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Abstract: An essential instrument for reducing carbon emissions worldwide is the carbon 

market. Comprehending the dynamic relationships between carbon and energy futures prices 

is crucial as carbon trading picks up promote globally. This research examines how two 

energy futures—crude oil and natural gas—interact with carbon futures in the American and 

European markets between November 21, 2013, and March 28, 2024. We examine 

correlations between futures returns across different regions using the Dynamic Conditional 

Correlation Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) 

model. Our findings reveal significant, albeit fluctuating, correlations influenced by external 

market events. Interestingly, compared to crude oil futures, there is a stronger dynamic link 

between carbon futures and natural gas futures, especially in the European market, 

demonstrating strong long-term persistence. 
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1. Introduction 

Known as the biggest and most extensive market mechanisms in the world, the carbon trading market 

has played a crucial role in reducing carbon emissions worldwide. As the carbon market has matured, 

derivative markets, including those for carbon futures, options, and forwards, have become 

increasingly active. The volatility of carbon quota pricing has noticeably increased in tandem with 

this expansion. The price of carbon futures has fluctuated significantly over the past few decades, 

according to statistics from the Intercontinental Exchange (ICE). These price swings are important 

because they influence how market players behave. However, price discrepancies may contribute to 

market inefficiencies, causing deviations from the true supply-demand equilibrium and undermining 

the market's effectiveness. 

The financialization of commodity futures has led to increased price volatility and greater market 

uncertainty, signalling higher systemic risks due to the heightened co-movements in futures prices 

[1]. For instance, EU Allowance (EUA) prices, which remained below 10 euros until the ETS's fourth 

phase reform in 2018, saw a slight decline in 2019 due to the COVID-19 pandemic, reflecting market 

expectations of reduced economic activities and global energy demand. It is noteworthy that crude 

oil and natural gas futures have exhibited heightened sensitivity and more frequent volatility. In 2021, 

the demand for natural gas saw a marked increase due to the economic rebound following the 

pandemic and the growing preference for coal as an alternative energy source, even though it emits 
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more CO2. This shift contributed to substantial rises in the prices of EUAs, setting new record levels. 

However, the data currently accessible does not clearly show a correlation between these markets. 

Previous studies indicate that futures returns and volatility share long-term cointegration relationships 

[2], prompting the use of the Dynamic Conditional Correlation Generalized Autoregressive 

Conditional Heteroskedasticity model (DCC-GARCH) in this study to further investigate these 

dynamics. 

 

Figure 1: daily closing price trends of 9 futures between November 21,2013 and March 28, 2024. 

Carbon emission futures have recently become prominent financial instruments, yet there hasn't 

been much research done on the dynamic relationships between future energy and carbon emission 

trends. By investigating the interactions between these markets within the framework of changing 

international environmental regulations, this study seeks to close this gap. This study provides 

valuable insights for investors, governments, and businesses through its analysis of dynamic 

correlations between carbon emission futures and energy futures, also illuminating potential impacts 

of carbon costs on energy market prices. 

This paper contributes to the existing literature by analysing the dynamic correlations over 

extended periods and examining the characteristics and variations in these correlations. Additionally, 

it evaluates the short- and long-term impacts of various marketplaces and compares dynamic 

conditional correlation coefficients across various markets and locations. This research serves as a 

basis for future policy-making and facilitates the assessment of the effects of different environmental 

policies on the energy market. 

