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Abstract: Accelerating the development of cold chain logistics for agricultural products is not 

only an objective requirement for the development of agricultural product circulation but also 

a necessary demand to promote rural revitalization and upgrade agricultural consumption. 

Addressing the evolutionary problems of cold chain transportation in uncertain environments, 

this study considers the actual stochastic disturbances in the cold chain supply chain system, 

introducing Gaussian white noise to reflect the random perturbations experienced during the 

evolution of the cold chain. A three-party stochastic evolutionary game model is established 

involving farmers, logistics enterprises, and government regulatory authorities. Based on this 

model, numerical simulation analysis is conducted to explore the effects of different factors 

such as the intensity of random disturbances and the loss transfer coefficient on the fluctuation 

of strategic choices of the entities and the convergence speed to a stable state during evolution. 

Finally, combining the results of numerical simulation, relevant policies and 

recommendations are proposed to provide insights and guidance for the development of cold 

chain logistics in agricultural products. 

Keywords: Cold Chain Logistics, Agricultural Supply Chain, Stochastic Evolutionary Game 

1. Introduction 

Against the backdrop of rural revitalization, cold chain logistics, which plays a crucial role in 

promoting agricultural product sales and driving agricultural development, has become a focal point 

of attention across various sectors of society. The issuance of the "14th Five-Year Plan for the 

Development of Cold Chain Logistics" by the State Council Office at the end of 2021 not only 

emphasizes the strategic importance of cold chain logistics development but also signals the nation's 

commitment to vigorously promote its development within the context of the new development 

paradigm. Despite the gradual development of cold chain logistics in China, the industry is still in its 

early stages, facing numerous challenges that hinder its ability to meet the growing demand for 

agricultural products [1]. 

Numerous domestic and international scholars have conducted extensive research around the 

theme of this paper, primarily focusing on: (1) Optimization of strategic interactions between 

participants in cold chain logistics. Zhu Lilong and Guo Pengfei, based on game theory, established 

both pure strategic and mixed strategic game models between the government and cold chain food 
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enterprises. They explored the game relationship between the two and analyzed their optimal strategic 

choices under different scenarios [2]. Addressing the prevalent issue of information asymmetry in the 

fresh agricultural product market, Xu Yaoqun et al. constructed an evolutionary game model for 

online fresh agricultural product network stores and logistics service providers under the online 

shopping model [3]. (2) Evolutionary game models involving three participants in cold chain logistics. 

Li Chunfa et al. focused on the supply chain involving two agricultural product e-commerce platforms, 

self-operated cold chain logistics of e-commerce platforms, and third-party cold chain logistics 

providers. They developed Stackelberg game models for competition between the two e-commerce 

platforms and an evolutionary game model for the selection of cold chain logistics modes by the two 

e-commerce platforms [4]. Zhang Yuehua et al. examined the cold chain logistics platform ecosystem 

as a whole, elucidating the complex interactions among its components. They studied the impact of 

dynamic cooperative relationships among system entities on the evolution of the cold chain logistics 

platform ecosystem from the perspective of evolutionary games [5]. (3) Stochastic evolutionary 

games involving three participants. Yang Yaohong et al. introduced Gaussian white noise as a random 

disturbance into the evolutionary game, exploring quality management issues in the construction 

project supply chain [6]. Addressing manipulation phenomena in the application process for high-

tech research and development, Li Junqiang et al. constructed a three-party stochastic evolutionary 

game model and simulated the impact of key variables on the strategic choices of participating entities 

[7]. 

From the above, it is evident that early research on cold chain logistics game optimization 

primarily focused on pairwise interactions between government, enterprises, and third-party 

inspection agencies. As research deepened, attention gradually shifted to multi-agent collaborative 

optimization from the perspective of evolutionary games to better align with real-world scenarios. 

Moreover, considering that evolutionary games are susceptible to uncertainties such as individual 

cognition, risk preferences, and environmental factors, the introduction of stochastic systems into 

multi-agent evolutionary games is gaining increasing attention from scholars both domestically and 

internationally. However, existing research has mainly concentrated on areas such as technology 

research and development, construction, and food safety and regulation. Therefore, establishing a 

three-party game model involving farmers, logistics enterprises, and government regulatory 

authorities holds significant importance for the development of cold chain logistics in agricultural 

products. 

2. Model Assumptions and Construction 

Cold chain transportation involves a dynamic game optimization process with multiple participants. 

