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Abstract: This paper conducts a comprehensive time series analysis of new and used car sales 

in the United States, focusing on intrinsic patterns captured by Seasonal AutoRegressive 

Integrated Moving Average (SARIMA) models. SARIMA models are applied to forecast 

sales over the next two years, and select the model based on standards such as Akaike 

Information Criterion with correction (AICc), Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Notably, the ARIMA 

(4, 0, 3) (3, 1, 1) [12] model emerges as the optimal fit for new car sales, displaying superior 

time series fitting and lower errors. For used car sales, the ARIMA (2, 0, 3) (2, 1, 3) [12] model, 

although not the best-fitting, exhibits the lowest prediction errors. Consequently, these 

models are chosen for forecasting. The results suggest a continued upward trajectory in new 

and used car sales in the United States over the next two years, capturing the inherent cyclic 

and seasonal patterns inherent in the data. 
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1. Introduction 

In contemporary society, automobiles stand as one of the most integral and convenient modes of 

transportation, often chosen by many for their travel needs. The analysis and prediction of new and 

used car sales emerge as pivotal elements, carrying substantial implications across diverse economic 

landscapes. Such insights prove invaluable to both suppliers and consumers, fostering a more 

profound comprehension of the automotive sales market dynamics. 

This research delves into the application of SARIMA models, a promising avenue for 

understanding and forecasting sales trends. By employing SARIMA models on two distinct time 

series, this study aims to predict future sales, shedding light on the accuracy of short-term forecasts. 

This dual-pronged approach not only facilitates sellers in formulating effective sales strategies but 

also empowers buyers to make informed purchasing decisions. 

An integral component of contemporary business intelligence is sales forecasting [1]. Sales 

forecasting is recognized as a complex challenge, wherein accurate predictive models assist 

businesses in uncovering potential risks and making more informed decisions [2,3]. Forecasts hold 

significance in the automotive industry, as precise predictions can effectively reduce inventory 

buildup, prevent missed sales opportunities, and mitigate issues of over-supply [4,5]. 
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Simultaneously, several studies have successfully employed SARIMA models for real-time series 

analysis and forecasting [6-10]. These studies underscore the significance of sales forecasting and the 

feasibility of SARIMA models for real-time series prediction. 

This paper conducts a comprehensive time series analysis of new and used car sales in the United 

States, selecting SARIMA models based on standards such as AICc, RMSE, MAE, and MAPE. The 

subsequent forecasting of sales for the upcoming two years aims to provide a robust understanding 

of the market dynamics and trends, contributing to both academic discourse and practical applications 

within the automotive industry. 

2. Methodology 

2.1. Description of Data 

The dataset used in this study is sourced from the United States Census Bureau 

(http://www.census.gov/), consisting of monthly figures for new car sales and used car sales. The data 

spans from January 1992 to November 2023 and is presented in Figure 1. For new car sales, the trend 

shows fluctuating increases, but experienced significant declines around 2009 and 2022, respectively. 

Similarly, for used car sales, the overall trend is characterized by fluctuating increases, with 

substantial declines in the same years. However, compared to the sales of new car, the monthly sales 

and volatility are lower for used car. 

 

   (a) New car                                                                (b) Used car 

Figure 1: Retail sales for new car(a) and retail sales for used car (b). 

2.2. Time Series Patterns Analysis 

To better fit models later, now conduct an analysis of these time series. From Figure 2, it can be 

observed that for new car, retail sales increase slightly in February, then fluctuates. For used car, retail 

sales rise in February and March, then slowly declines. 
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        (a) New car                                                          (b) Used car 

Figure 2: Seasonal plot for new car sales(a) and used car sales(b). 

Figure 3 further illustrates the trends in the data, and it is evident that the trends of these time series 

are clearly visible.  

 

       (a) New car                                                       (b) Used car 

Figure 3: Subseries plot for new car sales(a) and used car sales(b). 