The paper is organized as follows: Section 2 offers a review of relevant literature; Section 3 

describes the data and methodologies used to compute dynamic correlations using the DCC-GARCH 

model; Section 4 presents the empirical findings of the study, while Section 5 provides conclusions 

and policy recommendations. 
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2. Literature Review 

Numerous studies have investigated dynamic correlations in futures markets across various asset, 

including commodities, currencies, and equities. Comprehending the dynamic correlations among 

distinct futures markets is crucial for effective risk mitigation, portfolio diversification, and trading 

tactics. The financialization of energy markets promotes changes in energy price volatility and 

increases liquidity between energy markets [3]. The pattern and intensity of volatility fluctuations 

over the period vary across different futures markets, implying that varying levels of sensitivity to 

economic changes further affect the strength of these correlations [4]. Despite financial uncertainty 

significantly impacting crude oil futures trends negatively, WTI and Brent crude oil still exhibit strong 

correlations and mutual influence [5]. There exists a bidirectional asymmetrical relationship between 

crude oil markets and agricultural commodity markets, exacerbated during financial crises, the 

COVID-19 pandemic, and oil market crashes [6-7]. COVID-19 has had significant and enduring 

impacts on the risk interdependence between energy, agriculture, and other commodities [8]. 

Methodologically, scholars employ various approaches to analysis the data, such as Vector 

Autoregressive (VAR) models, cointegration analysis, Multivariate GARCH models, DCC-GARCH 

models, and the Diebold and Yilmaz (DY) method [9-13]. Henriques and Sadorsky were among the 

early adopters of VAR models to study the impact of oil prices on stock markets [14]. Bondia et al. 

utilized cointegration models and discovered significant short-term relationships between alternative 

energy stock prices and oil prices, though these relationships were not significant in the long term 

[15]. Zhang et al. using the DCC-GARCH dynamic connectivity approach, analysed the dynamic 

connectivity between ESG stock indices and carbon emission futures, finding carbon emission futures 

to be transmitters of volatility while green bonds act as receivers [16]. Sadorsky compared four 

different multivariate GARCH models (BEKK, Diagonal, Constant Conditional Correlation, and 

Dynamic Conditional Correlation) and found the dynamic conditional correlation model most 

suitable for analyzing time series data such as stock prices [17]. With fixed correlation coefficients, 

the hedging ratio calculated using the DCC-GARCH model proves to be more precise than the one 

derived from the GARCH model [18]. 

The carbon financial market is highly volatile, unpredictable, and impacted by a number of 

variables, including politics, the economy, and commodities prices. Carbon emission quotas and 

energy markets demonstrate significant interdependence, with European Union emission quotas and 

futures markets showing close volatility relationships [19]. According to a report from the China 

International Capital Corporation Limited (CICC) Global Institute, futures market trading volume 

accounted for 90% of the total carbon quota trading volume during the second phase of the EU carbon 

market construction. The coal market exhibits significant one-way spillover effects on the carbon 

market, while the carbon market, in turn, has substantial spillover effects on the natural gas market. 

Over time, the carbon market and fossil energy markets demonstrate strong positive correlations [20]. 

When the economy is strong and carbon prices are high, natural gas prices having less impact on 

carbon prices compared to oil and coal prices [21]. Over the long term, uncertainty in economic 

policies substantially reduces returns on carbon futures prices. The COVID-19 pandemic impacts 

their short- to medium-term performance by affecting the spillover and correlation between Economic 

Policy Uncertainty (EPU) and the returns on carbon futures prices [22]. Due to the immaturity of the 

EU carbon trading system, inefficient trading, and the game of carbon emission rights allocation 

based on national welfare interests between countries and blocs, the complexity of EUA futures is 

observed [23]. 

Previous research has highlighted the time-varying character of correlations and the importance of 

employing appropriate methodologies to analyze them. By utilizing advanced econometric 

techniques, researchers can gain further insights into the dynamic correlations between futures 
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contracts, contributing to improved risk management and investment strategies in financial markets. 

Whether in energy futures markets or carbon markets, both of which are highly susceptible to external 

influences. However, there is limited literature utilizing the DCC-GARCH method to analyze the 

correlation of futures over longer time intervals. Hence, to assess if the correlation between carbon 

futures and energy futures persists over a longer duration, this study builds upon previous research 

by broadening the timeframe of the data analyzed. 