Specifically, it can be described as follows: (1) To ensure the quality and freshness of agricultural 

products for subsequent transportation, farmers, who serve as the "first mile" in agricultural cold 

chain logistics, need to conduct pre-cooling processing on harvested agricultural products. (2) Acting 

as the transportation party linking farmers and consumers, logistics enterprises adjust and monitor the 

temperature and humidity throughout the transportation process. This requires the establishment of 

sound cold chain facilities and the construction of an intelligent cold chain logistics information 

platform. (3) Government regulatory departments supervise farmers and logistics enterprises to 

promote the development of the cold chain. 

However, due to the generally high purchase cost of cold chain facilities and limited awareness of 

cold chain among farmers, farmers and logistics enterprises seeking to maximize their own interests 

may choose not to invest in cold chain. Additionally, in the era of new media, public opinion and 

reputation can lead to varying degrees of regulatory leniency. 
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Figure 1: Supply Chain Participant Relationships 

2.1. Basic Model Assumptions 

(1) In the game model, the three parties choose strategies based on their own preferences. It is 

assumed that the probability of farmers choosing regular processing is𝑥(0 ≤ 𝑥 ≤ 1) , and the 

probability of pre-cooling processing is 1 − 𝑥 . The probability of logistics enterprises adopting 

regular transportation is 𝑦(0 ≤ 𝑦 ≤ 1) , and the probability of adopting cold chain logistics 

transportation is 1 − 𝑦 . The government regulatory department's probability of choosing strict 

regulation is 𝑧(0 ≤ 𝑧 ≤ 1), and the probability of choosing lenient regulation is 1 − 𝑧. 

(2) The basic income for farmers is 𝑅𝑓, and the cost for adopting pre-cooling or regular processing 

is 𝐶𝑓ℎ and 𝐶𝑓𝑙(𝐶𝑓ℎ > 𝐶𝑓𝑙). The basic income for logistics enterprises is 𝑅𝑒, and the cost for adopting 

cold chain or regular logistics transportation is 𝐶𝑒ℎ and 𝐶𝑒𝑙(𝐶𝑒ℎ > 𝐶𝑒𝑙). The social benefit brought by 

adopting cold chain technology for transportation is 𝑉𝑔. The additional income when farmers adopt 

pre-cooling processing and logistics enterprises adopt cold chain transportation is Δ𝑅. 

(3) Under strict government regulation, rewards are given to farmers adopting pre-cooling 

processing and logistics enterprises adopting cold chain transportation, denoted by 𝐺𝑓、𝐺𝑒 . For 

farmers adopting regular processing and logistics enterprises employing regular transportation: 

Impose fines𝐹 and require them to upgrade to cold chain transportation. After the upgrade, the quality 

of agricultural products is assumed to be the same as when cold chain resources are invested. The 

cost of cold chain upgrading is denoted as 𝛼 times the cost, i.e., 𝛼𝐶𝑓𝑙 and 𝛼𝐶𝑒𝑙. In addition, logistics 

enterprises utilizing cold chain transportation will inspect the agricultural products of farmers and 

demand that farmers who did not adopt pre-cooling processing upgrade to cold chain transportation. 

In this case, the upgrading cost for farmers is denoted as 𝛼𝐶𝑓𝑙. The cost for the government regulatory 

department to impose strict supervision is denoted as 𝐶𝑔. 

(4)Under lenient government regulation, with no knowledge of supply chain decision choices, 

there are no rewards or penalties. If farmers or logistics enterprises do not adopt pre-cooling 

processing or cold chain transportation, it leads to a reputation loss 𝐷𝑔 . Additionally, a certain 

transmission coefficient 𝛽 transfers the loss to farmers and logistics enterprises. 

(5)When neither farmers nor logistics enterprises invest in cold chain resources, and the 

government chooses lenient regulation, the probability of damage to the quality of agricultural 

products is maximum, assumed to be 1. If one party invests in cold chain resources, the probability 

of damage to the quality of agricultural products is reduced with discount factors 𝐿𝑓 and 𝐿𝑒. If both 

farmers and logistics enterprises invest in cold chain resources, the probability of damage to the 

quality of agricultural products is minimized, assumed to be 0. 