To further identify the components contained in the time series, a decomposition of these time 

series was conducted, and the results are illustrated in Figure 4. It can be noted that these time series 

demonstrate similar trends. In general, sales gradually increase over time, with slight decreases and 

fluctuations around 2009 and 2021. Additionally, both time series show seasonality, and the 

seasonality in the sales of new car is more pronounced, suggesting the potential need for a seasonal 

ARIMA model. 

 

(a)  New car                                                          (b) Used car 

Figure 4: The components of new car sales(a) and used car sales(b). 
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2.3. Seasonal ARIMA 

The ARIMA model necessitates the precondition of data stationarity. Prior to model fitting, the 

Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are executed 

to evaluate the stationarity of the time series. The ADF test is based on the assumption that, under the 

null hypothesis, the data is non-stationary, while it is considered stationary under the alternative 

hypothesis. In contrast, the KPSS test posits that, under the null hypothesis, the data is stationary, but 

under the alternative hypothesis, it is non-stationary. The outcomes of the tests are presented in Table 

1, revealing that both time series demonstrate non-stationarity based on the p-values. 

Table 1: The results of the ADF test and KPSS test (Raw data). 

 New car sales Used car sales 

p-value of ADF test 0.5417 0.1968 

p-value of KPSS test <0.01 <0.01 

 

After applying first-order seasonal differencing and logarithmic transformation to the time series, 

the outcomes of the tests are presented in Table 2, revealing that both time series have become 

stationary based on the p-values. 

Table 2: The results of the ADF test and KPSS test (Processed data). 

 New car sales Used car sales 

p-value of ADF test <0.01 0.01502 

KPSS test >0.1 >0.1 

 

After applying first-order seasonal differencing and logarithmic transformation to the time series, 

the time series plots are presented in Figure 5. 

 

          (a) Logarithm transform                         (b) First-order seasonal difference 

Figure 5: Time series plots for data (Logarithm transform and first-order seasonal difference). 

Meanwhile, the Partial AutoCorrelation Function (PACF) plots in Figure 5 reveal a strong 

seasonality in both time series. Therefore, utilizing a Seasonal ARIMA model for fitting would better 

capture the characteristics of the time series. 

The SARIMA model is a powerful instrument in time series analysis for forecasting and modeling. 

It is an extension of the Autoregressive Integrated Moving Average (ARIMA) model specifically 

designed to handle time series data with seasonal variations. The SARIMA model's principles 

encompass four key components: Seasonal Autoregressive, Seasonal Differencing, Seasonal Moving 
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Average, and the three components of the non-seasonal ARIMA model: Autoregressive, Differencing, 

and Moving Average [11].                                          

Equation (1) can represent the SARIMA (p, d, q) (P, D, Q) [m] model: 

𝜙𝑝(𝐵)Φ𝑃(𝐵
𝑚)(1− 𝐵)𝑑(1− 𝐵𝑚)𝐷𝑦𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵

𝑚)𝜀𝑡 (1) 

Where 𝑝 denotes the magnitude of non-seasonal AR term,𝑃 denotes the magnitude of seasonal AR 

term,𝑞 denotes the magnitude of non-seasonal MA term,𝑄 denotes the magnitude of seasonal MA 

term,𝑑 represents the magnitude of non-seasonal differencing,𝐷 denotes the magnitude of seasonal 

differencing,𝑚  denotes the number of observations per year,𝑦𝑡  denotes the observed values. 𝐵 

represents the backshift operator which can be denoted as the following equation 2: 

𝐵𝑚𝑦𝑡 = 𝑦𝑡−𝑚 (2) 

3. Empirical Results 

For new car sales, from the previous analysis, it was determined that due to the non-stationarity of 

the data and the significant seasonality, first-order seasonal differencing is required. Therefore, it can 

be preliminarily established that D=1 and d=0. The AutoCorrelation Function (ACF) plot and PACF 

plot of this time series after logarithmic transformation and first-order seasonal differencing are 

illustrated in Figure 6. The notable spike at lag 1 in the ACF plot implies the presence of a non-

seasonal MA (1) component, while the absence of a significant spike at lag 12 in the ACF plot, and 

similarly at lag 24, leads to the inference that the magnitude of the seasonal MA component is 

considered as 0. Meanwhile the notable spike at lag 3 in the PACF plot suggests a non-seasonal AR 

(3) component, and the notable spike at lag 12 and 24 in the PACF plot indicates the presence of a 

seasonal AR (2) component. 