3. Data and Methodology 

3.1. Variables and Data 

Analyzing the dynamic correlation between energy and carbon futures is the goal of this research. To 

achieve this, EUA futures traded at the Intercontinental Exchange (ICE) and the European Energy 

Exchange (EEX) were selected. Previous research has demonstrated that changes in coal, crude oil, 

and natural gas prices significantly affect short-term emission quota prices in the United States 

Emissions Trading System (ETS) [24-25]. Therefore, we choose the prices of Crude Oil (WTI, Brent, 

ETFS), Natural Gas (NYMEX Natural Gas, UK Natural Gas, ICE Dutch TTF Natural Gas), and 

European STOXX Oil & Gas futures. The sample period for this dataset spans from 21 November 

2013 to 28 March 2024, and all this data can be obtained from Investing.com. 

Considering the different units of futures prices in each contract, we use the returns of the 

futures (𝑟𝑓𝑡) for dynamic correlation analysis. The futures prices are expressed in 𝑃𝑡 separately and 

the daily returns are computed as follows: 

 𝑟𝑓𝑡 = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
)                           (1) 

Table 1 displays the descriptive statistics for the daily returns. Across the seven sequences of 

returns, the mean is approximately zero, indicating proximity to zero average returns. The wide gap 

between the highest and lowest values for most variables indicates potential outliers or extreme values 

in these futures returns.  

Table 1: Descriptive statistics for the daily returns of futures. 

Variable Definition Mean Max Min SD Skewnes

s 

Kurtosis Jarque-

Bera 

ADF 

cfi2z4 ICE 

Carbon 

Emission 

Futures 

0.0010

3 

0.1613

8 

-

0.1896

9 

0.0284

9 

-0.5480 7.7311 2508.796

1 

-

35.53

1 

(0.00) 

cfi2zc1 EEX 

European 

Union 

Allowanc

e Yearly 

Futures 

0.0010

3 

0.1613

8 

-

0.1941

6 

0.0290

8 

-0.5565 7.7865 2568.856

5 

-

35.60

6 

(0.00) 

clc1 WTI 

Crude Oil 

Futures 

-

0.0000

5 

0.7225

4 

-

1.3242

2 

0.0414

5 

-10.6674 450.672

2 

21367074 -

44.86

4 

(0.00) 

lcoc1 Brent 
Crude Oil 

Futures 

-
0.0000

8 

0.1907
7 

-
0.2797

6 

0.0250
9 

-0.9875 19.0879 27947.08
9 

-
34.65

1 

(0.00) 
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Table 1: (continued). 

fcruc1 ETFS 

Crude Oil 

Futures 

-

0.0003

2 

0.1645 -

0.2254

9 

0.0243

9 

-1.0384 15.5806 17294.77

6 

-

36.27

0 

(0.00) 

ngc1 NYMEX 

Natural 

Gas 

-

0.0002

9 

0.3817

3 

-

0.3004

8 

0.0378

5 

0.1664 10.8170 6511.822

9 

-

37.92

0 

(0.00) 

nglnsc1 UK 

Natural 

Gas 

0.0001 0.6105

4 

-

0.6609

7 

0.0448

2 

0.1684 63.7145 392137.3

5 

-

38.31

0 

(0.00) 

tfmbmc

1 

ICE Dutch 

TTF 

Natural 

Gas 

Futures 

-

0.0000

1 

0.4127

8 

-

0.3524

2 

0.0453

3 

0.3222 14.6362 14447.37

4 

-

37.97

1 

(0.00) 

fesec1 STOXX 

Oil&Gas 

futures 

prices 

0.0000

4 

0.1161

3 

-

0.1683

2 

0.0159

1 

-0.7378 14.1494 13455.10

7 

-

35.02

4 

(0.00) 

 

The data distribution exhibits left skewness with higher kurtosis values, indicating a highly 

concentrated distribution with sharp peaks and one or more extreme tail values. Furthermore, Jarque-

Bera test statistics reveal outcomes that do not align with a normal distribution across extended 

periods, suggesting a non-linear process. Time series modeling is underpinned by the stationarity of 

each return series, as evidenced by the Augmented Dickey-Fuller (ADF) unit root test results. 

