
Comparative study of the execution efficiency of Python and

C++——Based on topological sorting

Yuwei Zhang

Gaston Day School, Gastonia, North Carolina, United States, 28056

yuweiwilliam23@gmail.com

Abstract. C++, a compiled language, and Python, an interpreted language, are among those

essential coding languages that function in diverse areas of the current computer industry.

However, different languages have disparate benefits and fit in various circumstances. When

large amounts of data are involved or fast execution speed is required, one should consider which

language performs better. This research mainly aims to find out whether C++ or Python is more

efficient through Topological Sorting, which is utilized to linearize the vertices of a Directed

Acyclic Graph (DAG). In the approach of coding the Topological Sorting algorithm in C++ and

Python and comparing their execution times on each matrix representing a DAG randomly

generated by a Python program, it is concluded that C++ generally has a higher efficiency than

Python.

Keywords: C++, Python, execution efficiency, topological sorting, comparing.

1. Introduction

Topological sorting describes the relationship between the vertices of the graph G or DAG by providing

a linearized sequence of the vertices [1]. First introduced by Kahn, the algorithm can be applied to

arrange activities such that each group of activities can relate to the previous activities in large networks

[2]. Topological sorting plays an essential role in various applications like semantic analysis in compiler

design, management tool Gantt charts, and calculation models determining exchanged power paths in

integrated and sustainable power systems [1, 3].

C++ and Python are two widely used programming languages. In 1980, Bjarne Stroustrup at Bell

Laboratories contributed to the first revolutionary step in moving from C to C++ with improvements on

the imperative features and added constructions to support object-oriented programming [4]. At the

beginning of the 1990s, the Python project was first begun by Guido Van Rossum, entitled BDFL. Since

then, Van Rossum and the Python community have led to the further development of Python by

reviewing and commenting on the Python Enhancement Proposal (PEP) [5]. As a compiled language,

C++ directly converts the source code into machine code, whereas interpreter-based Python needs to

translate the source code into bytecode through an interpreter and then into machine code. Thus, C++

theoretically has higher execution efficiency [6]. Nowadays, the execution efficiency of an algorithm is

super essential, especially when the algorithm is dealing with a large data set of a billion or larger

magnitude. To better understand the difference in efficiency between C++ and Python and to test the

potential special situation in which C++ does not run faster, this study specifically compares the

efficiency of the C++ and Python algorithms through Topological sorting. Both programs are compared

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230288

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

13

by their execution time spent on each randomly generated DAG. This research provides a good

suggestion as to which language is superior when execution efficiency is seriously considered in some

projects.

2. Literature review

One of the previous studies focusing on program energy efficiency studied the influence of the languages,

compiler, and implementation choices on three programs: Fast Fourier Transform, Linked List

Insertion/Deletion, and Quicksort. The results showed that a carefully selected language, optimization

flag and data structure are significant for conserving energy [7].

If an appropriate language is selected carefully, it will also save a lot of execution time. Previous

research used many sorting algorithms including Quicksort, Mergesort, Bubble Sort, Insertion Sort, and

Selection Sort to compare C++ and Python execution efficiency [8, 9]. One researcher implemented the

Selection sort in C/C++, Python, and Rust and collected the execution time. The data displayed that

since the Python language has fewer lines of code, it runs faster and consumes less storage compared to

other two languages [8]. This research introduced a negative relationship between the number of lines

of code and execution efficiency. Another study compared the efficiency of the bubble sort algorithm

and insertion sort algorithm in Rust and Python. It is observed that Python is less efficient than Rust in

both algorithms [10]. So far, comparing C++ and Python efficiency through Topological sorting has not

been found in the preceding study. In this research, the execution efficiency of running Topological

sorting in C++ and Python will be unveiled.

3. Methodology

3.1. Topological sorting algorithm

In order to compare the time efficiency of C++ and Python, two programs are controlled by using the

same Topological Sorting algorithm based on the method as shown in Figure 1: 1. Create a deque dq

and a list (or a vector) L. 2. Insert all vertices with 0 indegree at the back of dq. 3. If dq is empty, return

L. Otherwise, continue. 4. Add the first element k in dq to L. 5. Delete k from dq. 6. Iterate through

vertices. 7. If there is an edge directed from k to the vertices i, subtract 1 from the integer of i. 8. If the

indgree of i is 0, insert i at the back of dq. 9. After the iteration is done, go back to step 3.

Figure 1. Flow chart of topological sorting algorithm.

vector <int> topoSort(vector<vector<int>> matrix, int n){

 deque <int> dq;

 vector <int> results;

 for (int i=0;i<n;i++){

 if (indegree[i]==0) dq.push_back(i);

 }

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230288

14

 while (!dq.empty()){

 int k=dq.front();

 results.push_back (k);

 dq.pop_front();

 for (int i=0;i<n;i++){

 if(matrix[k][i]==1){

 indegree[i]--;

 if (indegree[i]==0) dq.push_back(i);

 }

 }

 }

 return results;

}

3.1.1. Python program: def topological_sort(n,graph)

dq = deque()

 result = []

 for i in range (n):

 if in_degree[i] == 0:

 dq.append(i)

 while len(dq)>0:

 k = dq.popleft()

 result.append(k)

 for i in range (n):

 if graph[k][i]>0:

 in_degree[i] -= 1

 if in_degree[i] == 0:

 dq.append(i)

return result

3.2. Testing sample

To measure the execution time, the clock() function is utilized in C++. By subtracting the start time of

the Topological Sorting from the end time and using CLOCKS_PER_SEC to convert the result into a

number in seconds, the time elapsed by C++ algorithm is obtained. Similarly, time() is imported in

