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Abstract. Nowadays, Virtual reality(VR) and Aug- mented reality(AR) have become one of the 

most popular format in many fields, for example video gaming, medical training and even 

aviation. VR and AR technique simulates images in an edge device, it gives an immersive 

experience to the users. AR/VR requires high resolution and high FPS for good experience. 

However, most of the AR/VR devices are made of embedded device due to the limitation of the 

size and weight of the headset. It is hard to render  high quality frames in headset. Many 

popular VR/AR applications utilize the desktop and server to render the frames and transmit the 

frames to VR/AR for display. Data transmission from a more powerful device to the VR/AR 

device requires high transmission speed (1.6GB/s for Oculus quest 2), it is hard to provide the 

bandwidth  with wireless protocol (WIFI/5G). HDMI or DP cable can be applied, but they limit 

the use case of the VR/AR devices. In this paper, we proposed a latency sensitive super 

sampling hardware accelerator for VR/AR devices based on machine learning which can 

significantly reduce the bandwidth requires to  transmit frames to VR/AR. In our experiment, 

the super sampling can deliver high-resolution frames with 25% bandwidth which enable the 

wireless protocal for VR/AR devices. We implemented the accelerators in RTL and synthesis it 

with 130 nm skywater pkd. The power consumption of our accelerator at normal data rate for 

VR/AR devices is 20.97 w and the area is 299.602 mm2. 

Keywords: virtual reality, augmented reality, edge device, deep learning super sampling, 

convolutional neural networks. 

1.  Introduction 

With the advancement of technology, VR/AR has emerged as one of the key development trends. In 

2014, Google made its entry into the VR domain by launching its inaugural VR product, the Google 

Cardboard [1]. In 2021, Facebook announced the metaverse project and change the name to Meta. 

Meta has emphasized that the metaverse will play an important role in the future. According to [2], in 

2025, VR/AR industry will reach 80 billion dollar of business. 

There are lots of research showing VR/AR can be use in various industry, it can improve medical 

treatment level by using a VR device in surgery, it provides better experience and better understanding 

of knowledge to students in education, and VR/AR can provide users with the most immersive gaming 

experience. 

However, the VR/AR today cannot deliver competitive user experience due to the hardware 

capability. VR/AR needs a high resolution and high FPS to provide users a good experience which 

requires a relatively high power graphic processor, but the edge device can’t handle this amount of data 
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and calculations. There are 2 possible solutions for this scenario, firstly, we can use a high 

performance processor like GPU to process the data, but in real life, it is impossible to attach a GPU on 

a VR/AR headsets, the reason of that is a GPU is a relatively high power consumption module, which 

means it produces large amount of heat and also requires very powerful battery in the headset, 

therefore, this possible solution is not likely to be applied in industry. Secondly, problems from the 

first solution can be solved by using a GPU from the host (personal computer) and as long  as we 

transmit the data to the edge device, We can achieve building a VR/AR device in high resolution and it 

provides good experience to the user. However, in a real time system, take Oculus quest 2 as an 

example, it needs a transmission speed of 1.6GB/s for 1 frame with WIFI. It is hard to provide such 

large bandwidth in wireless protocol, the bandwidth of 5G is approximately 1Gb/s [3] and the 

bandwidth of WIFI6 is about , even with 5G or WIFI6, the bandwidth of the communication protocols 

nowadays are not able to provide 1.6GB/s bandwidth. Compression algorithm may not work well in a 

real time system because of the latency with cause a bad experience. This issue can be solved by 

connecting the PC and the edge device with a HDMI/DP cable. 

This paper aims to utilize FPGA technology to develop a CNN accelerator for DLSS (Deep 

Learning Super Sampling) in order to provide a high-resolution and high-frame-rate experience in 

VR/AR environments, 

 

Figure 1. Process of deep learning super sampling. 

while employing a wireless protocol. The initial step in- volves measuring the time difference between 

generating normal 1080p frames and generating 1080p to 4K frames using DLSS like methodology. 

Subsequently, an FPGA based accelerator with equivalent computational power to the DLSS-based 

CNN is constructed to evaluate power consumption, latency, image quality, and other factors impacting 

the user experience. Additionally, machine learning techniques are employed to compress video in 

real-time during the rendering process. 

2.  Background 

2.1.  Virtual Reality(VR) and Augmented Reality(AR) 

VR/AR is a popular topic in lot of areas, for example, many industries have projects in form of VR/AR, 

researches about VR/AR also illustrate how topical it is. Users carry an edge, it can be a smart phone 

or a headset. By using a VR/AR device, users can see the a virtual environment surrounding. However, 

since the edge devices have very limited calculation power, users don’t have the same experience in 

terms of display quality as a personal computer while using a wireless protocol. This problem can be 

solved by using a HDMI cable to transmit data from GPU to the edge device, but cables will lower the 

experience in VR/AR. 