2.2. Construction of the Payoff Matrix 

Based on the above description of the three-party game and the related assumptions, the payoff matrix 

for the game is presented in Table 1: 
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Table 1: Payoff Matrix for the Three-Party Game Involving Farmers, Logistics Enterprises, and 

Government Regulatory Department 

Logistics Enterprises 
Government Regulatory Department 

Lenient Regulation(𝑧) Strict Regulation(1− 𝑧) 

F
arm

ers 

 

 

 

Regular Processing (𝑥) 

Regular Transportation (𝑦) 

𝑅𝑓-𝐶𝑓𝑙-𝛽𝐷𝑔， 

𝑅𝑒-𝐶𝑒𝑙-𝛽𝐷𝑔， 

-𝐷𝑔 

𝑅𝑓-(1+ 𝛼)𝐶𝑓𝑙-𝐹， 

𝑅𝑒-(1+ 𝛼)𝐶𝑒𝑙-𝐹， 

𝑉𝑔-𝐶𝑔 + 2𝐹 

Cold Chain Transportation 

(1− 𝑦) 

𝑅𝑓-(1+ 𝛼)𝐶𝑓𝑙-𝐿𝑓𝛽𝐷𝑔， 

𝑅𝑒-𝐶𝑒ℎ-𝐿𝑓𝛽𝐷𝑔， 

𝑉𝑔-𝐿𝑓𝐷𝑔 

𝑅𝑓-(1+ 𝛼)𝐶𝑓𝑙-𝐹， 

𝑅𝑒-𝐶𝑒ℎ + 𝐺𝑒， 

𝑉𝑔-𝐶𝑔 + 𝐹-𝐺𝑒  

 

 

 

Pre-cooling Processing 

(1− 𝑥) 

Regular Transportation (𝑦) 

𝑅𝑓-𝐶𝑓ℎ-𝐿𝑒𝛽𝐷𝑔， 

𝑅𝑒-𝐶𝑒𝑙-𝐿𝑒𝛽𝐷𝑔， 

𝑉𝑔-𝐿𝑒𝐷𝑔 

𝑅𝑓-𝐶𝑓ℎ + 𝐺𝑓， 

𝑅𝑒-(1+ 𝛼)𝐶𝑒𝑙-𝐹， 

𝑉𝑔-𝐶𝑔 + 𝐹-𝐺𝑓 

Cold Chain Transportation 

(1− 𝑦) 

𝑅𝑓 + Δ𝑅-𝐶𝑓ℎ， 

𝑅𝑒 + Δ𝑅-𝐶𝑒ℎ， 

𝑉𝑔 

𝑅𝑓-𝐶𝑓ℎ + 𝐺𝑓， 

𝑅𝑒-𝐶𝑒ℎ + 𝐺𝑒， 

𝑉𝑔-𝐶𝑔-𝐺𝑓-𝐺𝑒 

 

Based on the payoff matrix, the expected payoffs 𝑈11,𝑈12, and 𝑈1 for farmers, as well as the 

strategy replication dynamic equations, are derived as follows: 

{

𝑈11 = 𝑦𝑧(𝑅𝑓 − 𝐶𝑓𝑙 − 𝛽𝐷𝑔) + 𝑦(1 − 𝑧)(𝑅𝑓-(1 + 𝛼)𝐶𝑓𝑙-𝐹) + (1 − 𝑦)𝑧[𝑅𝑓-(1 + 𝛼)𝐶𝑓𝑙-𝐿𝑓𝛽𝐷𝑔] + (1 − 𝑦)(1 − 𝑧)[𝑅𝑓-(1 + 𝛼)𝐶𝑓𝑙-𝐹]

𝑈12 = 𝑦𝑧(𝑅𝑓-𝐶𝑓ℎ-𝐿𝑒𝛽𝐷𝑔) + 𝑦(1 − 𝑧)(𝑅𝑓-𝐶𝑓ℎ + 𝐺𝑓) + (1 − 𝑦)𝑧(𝑅𝑓 + Δ𝑅-𝐶𝑓ℎ) + (1 − 𝑦)(1 − 𝑧)(𝑅𝑓-𝐶𝑓ℎ + 𝐺𝑓)

𝑈1 = 𝑥𝑈11 + (1 − 𝑥)𝑈12

 