3.2. DCC-GARCH Model 

In finance, time series data often exhibit autocorrelation. Initially, scholars typically assumed constant 

variance in their research. However, in practical applications, time series may display volatility 

clustering. Thus, Engle proposed using Autoregressive Conditional Heteroskedasticity (ARCH) to 

assess variance fluctuations. Building on this, Bollerslev introduced a variance autoregressive 

component, thereby enhancing practicality of this model [26-27]. Leveraging Bollerslev's constant 

conditional correlation estimator, Engle further introduced Dynamic Conditional Correlation (DCC) 

estimators. Without the complexity of conventional multivariate GARCH, this technique provides 

the flexibility of univariate GARCH [28]. The DCC-GARCH model calculates dynamic 

interconnections helps avoid the loss of observational data, thereby highlighting its reliability and 

benefits compared to unconditional correlation analysis. The model accounts for heteroskedasticity 

by estimating the correlation of standardized residuals, which reduces volatility biases in DCC 

analyses [29]. The DCC-GARCH model is computed through a two-stage process: initially, a 

univariate GARCH model is estimated for each sequence of residuals; subsequently, the residuals, 

adjusted by the standard deviation calculated in the first stage, are utilized to estimate parameters for 

dynamic correlation. 

According to Engle, assume that 𝐸𝑡−1[𝜀𝑡] = 0  for 𝑡 = 1, ⋯ , 𝑛  and 𝐸𝑡−1[𝜀𝑡𝜀𝑡′] = 𝐻𝑡  are 

satisfied, where 𝐸𝑡[ ⋅ ] is the conditional expectation. The model can be specified as follows:  

       𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                (2) 
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 [𝑅𝑡]𝑖,𝑗 =
𝑞𝑖,𝑗,𝑡

√𝑞𝑖,𝑖,𝑡𝑞𝑗,𝑗,𝑡
                                 (3) 

            𝑞𝑖,𝑗,𝑡 = (1 − 𝜆)(𝜀𝑖,𝑡−1𝜀𝑗,𝑡−1) + 𝜆(𝑞𝑖,𝑗,𝑡−1)                      (4) 

𝑄𝑡 = (1 − 𝛼 − 𝛽)�̅� + 𝛼(𝜀𝑡−1𝜀𝑡−1
′ ) + 𝛽𝑄𝑡−1                    (5) 

Where 𝐻𝑡 represents the conditional covariance matrix, 𝑅𝑡 denotes the conditional correlation 

matrix, and 𝐷𝑡  is a diagonal matrix containing the time-varying standard deviations of the 

conditional variance √ℎ𝑖,𝑡  derived from the GARCH model, �̅�  represents the time-varying 

unconditional correlation matrix of the standardized residuals 𝜀, and 0 < 𝛼 + 𝛽 < 1. Due to space 

limit, a detailed description of the DCC-GARCH model can be found in Engle (2002). 

The dynamic correlation coefficient 𝛼  represents the short-term persistence of dynamic 

correlations by demonstrating the impact of the standardized residuals from the previous period on 

the dynamic correlation coefficients. In contrast, the dynamic correlation coefficient 𝛽 represents 

the long-term persistence of the correlation between assets, indicating the effect of the prior period's 

correlation coefficients on the current period. The larger the combined value of 𝛼 and 𝛽, the more 

persistent the correlation. 

We first estimate the bivariate Vector Autoregressive model (VAR), as indicated: 

         {
𝑟𝑓1,𝑡 = 𝜇1 + ∑ 𝑎1,𝑖𝑟𝑓1,𝑡−1

𝑛
𝑖=1 + ∑ 𝑏1,𝑖𝑟𝑓2,𝑡−1

𝑛
𝑖=1 + 𝜀1,𝑡

𝑟𝑓2,𝑡 = 𝜇2 + ∑ 𝑎2,𝑖𝑟𝑓1,𝑡−1
𝑛
𝑖=1 + ∑ 𝑏2,𝑖𝑟𝑓2,𝑡−1

𝑛
𝑖=1 + 𝜀2,𝑡

                  (6) 