2.2.  Deep Learning Super Sampling(DLSS) 

DLSS generates few frames in lower quality and finally combine to one frame. For example if the 

target resolution is 4K, then DLSS can generate 4 1080p frames, then a pipeline method is applied to 

combine the frames to one 4K frame using a convolutional autoencoder. Technically, we can use GPU 

from our host to generate frames in lower quality, then use a wireless protocol to transmit data to the 

edge devices since the amount of data is reduced, finally use a CNN to combined the frames to a higher 
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resolution frame. The propose of this technique in this paper is to cut the bandwidth requirement to 

meet the 5G/WIFI6 bandwidth. 

2.3.  Systolic array 

Systolic array is an architecture that was introduced in the 1980s. This architecture is often used for 

repetitive computational processes, and instead of using instruction, systolic array uses data flow to 

control the operation. In a systolic array, input data is usually pushed into a shift register, and each 

register has a corresponding operation. When an input data is pushed into the shift  register, the output 

will be obtained after a series of data flows and calculations. 

In this paper, we used 2D systolic array to achieve the flow of data by using vertical and horizontal 

register to complete the computation of convolution. 

3.  Related work 

3.1.  Rendering multi-party mobile augmented reality from edge 

[4] The author implemented VR rendering in an edge device, they designed an AR application and 

rendered images of a virtual earth using the edge device. Base on the data, the performance is 

relatively not high because of the edge device is not powerful enough. 

3.2.  QARC: video quality aware rate control for real- time video streaming via deep reinforcement 

learning 

[5] This paper presents a rate control algorithm called QARC, which aims to obtain higher quality 

images at the lowest possible rate and transmission delay. QARC trains a neural network by using deep 

reinforcement learning( DRL) and selects the bitrate based on the previous video quality and network 

status. 

4.  Architecture 

4.1.  Design Details 

Our goal is to develop an FPGA accelerator capable of executing CNN calculations. This will enable 

us to gather data on the power and area utilization of the accelerator. With this information, we can 

assess the feasibility of deploying the accelerator in real-world practical applications. The top level of 

the entire design is shown in Figure 2, the accelerator is attached to the memory bus as a core 

processor on FPGA 

The entire calculation module consists of three sub- modules, and these three modules are mainly 

responsible for completing convolution. The top module will add the results obtained by the three sub-

modules to get the result of the final output channel. In addition, the top module will also output the 

addresses of the pixels and filter data that need to be loaded to the sub-module. 

Each submodule functions identically. In practical scenarios, a combined total of 3x13 pixel data 

sets will be loaded into the Processing Element (PE). Subsequently, the filter data will be sequentially 

fed into the PE via a shift register, facilitating the required multiplications at their respective positions 

(refer to Figure 3). This process involves pushing filter data into the shift register every three or five 

clock cycles, depending on the filter size. With each submodule comprising 13 columns, it takes  13 

clock cycles for a majority of PEs within the computation module to engage in simultaneous 

computation. This configuration establishes an efficient computational pattern. 

Filter data will undergo a continuous and cyclic push into the shift register. Upon the completion of 

a full cycle of pushing filter data, it signifies the computation of pixel data for those three rows is 

finished. Consequently, when the last filter data is pushed into the shift register, the subsequent cycle 

will involve loading new pixel data into the column where calculations have already been completed. 

To illustrate, if we assume the existence of 10 output channels, the moment the tenth filter is pushed 

into the shift register, the first filter will follow suit, and the PE will receive new pixel data. 
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In our specific design, each filter comprises 8 bits of data. Since every sub-module encompasses 

three rows  of pixels, there exists a total of 24 bits of input within each sub-module. The uppermost 

module allocates these 24 bits across each row. 

The design maintains a fixed sequence for filter appearance and data arrangement. As a result, when 

loading new pixel data, the vertical shift register is employed. This causes the new pixel data to load 

into the bottom row, simultaneously shifting the original pixel data upwards by one step. 

To enhance efficiency, we aim to maximize the work- load of each computing unit within a single 

clock cycle. Consequently, we need to allocate data simultaneously to each computing unit. In order to 

achieve this objective, the filter data should be evenly divided among all the computing units. After 

each computing unit completes the calculation of all the allocated data, the new uncalculated filter data 

will be read and calculated. When a computing unit completes 70 readings and calculations, the result 

of the convolution of the first layer will also be obtained. 

In this project, we can take the size of 2K to tolerant multiply CNN configuration and double 

buffering, so as to achieve efficient operation of reading data while computing. In addition, each 

computing sub-unit also needs an extra SRAM to store the next row of pixel data. Because the pixel 

data does not need to be reused and the reading cycle is shorter than that of the filter data, we do not 

need to allocate additional SRAM to each computing sub-unit to complete the operation of computing 

while reading the pixel data. As we mentioned in above, each calculation module has 3 sub-modules. 

Therefore, we  allocated a total of 9 SRAMs to each calculation module. 

 

 

Figure 2. High level modules. 

 

Figure 3. Sub-module design. 

5.  Methodology 

5.1.  Determine the number of computing units 

By estimating the amount of calculation, we can determine the number of computing units are needed 

to complete the reconstruction of a 1080P image. 