𝐹(𝑥) =
𝑑𝑥

𝑑𝑡
= 𝑥(𝑈11 − 𝑈1) = 𝑥(1 − 𝑥)[𝐶𝑓ℎ − 𝐶𝑓𝑙 − 𝐹 − 𝐺𝑓 − 𝐶𝑓𝑙𝛼 + 𝑧(𝐹 + 𝐺𝑓 − 𝑅 − 𝐷𝑔𝐿𝑓𝛽) + 𝑦𝑧(𝑅 + 𝐶𝑓𝑙𝛼 − 𝐷𝑔𝛽 + 𝐷𝑔𝐿𝑒𝛽 +

𝐷𝑔𝐿𝑓𝛽)]   (1) 

Based on the payoff matrix, the expected payoffs 𝑈11,𝑈12, and 𝑈1 for logistics enterprises, as well 

as the strategy replication dynamic equations, are derived as follows: 

{

𝑈21 = 𝑥[𝑧(𝑅𝑒-𝐶𝑒𝑙-𝛽𝐷𝑔) + (1 − 𝑧)(𝑅𝑒-(1 + 𝛼)𝐶𝑒𝑙-𝐹)] + (1 − 𝑥)[𝑧(𝑅𝑒-𝐶𝑒𝑙-𝐿𝑒𝛽𝐷𝑔) + (1 − 𝑧)(𝑅𝑒-(1 + 𝛼)𝐶𝑒𝑙-𝐹)]

𝑈22 = 𝑥[𝑧(𝑅𝑒-𝐶𝑒ℎ-𝐿𝑓𝛽𝐷𝑔) + (1 − 𝑧)(𝑅𝑒-𝐶𝑒ℎ + 𝐺𝑒)] + (1 − 𝑥)[𝑧(𝑅𝑒 + Δ𝑅-𝐶𝑒ℎ) + (1 − 𝑧)(𝑅𝑒-𝐶𝑒ℎ + 𝐺𝑒)]

𝑈2 = 𝑦𝑈21 + (1 − 𝑦)𝑈22

 

𝐹(𝑦) =
𝑑𝑦

𝑑𝑡
= 𝑦(𝑈21 − 𝑈2) = 𝑦(1 − 𝑦)[𝐶𝑒ℎ − 𝐶𝑒𝑙 − 𝐹 − 𝐺𝑒 − 𝐶𝑒𝑙𝛼 + 𝑧(𝐹 + 𝐺𝑒 − 𝑅 + 𝐶𝑒𝑙𝛼 − 𝐷𝑔𝐿𝑒𝛽) + 𝑥𝑧(𝑅 − 𝐷𝑔𝛽 + 𝐷𝑔𝐿𝑒𝛽 +

𝐷𝑔𝐿𝑓𝛽)]   (2) 

Based on the payoff matrix, the expected payoffs 𝑈11,𝑈12, and 𝑈1 for the government regulatory 

department, as well as the strategy replication dynamic equations, are derived as follows: 

{

𝑈31 = 𝑥𝑦(−𝐷𝑔) + 𝑥(1 − 𝑦)(𝑉𝑔-𝐿𝑓𝐷𝑔) + (1 − 𝑥)𝑦(𝑉𝑔-𝐿𝑒𝐷𝑔) + (1 − 𝑥)(1 − 𝑦)𝑉𝑔
𝑈32 = 𝑥𝑦(𝑉𝑔-𝐶𝑔 + 2𝐹) + 𝑥(1 − 𝑦)(𝑉𝑔-𝐶𝑔 + 𝐹-𝐺𝑒) + (1 − 𝑥)𝑦(𝑉𝑔-𝐶𝑔 + 𝐹-𝐺𝑓) + (1 − 𝑥)(1 − 𝑦)(𝑉𝑔-𝐶𝑔-𝐺𝑓-𝐺𝑒)

𝑈3 = 𝑧𝑈31 + (1 − 𝑧)𝑈32

 

𝐹(𝑧) =
𝑑𝑧

𝑑𝑡
= 𝑧(𝑈31 − 𝑈3) = 𝑧(𝑧 − 1)[−𝐶𝑔 − 𝐺𝑓 − 𝐺𝑒 + 𝑥(𝐺𝑓 + 𝐹 + 𝐷𝑔𝐿𝑓) + 𝑦(𝐺𝑒 + 𝐹 +

𝐷𝑔𝐿𝑒) + 𝑥𝑦(𝐷𝑔 + 𝑉𝑔 − 𝐷𝑔𝐿𝑒 −𝐷𝑔𝐿𝑓)]   (3) 
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3. Construction of Stochastic Evolutionary Game 