 

         (a) ACF                                                            (b) PACF 

Figure 6: ACF plot and PACF plot for new car sales (Logarithm transform and first-order seasonal 

difference). 

Therefore, the model is initially set as ARIMA (3, 0, 1) (2, 1, 0) [12]. Subsequently, multiple models 

are fitted, and the fitted models along with their corresponding AICc values, RMSE, MAE, and 

MAPE are presented in Table 3. By comparing these values, a better-fitting model can be selected. 

According to the AIC criterion, a superior model has a lower AICc value. Similarly, a model with 

higher accuracy should have lower errors. 
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Table 3: Postulated models and corresponding value. 

Model AICc RMSE MAE MAPE 

ARIMA (3, 0, 1) (2, 1, 0) [12] -1000.42 0.0601 0.0423 0.3861 

ARIMA (3, 0, 1) (2, 1, 1) [12] -1051.92 0.0554 0.0380 0.3477 

ARIMA (3, 0, 2) (2, 1, 1) [12] -1054.57 0.0550 0.0377 0.3452 

ARIMA (3, 0, 2) (2, 1, 2) [12] -1054.71 0.0548 0.0374 0.3426 

ARIMA (3, 0, 3) (3, 1, 1) [12] -1057.87 0.0545 0.0370 0.3382 

ARIMA (4, 0, 3) (3, 1, 1) [12] -1066.53 0.0536 0.0357 0.3265 

 

By comparing AICc values, RMSE, MAE, and MAPE, it is observed that the ARIMA (4, 0, 3) (3, 

1, 1) [12] model is the best-fitting model and also exhibits the highest accuracy. It is noted that, in this 

case, models with better fit tend to have higher accuracy. 

Subsequently, a residual analysis is conducted, and Figure 7 illustrates the results. Furthermore, 

the Ljung-Box test results in a p-value of 0.2832, implying the acceptance of the null hypothesis and 

indicating that the residuals show no autocorrelation. 

 

Figure 7: Residuals plot from ARIMA (4,0,3) (3,1,3) [12] 

Table 4 presents detailed information on the parameters of the ARIMA (4,0,3) (3,1,3) [12] model. 

From the table, it can be observed that, for the sales of new cars, lag periods 1, 2, and 3 exhibit positive 

autocorrelation with the current period, while lag period 4 shows negative autocorrelation with the 

current period. Regarding the seasonal lag periods, 1 to 3 exhibit negative autocorrelation with the 

current period, indicating that an increase in sales in the previous three periods corresponds to a 

concurrent increase in the current period. From the perspective of seasonal autocorrelation, an 

increase in sales in the same period of the previous year results in a decrease in the current period's 

sales.  
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Analyzing the coefficients of the MA components, the coefficient for MA(1) is significant and 

positive, indicating that the current observation is positively influenced by past errors. Similarly, the 

coefficient for SMA(1) is significant and negative, signifying that the current observation is 

negatively impacted by seasonal errors. 

Table 4: Coefficients of ARIMA (4,0,3) (3,1,3) [12]. 