We perform an estimation of the overall computation load of the CNN model in [5]. To illustrate, 

let’s consider the first layer with 3 input channels, 64 filters, an input image size of 1076x1916 pixels, 

and a filter dimension of 5 5. As a result, we calculate that the first layer necessitates  accomplishing 

approximately 5.937 1012calculations. 
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Importantly, following the completion of Convolution for the first three layers, the Neural Network 

will apply maxpooling to the output of each layer. For instance, 

upon the completion of Convolution for the first layer, the output image dimensions would be 

1076x1916. After applying maxpooling, the dimensions would be reduced to 538 958. This 

transformed output serves as the input for the second layer. 

If we want to calculate the number of required computing units, we also need to know the 

computing power of the computing unit. There are 13*9 ALUs in the design of each computing unit 

mentioned above. If we assume that the input filter is 3*3, it can be concluded that the computing unit 

can perform calculations on 4 input filters at the same time, and thus the calculation amount that can be 

completed by one computing unit  in one clock cycle is: filter size = 108. we use a clock with a 

frequency of 1GHz to synthesize, so the computing unit can complete 1.08*1011 operations in 1 second. 

By dividing the total calculation amount of the 4 layers by the calculation amount that the computing 

unit can complete in 1 second, we get the total number of computing units required to complete the 

operation. Based on the earlier calculation to , where we determined a requirement of approximately 70 

calculation modules, dividing the filter data into 70 equal parts would result  in a size of 686B for 

each partition. 

5.2.  Power and area of computing units 

We implement the computing units in System Verilog to estimate the power and area of the design. 

Then we simulate them with testbench to verify the functionality of the computing units and synthesis 

the design with 130nm technology. Once we determine the number of calculation modules needed to 

achieve a frame rate of 60FPS, we can derive the total power and area to keep the throughput of our 

design goal. 

We ascertain the necessary size of Static Random Access Memory (SRAM) for each computing unit. 

In our architectural blueprint, SRAM serves as storage for both filter data and the subsequent pixel row 

among the three consecutive rows. Hence, our initial task involves identifying the predominant layer 

dictating the SRAM size, given that our SRAM dimensions are typically determined by the data 

requiring the greatest storage capacity. In our specific design, it becomes evident that the primary 

convolutional layer holds dominance, amounting to 48,000 bytes for filter data. 

We use Cacti [6] to estimate the power and area of SRAMs in 65nm technology. Each sub-module 

has a 24- bit input, so we choose to use SRAM with a block size of 24, because each computing unit 

can complete the calculation of 3 input channels, and the input of each channel is 8 bits of filter data 

and pixel data. 

6.  Results 

By changing the cache size and block size, we got some simulation parameters about the power and 

area of SRAM, and we recorded it in the table II. By simulating the power and area of SRAMs with 

cache size = 2048, block size = 2, we get the result that SRAMs occupy a total of 5.076w of energy 

and an area of 41.766mm2. 

Analyzing measurement data from Cacti [6] reveals that simulating SRAM using a cache size of 

2048 shows that the Block Size has minimal to no impact on Power and Area. This finding is 

particularly evident when the block size is set to 24 and the cache size remains at 2048. Under these 

conditions, the energy consumption per read is approximately 0.00805702nJ, and the corresponding 

Area is approximately 0.0662951mm2. 

Table 1. CNN-calculations. 

 layer 1 layer 2 layer 3 layer 4 

#calculations 5.937*1012 1.133*1012 2.801*1011 3.419*1010 
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I simulated the power and area of a single computing unit, each occupy 101.296 mw of power and 

1447353 um2 of area. The total power and area of the acclerator can be obtained by calculating the 

number of computing units required for different CNN models, as shown in Figures 4 and 5. 

I chose to use a CNN model with 64 filters and10 input channels, which requires approximately 70 

computational units. With this setting, the total power consumption of the accelerator is 20.968 W and 

the area is 299.603 mm2. 

The power and area is significant as an accelerator. However, as we are using 130nm technology. 

The power and area will be much smaller with technology scaling. 

Table 2. Sram power and area, cache size = 2048, block size = 24. 

 power(w) Area(mm2) 

One SRAM 8.057*10−3 0.0662951 

SRAM in total 5.076 41.766 

Accelerator 20.968272 299.602071 

SRAM and accelerator 26.044 341.368 

7.  Conclusion 

In this work, we present a machine learning-based latency-sensitive super sampling hardware 

acclerator for 

 

Figure 4. Accelerator power for various CNN model. 

 

Figure 5. Accelerator area for various CNN model. 

VR/AR devices that dramatically reduces the bandwidth required to transmit frames to VR/AR, and 

explore the feasibility of the accelerator in reality by calculating the number of computing units 

required for various CNN models to estimate the overall power consumption and area of the 

accelerator. 

Reducing bandwidth means that people can have a better experience on VR/AR, and usage 

scenarios that sacrifice the image quality or wireless functionality will be addressed. 
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In this paper, the experimental results show that it is possible to solve such problems, and although 

there is a problem of excessive power and area of the final hardware, the power and area would be 

greatly reduced if a more advanced technology is used instead of the 130nm technology used in this 

paper. 
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