Due to the non-negative nature of 𝑥, 𝑦, 𝑧 ∈ [0,1], 1 − 𝑥, 1 − 𝑦 and 1 − 𝑧, which do not affect the 

evolutionary strategy choices of all parties, equations (1), (2), and (3) can be simplified as follows: 

 𝑑𝑥 = 𝑥[𝐶𝑓ℎ − 𝐶𝑓𝑙 − 𝐹 − 𝐺𝑓 − 𝐶𝑓𝑙𝛼 + 𝑧(𝐹 + 𝐺𝑓 − 𝑅 − 𝐷𝑔𝐿𝑓𝛽) + 𝑦𝑧(𝑅 + 𝐶𝑓𝑙𝛼 − 𝐷𝑔𝛽 + 𝐷𝑔𝐿𝑒𝛽 + 𝐷𝑔𝐿𝑓𝛽)]𝑑𝑡  (4) 

 𝑑𝑦 = 𝑦[𝐶𝑒ℎ − 𝐶𝑒𝑙 − 𝐹 − 𝐺𝑒 − 𝐶𝑒𝑙𝛼 + 𝑧(𝐹 + 𝐺𝑒 − 𝑅 + 𝐶𝑒𝑙𝛼 − 𝐷𝑔𝐿𝑒𝛽) + 𝑥𝑧(𝑅 − 𝐷𝑔𝛽 + 𝐷𝑔𝐿𝑒𝛽 + 𝐷𝑔𝐿𝑓𝛽)]𝑑𝑡  (5) 

 𝑑𝑧 = 𝑧[−𝐶𝑔 − 𝐺𝑓 − 𝐺𝑒 + 𝑥(𝐺𝑓 + 𝐹 + 𝐷𝑔𝐿𝑓) + 𝑦(𝐺𝑒 + 𝐹 + 𝐷𝑔𝐿𝑒) + 𝑥𝑦(𝐷𝑔 + 𝑉𝑔 −𝐷𝑔𝐿𝑒 − 𝐷𝑔𝐿𝑓)]𝑑𝑡  (6) 

3.1. Random Disturbance Factors on Entities 

In the actual cold chain system, there is significant uncertainty in the game between farmers, logistics 

enterprises, and government regulatory departments. On one hand, due to differences in cognitive 

abilities, risk preferences, and other factors, game entities may have various possibilities for strategic 

choices. On the other hand, factors such as the biological attributes of agricultural products can also 

influence the strategic choices of entities. Therefore, utilizing stochastic analysis theory, Gaussian 

white noise is introduced to describe the random disturbance factors in the agricultural product cold 

chain system. The modified replicator dynamic equations are then given as follows: 

𝑑𝑥 = 𝑥[𝐶𝑓ℎ − 𝐶𝑓𝑙 − 𝐹 − 𝐺𝑓 − 𝐶𝑓𝑙𝛼 + 𝑧(𝐹 + 𝐺𝑓 − 𝑅 − 𝐷𝑔𝐿𝑓𝛽) 

+𝑦𝑧(𝑅 + 𝐶𝑓𝑙𝛼 − 𝐷𝑔𝛽 + 𝐷𝑔𝐿𝑒𝛽 + 𝐷𝑔𝐿𝑓𝛽)]𝑑𝑡 + 𝜎𝑥(𝑡)𝑑𝜔(𝑡)                (7) 

𝑑𝑦 = 𝑦[𝐶𝑒ℎ − 𝐶𝑒𝑙 − 𝐹 − 𝐺𝑒 − 𝐶𝑒𝑙𝛼 + 𝑧(𝐹 + 𝐺𝑒 − 𝑅 + 𝐶𝑒𝑙𝛼 − 𝐷𝑔𝐿𝑒𝛽) 

+𝑥𝑧(𝑅 − 𝐷𝑔𝛽 + 𝐷𝑔𝐿𝑒𝛽 + 𝐷𝑔𝐿𝑓𝛽)]𝑑𝑡 + 𝜎𝑦(𝑡)𝑑𝜔(𝑡)       (8) 

𝑑𝑧 = 𝑧[−𝐶𝑔 − 𝐺𝑓 − 𝐺𝑒 + 𝑥(𝐺𝑓 + 𝐹 + 𝐷𝑔𝐿𝑓) + 𝑦(𝐺𝑒 + 𝐹 + 𝐷𝑔𝐿𝑒) 