Components Coefficient Standard Error 

AR(1) 0.2800 0.0986 

AR(2) 0.2153 0.0157 

AR(3) 0.9263 0.0152 

AR(4) -0.4298 0.0981 

MA(1) 0.4189 0.0768 

MA(2) 0.1425 0.0741 

MA(3) -0.7025 0.0780 

SAR(1) -0.1251 0.1113 

SAR(2) -0.1600 0.0931 

SAR(3) -0.0408 0.0871 

SMA(1) -0.7046 0.0971 

 

Next, the model is used to forecast the sales volume of new cars for the next two years. As depicted 

in Figure 8, the forecasted results indicate that sales will continue to exhibit a trend of fluctuating 

upward growth over the next two years. 

 

Figure 8: Forecasts from ARIMA (4,0,3) (3,1,3) [12] 

Similarly, for used car sales, from the previous analysis, it was determined that due to the non-

stationarity of the time series and the significant seasonality, first-order seasonal differencing is 

required. Therefore, it can be preliminarily established that D=1 and d=0. The ACF plot and PACF 

plot of this time series after logarithmic transformation and first-order seasonal differencing are 

illustrated in Figure 9. The notable spike at lag 1 in the ACF plot implies the presence of a non-

seasonal MA (1) component, while the notable spike at lag 12 in the ACF plot leads to the inference 

that the magnitude of the seasonal MA component is considered as 1. Meanwhile the notable spike 
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at lag 2 in the PACF plot implies the presence of a non-seasonal AR (2) component, and the notable 

spike at lag 12 and 24 in the PACF plot indicates the presence of a seasonal AR (2) component.  

 

(a) ACF                                                            (b) PACF 

Figure 9: ACF plot and PACF plot for used car sales (Logarithm transform and first-order seasonal 

difference). 

Therefore, the model is initially set as ARIMA (2, 0, 1) (2, 1, 1) [12]. Subsequently, multiple models 

are fitted, and the fitted models along with their corresponding AICc values, RMSE, MAE, and 

MAPE are presented in Table 5. Continue to identify a better-fitting model by comparing these values. 

Table 5: Postulated models and corresponding value. 

Model AICc value RMSE MAE MAPE 

ARIMA (2, 0, 1) (2, 1, 1) [12] -1003.91 0.0594 0.0400 0.4583 

ARIMA (2, 0, 2) (2, 1, 1) [12] -1001.99 0.0595 0.0401 0.4598 

ARIMA (2, 0, 3) (2, 1, 3) [12] -1001.77 0.0589 0.0398 0.4555 

ARIMA (2, 0, 1) (2, 1, 2) [12] -1002.19 0.0593 0.0399 0.4570 

 

By comparing AICc values, it was found that ARIMA (2, 0, 1) (2, 1, 1) [12] is the best-fitting model 

among these models. However, the ARIMA (2, 0, 3) (2, 1, 3) [12] model has the lowest RMSE, MAE, 

and MAPE. In the pursuit of higher forecast accuracy, the final choice is to use the ARIMA (2, 0, 3) 

(2, 1, 3) [12] model for forecasting the used car sales. It is noted that, in this case, models with better 

fit tend to have higher accuracy. 

Subsequently, a residual analysis is conducted, and Figure 10 illustrates the results. Furthermore, 

the Ljung-Box test results in a p-value of 0.2039, implying the acceptance of the null hypothesis and 

indicating that the residuals show no autocorrelation. 
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Figure 10: Residuals plot of ARIMA (2,0,3) (2,1,3) [12] 

Table 6 displays detailed information about the parameters of the ARIMA (2,0,3) (2,1,3) [12] model. 

From the table, it is evident that, for the sales of used cars, lag period 2 exhibits a significant positive 

autocorrelation with the current period. Regarding the seasonal lag period, the coefficient for SAR(1) 

is significant and negative, indicating that an increase in sales in lag period 2 corresponds to a 

concurrent increase in the current period. From the perspective of seasonal autocorrelation, an 

increase in sales in the same period of the previous year results in a decrease in the current period's 

sales. 