Python in order to gain the elapsed time in the Python algorithm by calculating the time in seconds since

epoch (the point where time starts). The following Python program is used to randomly generate a n*n

matrix that represents a DAG with n vertices. This program generates 3 100*100 matrixes and 2

5000*5000 matrixes. For each matrix, both C++ and Python programs are runed for 50 times, and the

average execution time and Standard Deviation are calculated.

def generate_adjacency_matrix(n):

 matrix = [[0] * n for _ in range(n)]

 for i in tqdm(range(n)):

 for j in range(i + 1, n):

 if not has_path(matrix, j, i):

 matrix[i][j] = random.choice([0, 1])

 return matrix

def has_path(matrix, start, end):

 stack = [start]

 while stack:

 node = stack.pop()

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230288

15

 if node == end:

 return True

 for neighbor in range(len(matrix)):

 if matrix[node][neighbor] == 1:

 stack.append(neighbor)

 return False

4. Findings

Table 1. Execution time of C++ and Python for M1, M2, and M3 DAG with 100 vertices.

 C++ Python C++ Python C++ Python

Average

(s)

0.000781 0.005687 0.000767 0.003768 0.000951 0.001850

STD (s) 0.000049 0.007429 0.000006 0.001570 0.000189 0.000514

Number

of Vertices V

100_M1 100_M1 100_M2 100_M2 100_M3 100_M3

Table 2. Execution time of C++ and Python for M4 and M5 DAG with 5000 vertices.

 C++ Python C++ Python

Average (s) 0.825765 5.280759 0.801024 3.289814

STD (s) 0.014798 0.933097 0.032283 0.476987

Number of Vertices

V

5000_M4 5000_M4 5000_M5 5000_M5

As the V is greater, the average execution time and the Standard Deviation for C++ and Python are also

greater. For a DAG with 100 vertices, the C++ algorithm runs faster than Python (See Table 2). The

execution time of the Python algorithm is much longer than that of C++ for a DAG with 5000 vertices

(See Table 3). Hence, it can be concluded that although the C++ algorithm has 4 more lines of code than

Python, it is still more efficient than Python. This is probably because the time Python wastes on the

procedure of converting the source code into bytecode exceeds the time Python saves from its smaller

lines of code. In addition, the execution time of Python is more unstable due to its larger Standard

Deviation (See Table 2 and Table 3). Indeed, during the testing process, Python sometimes runs for a

long time, even exceeding 7s when V is 5000, while sometimes it runs as quickly as C++ when V is 100.

However, execution times in each run are close to each other in C++ code.

5. Conclusion

In this passage, two different coding languages, C++ and Python, are compared in their time efficiency

to run the Topological Sorting algorithm. For each randomly generated DAG, the results of execution

time are collected. By comparing the average execution time C++ and Python need to run a 100 or 5000

vertices DAG and the average Standard Deviation, it is observed that the efficiency of C++ is greater

than that of Python. However, there are flaws in this paper. First, the tested DAGs are not enough to

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230288

16

reveal that the C++ algorithm is more efficient than Python universally. In other words, more DAGs

with different vertices should be generated and tested. Additionally, in C++ program, a vector is used to

store the sorted vertices, while a list is used in Python. Though the possibly existing difference between

a vector and a list during execution does not probably have a critical impact on the total execution time,

the error of this difference should still be considered.

References

[1] Mohana Lakshmi, J., Suresh, H. N., & Pai, V. K. (2018). Nonlinear Speed Estimator and Fuzzy

Control for Sensorless IM Drive. In Proceedings of First International Conference on Smart

System, Innovations and Computing: SSIC 2017, Jaipur, India (pp. 307-318). Springer

Singapore.

[2] Kahn, A. B. (1962). Topological Sorting of Large Networks. Communications of the ACM, 5(11),

558-562.

[3] M. Soyah, "Exchanged electricity paths calculation in integrated and sustainable power systems

using topological sort," 2021 12th International Renewable Energy Congress (IREC),

Hammamet, Tunisia, 2021, pp. 1-5, doi: 10.1109/IREC52758.2021.9624764.

[4] Sebesta, R. W. (2012). Concepts of Programming Languages - 10th Edition. Pearson Addison

Wesley.

[5] Nosrati, M. (2011). Python: An Appropriate Language for Real World Programming. World

Applied Programming, 1(2), 110-117.

[6] Zehra, F., Javed, M., Khan, D., & Pasha, M. (2020). Comparative Analysis of C++ and Python in

Terms of Memory and Time. Preprints.org. https://doi.org/10.20944/preprints202012.0516.v1.

[7] S. Abdulsalam, D. Lakomski, Q. Gu, T. Jin and Z. Zong, "Program energy efficiency: The impact

of language, compiler and implementation choices," International Green Computing

Conference, Dallas, TX, USA, 2014, pp. 1-6, doi: 10.1109/IGCC.2014.7039169.

[8] Naz, A., Nawaz, H., Maitlo, A., & Hassan, S. M. (2021). Implementation of Selection Sort

Algorithm in Various Programming Languages. International Journal of Advanced Trends in

Computer Science and Engineering, 10(3). https://doi.org/10.30534/ijatcse/2021/1071032021.

[9] Tait, J., Ripke, T., Roger, L., & Matsuo, T. (2018, December). Comparing Python and C++

Efficiency Through Sorting. In 2018 International Conference on Computational Science and

Computational Intelligence (CSCI) (pp. 864-871). IEEE.

[10] Agha, F. A., & Nawaz, H. (2021). Comparison of Bubble and Insertion Sort in Rust and Python

Language. International Journal of Advanced Trends in Computer Science and Engineering,

10(2). https://doi.org/10.30534/ijatcse/2021/761022021.

Proceedings of the 2023 International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/34/20230288

17