+𝑥𝑦(𝐷𝑔 + 𝑉𝑔 − 𝐷𝑔𝐿𝑒 − 𝐷𝑔𝐿𝑓)]𝑑𝑡 + 𝜎𝑧(𝑡)𝑑𝜔(𝑡)         (9) 

Equations (7), (8), and (9) represent one-dimensional 𝐼𝑡𝑜̂  stochastic differential equations, 

indicating the evolutionary replicator dynamic equations for farmers, logistics enterprises, and 

government regulatory departments after being subjected to random disturbances. Here, 𝜎  is the 

intensity of the random disturbance, and 𝜔(𝑡) is a one-dimensional standard 𝐵𝑟𝑜𝑤𝑛 Wiener process. 

When 𝑡 > 0, ℎ > 0, the incrementΔ𝜔(𝑡) = 𝜔(𝑡 + ℎ) − 𝜔(𝑡) follows a normal distribution 𝑁(0, √ℎ). 

4. Numerical Experiments and Simulations 

To intuitively illustrate the stochastic evolutionary process of the cold chain supply chain, we use 

Matlab R2017b to analyze the impact of relevant parameters on the evolutionary process. Due to the 

inability to directly solve nonlinear 𝐼𝑡𝑜̂ stochastic differential equations, we use Euler's method for 

numerical simulation of the model [6]. Considering the complexity and unavailability of real data, we 

refer to relevant studies such as [6-7]. We set the initial probability choices of all participating entities 

to 0.5 and assign values to other relevant parameters based on satisfying the conditions for the zero 

solution matrix instability, as follows: 𝑅𝑓 = 50, 𝑅𝑒 = 80, Δ𝑅 = 5, 𝐶𝑓ℎ = 15, 𝐶𝑓𝑙 = 6, 𝐶𝑒ℎ = 15, 

𝐶𝑒𝑙 = 6, 𝐶𝑔 = 35, 𝑉𝑔 = 20, 𝐺𝑓 = 8、𝐺𝑒 = 8, 𝐹 = 6, 𝐷𝑔 = 20, 𝐿𝑓 = 0.6, 𝐿𝑒 = 0.3, 𝛼 = 0.1, 𝛽 =

0.5. 
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4.1. Impact of Random Disturbances on the Evolutionary Process 

  
Figure 2: Impact of Disturbance Intensity on 

Farmer Evolution 
Figure 3: Impact of Disturbance Intensity on 

Logistics Enterprise Evolution 

 

Comparing Figures 2 and 3, it can be observed that regardless of the presence of random disturbance 

factors, all entities will evolve to a stable equilibrium strategy set (pre-cooling, cold chain 

transportation, strict regulation). When there is no random interference, the system smoothly evolves 

to a stable equilibrium strategy set, indicating an idealized system. However, with the introduction of 

random disturbance factors, the system shows varying degrees of fluctuations. This is because various 

entities seeking to maximize their interests consider these uncertain factors influenced by internal 

factors such as the cognitive abilities of farmers and the risk preferences of enterprises, as well as 

external factors such as weather and changes in government subsidy policies. This leads to the 

phenomenon of non-uniform actions within the group. 

Government regulatory departments evolve to a stable strategy faster than farmers and logistics 

enterprises. This is because of information asymmetry among the three entities, where government 

regulatory departments hold an advantageous position in the cold chain system, possessing more 

information and resources compared to farmers and logistics enterprises. Leveraging this 

advantageous position allows government regulatory departments to make optimal choices more 

quickly and evolve to a stable strategy at a faster pace. 

4.2. Impact of Random Disturbance Intensity on the Evolutionary Process 

To explore the system's evolutionary process under different random disturbance intensities, we 

make𝜎 = 0.5,2,5 and three scenarios are simulated for analysis, and the system's evolutionary paths 

are shown in Figures 4-6: 

 
 

 

Figure 4: Impact of Disturbance 

Intensity on Farmer Evolution 

Figure 5: Impact of Disturbance 

Intensity on Logistics Enterprise 

Evolution 

Figure 6: Impact of Disturbance 

Intensity on Government 

Evolution 

Proceedings of the 3rd International Conference on Business and Policy Studies
DOI: 10.54254/2754-1169/80/20241578

108



From Figures 4-6, it can be observed that farmers, logistics enterprises, and government regulatory 

departments all exhibit varying degrees of fluctuations under the influence of random disturbance 

factors during the evolutionary process. Ultimately, they evolve to the same strategy set (pre-cooling, 

cold chain transportation, strict regulation) as in the absence of random disturbance factors. This 

indicates that, although the final stable result remains unchanged under the influence of internal 

factors such as risk perception and external factors such as government policies, it does affect the 

process and speed of evolution to stability. 