Analyzing the coefficients of the MA components, the coefficient for MA(1) is significant and 

positive, signifying that the current observation is positively influenced by past errors. Similarly, the 

coefficients for MA(2) and MA(3) are significant and negative, indicating that the current observation 

is negatively impacted by past errors. Likewise, the coefficient for SMA(2) is significant and negative, 

suggesting that the current observation is negatively influenced by seasonal errors. 

Table 6: Coefficients of ARIMA (2,0,3) (2,1,3) [12]. 

Components Coefficient Standard Error 

AR(1) 0.0521 0.0485 

AR(2) 0.9413 0.0486 

MA(1) 0.6424 0.0670 

MA(2) -0.5116 0.0580 

MA(3) -0.2642 0.0533 

SAR(1) -0.8168 0.7899 

SAR(2) 0.1102 0.6821 

SMA(1) -0.0496 0.7857 

SMA(2) -0.7041 0.1684 

SMA(3) 0.1577 0.5049 
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Next, the model is used to forecast the sales volume of used car for the next two years. As depicted 

in Figure 11, the forecasted results indicate that sales will continue to exhibit a trend of fluctuating 

upward growth over the next two years. 

 

Figure 11: Forecasts from ARIMA (2,0,3) (2,1,3) [12] 

4. Conclusion 

In conclusion, this paper of new and used car sales time series in the United States using SARIMA 

models has yielded valuable insights into the overall trends and seasonality of the market. While the 

selected models, ARIMA (4, 0, 3) (3, 1, 1) [12] for new car sales and ARIMA (2, 0, 3) (2, 1, 3) [12] for 

used car sales, have demonstrated efficacy in capturing time series characteristics and forecasting, 

there are notable considerations and opportunities for improvement. 

The coefficients of the model also reveal that, for new car sales, the presence of positive 

autocorrelation in lag periods 1, 2, and 3, along with negative seasonal autocorrelation in lag period 

1, suggests that an increase in sales in the previous three periods will lead to a corresponding increase 

in the current period's sales. From the perspective of seasonal autocorrelation, however, an increase 

in sales in the same period of the previous year will result in a decrease in the current period's sales. 

Furthermore, the current period's sales are positively influenced by past errors and negatively 

impacted by seasonal errors. 

On the other hand, for used car sales, the existence of positive autocorrelation in lag period 2 and 

negative seasonal autocorrelation in lag period 1 indicates that an increase in sales in lag period 2 will 

correspondingly increase the current period's sales. From the perspective of seasonal autocorrelation, 

an increase in sales in the same period of the previous year will lead to a decrease in the current 

period's sales. Additionally, the current period's sales are influenced positively by MA(1) and 

negatively by MA(2) and MA(3), along with negative impacts from seasonal errors. 

The practical implications of this paper extend to both sellers and buyers in the automotive industry, 

providing a basis for strategic decision-making. However, it is essential to acknowledge the 

limitations of our study, including the reliance on a specific model type and the exclusion of certain 
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influencing factors. Future research endeavors could explore incorporating additional models such as 

VAR or GARCH, offering a more comprehensive understanding of market dynamics. 

The challenges in model selection, particularly the discrepancy between AICc values and forecast 

errors in used car sales, highlight the intricacies of forecasting in dynamic markets. Exploring the 

reasons behind this divergence and refining the model selection process will be crucial for advancing 

forecast accuracy. 

While the forecasts indicate sustained upward-trending fluctuations in sales volumes over the next 

two years, it is worth noting the importance of considering external factors that could influence these 

trends. Decision-makers should approach these forecasts with an awareness of the ever-changing 

landscape and be prepared to adapt strategies accordingly. 

In recommending further avenues for research, it is worth noting the exploration of alternative 

models and methods, such as artificial neural networks, to enhance forecast accuracy and uncover 

additional nuances within the time series. The iterative nature of forecasting underscores the need for 

continuous improvement and adaptation to evolving market conditions, reinforcing the dynamic 

relevance of our research in the automotive industry. 
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