 𝛼 𝑖 < 1,𝑦𝑠𝑝is the target constant. 

3.1.3.  Rolling optimization. The following optimization criterion is used: 

𝑚𝑖𝑛𝐽(𝑘) = ∑ 𝑞𝑖[𝑦𝑝(𝑘 + 𝑖) − 𝑦𝑟(𝑘 + 𝑖)]2 + ∑ 𝑟𝑗𝑢2(𝑘 + 𝑗 − 1)

𝑀

𝑗=1

𝑃

𝑖=1

(5) 

where 𝑃 and 𝑀 represent predictive horizon and control horizon respectively. Generally, M ≤ P; qi,rj  

are the output tracking weighting coefficients and input weighting coefficients, respectively, and 

yp(k + i) is the predicted output  
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3.1.4.  Feedback correction. A feedback correction is introduced for the yp(k + i) summation. 

𝑦𝑝(𝑘) = 𝑦𝑀(𝑘) + ℎ ∗ 𝑒(𝑘) (6) 

Expressed as a matrix, then where 

𝑦𝑝(𝑘) = [𝑦𝑝(𝑘 + 1), … , 𝑦𝑝(𝑘 + 𝑃)]
𝑇

(7) 

ℎ = [ℎ1, … ℎ𝑃]𝑇 (8) 

𝑒(𝑘) = 𝑦(𝑘) − 𝑦𝑀(𝑘) = 𝑦(𝑘) − ∑ 𝑥𝑗 ∗ 𝑢(𝑘 − 𝑗)

𝑁

𝑗=1

(9) 

h is the matrix of feedback coefficients, which is a constant. 

3.2.  Dynamic matrix control 
Dynamic matrix control was also proposed by Cutler in the late 1970's based on the step response. DMC 
is suitable for stable linear systems, and its use is not affected by time delay or non-minimum phase 
characteristics in the dynamics of the system. Due to its use of discrete coefficients of the step response 
and the multi-step prediction technique, it can effectively solve the time delay problem and improve the 

system error. The specific operation is the same as MAC. 

3.3.  Generalized Predictive Control. Clarke researched and published the Generalized Predictive 
Control in the late 1980s based on time series modelling and online identification. In the previous decade 
or so, the resulting self-correctors have been successfully applied in practice. However, for the process 
of variable time delay, variable order and poop parameter, the effect is not satisfactory. The hotspot of 

the era thus becomes the development of self-correctors with robustness. It possesses the consideration 
of control increment weighting in the objective function; remote forecasting using the output; the 
introduction of the concept of control time domain length and the recursive solution of the Diophantine 
equation. 

3.3.1.  Predictive model. GPC uses CARIMA model as a forecasting model, i.e., Controlled Auto-

Regressive Integrated Moving-Average model, which can be represented as: 

𝐴(𝑧−1)𝑦(𝑘) = 𝐵(𝑧−1)𝑢(𝑘 − 1) +
𝐶(𝑧−1)𝜉(𝑘)

∆
(10) 

Where 𝐴(𝑧−1),𝐵(𝑧−1),𝐶(𝑧−1) are 𝑛, 𝑚 and  𝑧−1 polynomials of 𝑛 respectively,∆= 1 − 𝑧−1; and 

𝑦(𝑘) , 𝑢(𝑘)  and 𝜉(𝑘) represent the outputs, inputs, and white noise sequences with zero mean, 

respectively. It is worth noting that the vast majority of scenarios will have 𝐶(𝑧−1) for simplicity.  

3.3.2.  Rolling optimization. 

𝑚𝑖𝑛𝐽(𝑘) = ∑[𝑦(𝑘 + 𝑖) − 𝑦𝑟(𝑘 + 𝑖)]2 + ∑ 𝑟𝑖𝑢2(𝑘 + 𝑖 − 1)

𝑚

𝑖=1

𝑛

𝑖=1

(11) 

where 𝑚 and n are referred to control horizon and predictive horizon (𝑚 ≤ 𝑛); 𝑟𝑖 = 𝜆(constant), 𝑦𝑠𝑝is 

the target constant, and 

𝑦𝑟(𝑘 + 𝑖) = (1 − 𝛼 𝑖)𝑦𝑠𝑝 + 𝛼 𝑖𝑦(𝑘) (12) 

Then introduce Diophantine equation 

1 = 𝐸𝑖(𝑧−1)𝐴(𝑧−1)∆ + 𝑧−𝑖𝐹𝑖(𝑧−1) (13) 

With combining equation (2.8) and equation (2.11), then the equation will be 
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𝑦(𝑘 + 𝑖) = 𝐸𝑖 (𝑧−1)𝐵(𝑧−1)∆𝑢(𝑘 + 𝑖 − 1) + 𝐹𝑖(𝑧−1)𝑦(𝑘) + 𝐸(𝑧−1)𝜉(𝑘 + 𝑖) (14) 