Comparing Figures 4 and 5: (1) With the increase of random disturbance factors, the predictive 

ability of entities for environmental changes gradually decreases, leading to an increase in the 

amplitude of fluctuations and a slowdown in the speed of evolution to stability. As the game 

progresses, farmers and logistics enterprises gradually adapt to the uncertain environment, reducing 

the impact of disturbance factors, and the proportion of individuals choosing the final strategy (normal 

processing, normal transportation) decreases to 0. (2) Farmers' fluctuations are larger, rising to 0.7723 

at 𝜎 = 5, which is greater than the maximum rise of 0.5862 for logistics enterprises. This indicates 

that farmers in the cold chain transportation system are more susceptible to random factors (3). 

Additionally, farmers evolve to stability faster than logistics enterprises. For example, at 𝜎 = 5, 

farmers tend to stabilize at 𝑡 = 35 , while logistics enterprises remain unstable at 𝑡 = 50 . This 

suggests that farmers are more inclined to invest in the cold chain. 

From Figure 6, it can be observed that government regulatory departments are more inclined to 

choose loose regulation as a stable policy, and the greater the random disturbance intensity, the faster 

government regulatory departments evolve to a stable strategy. This is because increasing random 

disturbance factors represent uncertainty in the environment for government regulatory departments. 

The increase in uncertainty reduces their predictive ability for environmental changes, limiting 

decision-making and slowing down their evolution to a stable strategy. 

4.3. Impact of Loss Transmission Coefficient on the Evolutionary Process 

  

Figure 7: Impact of Loss Transmission 

Coefficient on Farmer Evolution 

Figure 8: Impact of Loss Transmission 

Coefficient on Logistics Enterprise Evolution 

 

From Figures 7 and 8, it can be observed that the speed of evolution to a stable strategy for both 

farmers and logistics enterprises increases with the increase of the loss transmission coefficient 𝛽. 

Additionally, farmers are more sensitive to the impact of the loss transmission coefficient compared 

to logistics enterprises. This is because an increase in 𝛽 means that the penalty for not choosing cold 

chain processing for farmers and not choosing cold chain transportation for logistics enterprises 

increases, prompting them to be more inclined to choose to invest in the cold chain to avoid the high 

penalties imposed by strict government regulation. 
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4.4. Impact of Expenditure Proportion Coefficient for Cold Chain Upgrade on the 

Evolutionary Process 

  

Figure 9: Impact of Expenditure Proportion 

Coefficient for Cold Chain Upgrade on Farmer 

Evolution 

Figure 10: Impact of Expenditure Proportion 

Coefficient for Cold Chain Upgrade on Logistics 

Enterprise Evolution 

 

From Figures 9 and 10, it can be observed that the speed of evolution to a stable strategy increases 

with the increase of the expenditure proportion coefficient for cold chain upgrade 𝛼. Additionally, 

farmers are more sensitive to the impact of 𝛼 compared to logistics enterprises. This is because an 

increase in 𝛼  means that the cost for farmers and logistics enterprises not choosing cold chain 

processing and transportation, respectively, increases. This prompts them to be more inclined to 

choose to invest in the cold chain to avoid the high costs associated with strict government regulation. 

5. Conclusion 

This paper addresses the issue of various random disturbance factors in the cold chain transportation 

supply chain. A 𝐼𝑡𝑜̂  stochastic attack-defense evolutionary game model is established using 

stochastic differential equations to analyze the impact of various random disturbance factors such as 

disturbance intensity and strategy changes on the evolution of attack-defense strategy selection. The 

stability of the strategy selection state is analyzed based on the stability criterion for stochastic 

differential equations. However, this study has certain limitations. For instance, the constructed model 

does not consider the complexity of social network structures, and the unavailability and complexity 

of certain real-world data pose significant challenges to further in-depth research. These aspects need 

attention and resolution in future studies. 
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