Then we estimate the DCC (1,1) model using the VAR residuals, which is defined as: 

ℎ𝑖𝑡 = 𝛾𝑡 + 𝛼𝑖,𝑡𝑟𝑓𝑖,𝑡−1
2 + 𝛽𝑖,𝑡ℎ𝑖,𝑡−1                        (7) 

𝑄𝑡 = (1 − 𝛼1 − 𝛽1)�̅� + 𝛼1(𝜀𝑡−1𝜀𝑡−1
′ ) + 𝛽1𝑄𝑡−1                 (8) 

4. Empirical Results 

4.1. The Dynamic Conditional Correlations 

The Pearson correlation test offers correlation coefficients between -1 and 1, values close to -1 

indicate stronger negative correlations, those near 1 indicate stronger positive, and values around 0 

suggest weak or non-existent relationships. The correlation matrix derived from Pearson correlation 

tests displays the relationships between variables, as shown in Table 2. A very strong positive 

correlation between the prices of carbon futures in the two markets is indicated by the correlation 

coefficient of 0.996 between the variables cfi2zc1 and cfi2z4, for example, suggesting limited 

prospects for arbitrage between them. Although the correlation between energy and carbon futures is 

not as strong, it is still pretty similar. 

Table 2: Pearson correlation coefficient between daily returns. 

 cfi2z4 cfi2zc1 clc1 lcoc1 fcruc1 ngc1 nglnsc1 tfmbmc1 fesec1 

cfi2z4 1         

cfi2zc1 0.996 1        

clc1 0.150 0.152 1       

lcoc1 0.188 0.187 0.717 1      

fcruc1 0.205 0.207 0.568 0.735 1     
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Table 2: (continued). 

ngc1 0.0643 0.0650 0.112 0.102 0.0803 1    

nglnsc1 0.159 0.160 0.0887 0.146 0.166 0.0698 1   

tfmbmc1 0.195 0.195 0.0756 0.131 0.145 0.113 0.644 1  

fesec1 0.228 0.227 0.355 0.504 0.556 0.0778 0.0745 0.0780 1 

 

Time-varying conditional correlation exists between energy and carbon futures. The majority of 

the DCC coefficients relating energy market returns to carbon are positive, except for a few 

exceptional negative values, as shown in Figure 2, suggesting a certain amount of synergy between 

the carbon and energy futures markets. The conditional correlation coefficients between crude oil 

futures and the carbon futures show more dramatic fluctuations than those for natural gas futures, but 

they generally remain positive throughout most trading periods. After the second quarter of 2019, oil 

prices fell continuously due to factors such as intensified international trade disputes and weak oil 

demand. In the first quarter of 2022, international oil prices rose influenced by the Russia-Ukraine 

conflict. Nevertheless, the carbon market exhibited no immediate short-term impact, resulting in a 

notable decrease in the DCC coefficients during these periods, which suggests a reduction in the risk 

synergy effect between the two markets. Periods of negative correlation imply opportunities for 

portfolio diversification, and investment decisions during these periods should also consider various 

products. The synergy effect in the natural gas market is likewise impacted by events like the conflict 

between Russia and Ukraine; however, unlike the crude oil futures, the dynamic conditional 

correlation between the carbon futures and natural gas futures shows only a slight tendency to vary 

over time. This implies that managers of the carbon market ought to be more aware of changes in the 

price of crude oil. 