Let 

𝐺𝑖(𝑧−1) = 𝐸𝑖(𝑧−1)𝐵(𝑧−1) (15) 

So that 

𝐺𝑖(𝑧−1) = 𝑥0 + 𝑥1𝑧−1 + ⋯ + 𝑥𝑖−1𝑧−𝑖+1 + 𝑥𝑖𝑧−𝑖 (16) 

Eventually,  

𝑦(𝑘 + 𝑖) = 𝐺𝑖(𝑧−1)∆𝑢(𝑘 + 𝑖 − 1) + 𝐹𝑖(𝑧−1)𝑦(𝑘) + 𝐸(𝑧−1)𝜉(𝑘 + 𝑖) (17) 

3.3.3.  Feedback correction. In the derivation of GPC, the calculation of feedback is not explicitly given 
though. However, during the rolling optimization process, the system and the actual situation must agree 
as much as possible. This then means that at each step of the control, it is still necessary to detect the 
difference between the calculated value and the factual output. This is necessary to maximize the 
robustness of the model when there is a large uncertainty in the system. 

4.  System modelling 

MPC in aerospace, unlike other industrial domains, the realizability of MPC depends heavily on the 
accuracy of the model, the numerical properties of the solver, the cost and performance of the spacecraft, 
and the flexibility of the control problem formulation. Therefore, the modeling of MPC systems needs 
to be subdivided accordingly in different refinements. The main cornerstones of today's aerospace 
modeling are dynamics and kinematics models. Among them, the kinematic model calculates the 

position, velocity, and acceleration of the system; while the dynamics model takes into account the input 
or output moments, i.e., factors such as inertia, mass, and friction, while considering the state of motion 
from the system. There are two basic models and five mainstream aerospace models, namely, linear 
model and nonlinear model, where the former one can be further divided into linear time-invariant (LTI), 
linear time-varying (LTV), linear parameter-variable (LPV) and Piecewise affine system (PWA) [1]. 

4.1.  LTI 

Linear time-invariant systems are first described separately here. In the field of autonomous spacecraft 
navigation, static systems are less considered, so only the relationship between dynamic and linear 
systems is discussed here. A dynamic system (memory system) that satisfies the requirements of a linear 
system must satisfy three conditions, namely: satisfy decomposability, zero-state linearity, and zero-
input linearity. 

𝑦 = 𝑥(𝑡) + 𝑢(𝑡) (18) 

That is, in this equation, if the equation is decomposable and remains linear when x(t), which 
represents the input, is zero, and remains linear when u(t), which represents the state, is zero, then the 
dynamical system can be regarded as linearity. 

A time-invariant system, on the other hand, is one in which the output signal of the system is related 
only to the shape of the input signal and not to time. If the input delay time of the system is equal to the 
zero-state response delay time, the system can be recognized as a time-invariant system, i.e:  

𝑥𝑘 → 𝑢𝑘 (19) 

𝑥𝑘+∆𝑘 → 𝑢𝑘+∆𝑘 (20) 

LTI systems possess three important characteristics: Homogeneity, Superposition and Time 
invariance. They are Since linear systems are solvable, it is achievable to build accurate algebraic models 
and thus predict the state of the system from the solution of the model. The properties of the system do 
not vary in time with time and there is a linear relationship between the output of the system and its 
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inputs. This means that the output response of the system is stable and predictable for a given input 
signal and the properties of the system such as frequency response and transfer function are constant. 

Among these five models, LTI is the simplest and most straightforward one. It appears in aerospace 
applications to simplify linear dynamics or approximate results about complex nonlinear structures. 

However, it is also characterized by the fact that it can only be locally accurate. Currently the system is 
widely used at the level of flight control systems, signal processing and inertial navigation systems. 

Previously, the LTI system was applied to autonomous navigation of satellites stabilized in orbit [9]; 
it is worth noting that the paper [9] appropriately transforms the time-varying system into a time-
invariant one and proves the effectiveness of the method; 

4.2.  LTV 

An LTV system is one in which the properties of the system change over time, but the input-output 
relationship of the system remains linear. Such systems can describe time-varying physical systems 
whose properties and behavior can change over time but can still be analyzed and designed using linear 
control theory. 

The model can be expressed as 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 (21) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 (22) 

Rocket dynamics, time-variable linear circuitry, satellite systems and pneumatic actuators are among 
the applications of time-variable linear systems. In adaptive and standard gain schedule systems, linear 
time-varying structures are commonly assumed. 

Currently LTV systems are also widely used in autonomous navigation systems. In satellite attitude 

simulation systems, neural network predictive time-varying models based on minimum variance 
optimization algorithms exist [10]. Moreover, trajectory tracking for helicopters [11]. 

4.3.  LPV 
An LPV system is a system whose properties vary with time and parameters. Such systems can describe 
those systems that are affected by external environmental or operational conditions that cause the 

parameters to vary. In LPV systems, it is common to regard the system dynamic properties as one or 
more parameters that can vary with time and environment. 

The model can be expressed as 

𝑥𝑘+1 = 𝐴(𝑝𝑘)𝑥𝑘 + 𝐵(𝑝𝑘)𝑢𝑘 (23) 

𝑦𝑘 = 𝐶(𝑝𝑘)𝑥𝑘 + 𝐷(𝑝𝑘)𝑢𝑘 (24) 

In aerospace, polyhedral models suitable for expressing the behavior of LPV vehicle systems have 
been explored [12]; and flight attitude control [13]. 

4.4.  PWA 
Segmented affine systems are essentially non-smooth, discontinuous and complex nonlinear systems, 

and due to their broad engineering background, they are one of the current research hotspots and 
difficulties in the research region of systems engineering and automatic control. 

Before talking about the segmented affine system, the switching system should be understood first. 
For some complex control systems, the system may be in multiple operating states within its operating 
range, and each operating state has a corresponding dynamics equation, and the dynamics equation 
corresponding to each operating state describes the dynamic behavior of the system in that operating 
state. In addition, the development of multi-controller theory is also an important reason that prompts 
the proposal of switching system. 

On the basis of the switching system, the segmented affine system has been studied and popularized 
by previous researchers. The modeling idea of the segmented affine system is similar to that of the 
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switching system, which is the simplest and the most important one in the hybrid system model. Due to 
the introduction of switching, the structural parameters and modes of the whole system are not fixed, 
and the system motion often corresponds to multiple motion modes, which cannot be described by a 
simple equation of motion, and thus the control of them becomes quite complicated. When the 

subsystems of the switching system are attached with affine constant terms, the switching system is 
extended to a segmented affine system. 

The study of multi-model modeling and control methods based on the "decomposition-synthesis" 
strategy consists of two aspects: firstly, the decomposition of the problem; secondly, the synthesis of the 
solution [14]. The specific tasks can be summarized as follows: (1) divide the whole system into several 
condition intervals according to some decomposition criterion, e.g., based on the range of conditions, 
define the whole range of conditions and the variables used to characterize the condition intervals; (2) 
select the structure of the local models/controllers in each condition interval; (3) identify the parameters 

of the local models/controllers; (4) finally, combine the local models/controllers to derive a solution 
based on some scheduling mechanism or performance index. local models/controllers according to some 
scheduling mechanism or performance index to derive the solution of the original problem. 

A method for predicting unpredictable segmental affine of LTI state-delay systems using saturated 
linear feedback controllers using a robust constrained model is proposed here [15]. 

4.5.  Nonlinear model 

As the most accurate but complex of all models, nonlinear models have a wider range of uses. For 
nonlinear models, MPC is usually expressed using discretization. Models of nonlinear systems can be 
expressed using nonlinear difference equations or nonlinear state space models. These models then need 
to be transformed into discretized models for use in MPC. However, due to their complex nature, one 
still cannot describe them precisely. For example, there are very many kinds of stability describing the 
zeros of nonlinear systems. Arbitrary singular equilibrium points lead to systems with more complex 

convergence situations. In addition, there are no good mathematical description tools for nonlinear 
control systems. Consequently, most of the theories describing nonlinear systems are still under 
development. 

Here is a sample MPC for automobile autopilot with nonlinear style [16]. The paper examines the 
problem of avoiding obstacles for a fully non-linear vehicle model using model predictive control. To 
avoid collision with unknown obstacles, its controller consists the function of generating safe trajectories 
based on the MPC, as well as producing actual control inputs meanwhile. It should be noted that the 

simplification of the vehicle model and the formulation of reasonable assumptions remain a necessary 
step due to the large number of nonlinear calculations. 

5.  Formulation modelling 

The problem formulation mainly includes state and control constraints, cost function, resource 
optimality and controller architecture [1]. In the following, only the cost function and state and control 

constraints are discussed. The optimization problems are always applied to solve for the sequence of 
inputs of control. In this process, the loss function needs to be involved, while resource efficiency 
maximization and control and state constraints need to be considered. When the control signal amplitude 
exceeds the constraints, the closed-loop performance of the system deteriorates rapidly, leading to severe 
output overshoot. So a realistic spacecraft would be physically constrained and would appear in the 
MPC in a constrained attitude. In one paper the implementation of control constraints addressed to the 
maneuvering design for complex underdriven systems modeled as multi-body problems is discussed 

[17]. 

6.  Conclusion 

This paper analyzes the main models and main systems of MPC. In aerospace, each model and algorithm 
has its strengths and weaknesses. Since the specific application may involve state secrets, this paper 
cannot conclude which algorithm or model is more advanced. However, at the system level, the more 

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/33/20230276

248



common measure is to transform most of the nonlinear systems into linear systems and then perform 
roll optimization and error compensation. It can be seen that there is no bottomless gap between most 
of the systems, through reasonable assumptions and summarization of previous research, the system can 
always choose a solution that best suits the current situation by choosing between the amount of 

computation and the accuracy of the system. 
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