 

Figure 2: Dynamic conditional correlation (DCC) between carbon futures and energy futures markets. 
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4.2. DCC‐GARCH Results 

The estimated results of the DCC-GARCH model between carbon and energy futures are presented 

in Table 3. Energy and carbon futures both show persistence in long-term impacts and short-term 

market adjustments. The 𝛼 + 𝛽 for the combinations of energy and carbon futures are close to, but 

less than 1, indicating a mean-reverting return process with significant volatility clustering present in 

each pair. This suggests that rising prices of energy and carbon futures consistently have a volatile 

effect on future pricing. The relationship between the natural gas futures and the carbon futures shows 

greater persistence compared to that between crude oil futures and carbon futures, as evidenced by a 

higher sum of 𝛼 + 𝛽 for the former. The 𝛼 + 𝛽 for WTI crude oil and Brent crude oil compared to 

ETFS Crude Oil is smaller, suggesting a stronger and longer-lasting relationship between the carbon 

futures and European crude oil futures. With increasing short-term persistency of dynamic conditional 

correlation influences on the returns of the crude oil and carbon markets, the 𝛼 coefficient for each 

pair is significant, suggesting short-term predictability in the fluctuations of correlation between the 

energy and carbon markets. The 𝛽 for each pair is significant, demonstrating the substantial long-

term persistence effects between the carbon and energy futures markets. The 𝛽  value for the 

combination of natural gas market is significantly close to 1, indicating that the long-term persistency 

of price movement impacts is crucial for all long-term forecasts of DCC coefficients in all scenarios. 

Table 3: The estimated results of the DCC-GARCH model between futures. 

 ARMA (p, q) DCC(α) DCC(β) α+β 

cfi2z4* clc1 (2,2) 0.048*** 0.750*** 0.798 

cfi2z4* lcoc1 (2,2) 0.057*** 0.645*** 0.702 

cfi2z4* fcruc1 (1,1) 0.033*** 0.911*** 0.944 

cfi2z4* ngc1 (2,2) 0.014*** 0.963*** 0.977 

cfi2z4* nglnsc1 (2,2) 0.051*** 0.874*** 0.925 

cfi2z4* tfmbmc1 (2,2) 0.057*** 0.883*** 0.940 

cfi2z4* fesec1 (2,2) 0.011*** 0.980*** 0.991 

cfi2zc1* clc1 (2,2) 0.048*** 0.749*** 0.797 

cfi2zc1* lcoc1 (2,2) 0.057*** 0.638*** 0.695 

cfi2zc1* fcruc1 (1,1) 0.033*** 0.913*** 0.946 

cfi2zc1* ngc1 (2,2) 0.015*** 0.965*** 0.980 

cfi2zc1* nglnsc1 (2,2) 0.055*** 0.876*** 0.931 

cfi2zc1* tfmbmc1 (2,2) 0.057*** 0.886*** 0.943 

cfi2zc1* fesec1 (2,2) 0.011*** 0.979*** 0.990 
Note: Robust standard errors in parentheses. ***, ** and * indicate the significance level at 1%, 5%, 10% respectively. 

5. Conclusions 

This paper explores the dynamic conditional correlation of energy futures and carbon futures. The 

findings show that: Firstly, the same type of carbon futures traded in different regional futures markets 

exhibit extremely strong correlations, with limited arbitrage opportunities between markets. Secondly, 

a noteworthy positive conditional correlation exists between the carbon futures and energy futures 

markets, indicating a certain level of risk synergy effect. However, this tends to change over time, 

with the crude oil market combination showing more significant fluctuations in conditional 

correlation. Thirdly, both the energy and carbon futures markets exhibit notable long-term persistence 

effects along with short-term predictability, with stronger persistency observed in the natural gas 

futures combination. 
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Building on research that explores the connection between energy and carbon markets, this study 

provides more comprehensive data for market analysis and forecasting. Carbon market investors can 

refer to the changing trends in market correlations, incorporate natural gas futures and other varieties, 

and construct effective investment portfolios to mitigate extreme risks. Market regulators can better 

predict the intensity of extreme risks on market impact and their effects on dynamic conditional 

correlations between markets, taking timely measures to maintain market stability and reduce the 

impact of arbitrage activities. Governments should make more concerted efforts to transition to low-

carbon energy, reduce dependence on fossil fuels, and build long-term robust investment portfolios 

to lessen the effects of changes in the prices of crude oil futures brought on by outside market shocks. 
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