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Abstract: When people are analyzing data with thicker tails compared to the normal 

distribution, student’s t-distribution is commonly applied, making it potentially relevant in 

the financial markets, especially returns of a stock. This research focuses on estimating the 

parameters of the student’s t-distribution in empirical data, employing the maximum 

likelihood fitting method in order to determine accurate parameters of estimation. In order to 

conclude whether the t-distribution is close math or not, we assess the goodness of fit, where 

synthetic data is generated, and the Kolmogorov-Smirnov (KS) test is applied. Moreover, to 

determine if the t-distribution is the best fit for the data, a Likelihood ratio test is conducted. 

It provides a statistical comparison between t-distribution and alternative distributions, 

allowing us to select the most suitable model. Furthermore, the relationship between volatility 

and degrees of freedom is examined using a scatterplot. This aims to uncover any potential 

correlation or patterns between these variables. By undertaking these investigations, we 

deepened our understanding of the statistical characteristics of stock returns and gained 

insights for potential applications in financial modeling and risk analysis. 

Keywords: Student’s t-distribution, Stock returns, Maximum likelihood estimation, 

Kolmogorov-Smirnov test, Degree of freedom 

1. Introduction 

In the realm of financial analysis and market behavior, the distribution of stock returns stands as a 

pivotal concept with far-reaching implications. How stock returns conform to theoretical distribution 

models has long captivated the attention of economists, statisticians, and investors alike. One such 

model, the student’s t-distribution, has garnered substantial consideration due to its heavier tails, 

which result in a greater chance for extreme values, compared to normal distribution [1]. This essay 

explores the intriguing question: To what extent do stock returns align with the distinctive 

characteristics set forth by the student’s t-distribution? Through maximum likelihood estimation, the 

point in the parameter space that maximizes the likelihood function, we are able to determine the 

specific value of the parameter, namely the degree of freedom, in the student’s t-distribution [2]. 

Moreover, using the K-test, we unravel the conformity of stock returns to the tenets of the student’s 

t-distribution compared with normal distribution which is usually used to fit stock returns, and in this 

essay, we try to prove there is a relationship between the fluctuation of stock returns and the degree 
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of freedom since the value of degree of freedom affects the probability that extreme value occurs. We 

find two ways to show the fluctuation of stock returns, and put the fluctuation of stock returns and 

degree of freedom in the scatter plot to find these two relationships. 

2. Choosing Stocks 

To test does stock returns fit student’s t-distribution better compared with normal distribution, we 

first need to select some stocks that can allow us to use as empirical data. Since we believe the 

fluctuation affects the student’s t distribution’s parameter (degree of freedom) value, we prefer to 

choose stocks that may show different fluctuation. Stocks which are from different fields are more 

likely to have different values. For example, a company which focuses on making daily necessities 

may have a stock that has little fluctuant. In comparison, a company which focuses on luxury goods 

or technological things may have a stock that fluctuates violently. To choose stocks that have different 

fluctuations, we decide to choose two stocks from energy companies and two stocks from 

technological companies. People need energy no matter in what periods or events. Therefore, the 

stock prices of energy companies are likely to have stable prices. In comparison, technological 

companies can be affected by various factors. For example, a new advanced technology emerges, 

such as ChatGPT. This may affect phone companies since they can use this technology to provide 

specialized services. Therefore, technological companies have more fluctuating stock returns. We 

chose 4 stocks: AEP, NEE, AAPL, and NVDA. The first two stocks are two of the biggest American 

energy companies, and the rest are famous technological companies. We get all these 4 stocks’ daily 

open, high, low, and close prices from 2000-01-03 to 2023-08-03, and calculate the daily log returns, 

which measures the relative change in the value of an asset [3], using daily close price:𝑅𝑑𝑎𝑦 𝑎 =

ln (
𝐶𝑑𝑎𝑦 𝑎

𝐶𝑑𝑎𝑦 𝑎−1
). Here is the example of our data: 

 

Table 1: Data Example 

 Date Close Log Return 

0 2000-01-03 31.4375 NaN 

1 2000-01-04 31.3750 0.011858 

2 2000-01-05 33.0000 0.036648 

3 2000-01-06 33.1875 0.005666 

4 2000-01-07 33.6250 0.013097 

5 2000-01-10 33.5000 -0.003724 

6 2000-01-11 33.6250 0.003724 

7 2000-01-12 33.8750 0.007407 

8 2000-01-13 33.8125 -0.001847 

9 2000-01-14 33.8125 0.000000 

3. Fitting Stock Returns in Student’s T & Normal Distribution 

Our method for modeling stock return distributions involves using both the Student's t-distribution 

and the normal distribution. We employ a statistical technique called maximum likelihood estimation 

to find the best-fitting parameters for the Student's t-distribution (and similarly for the normal 

distribution, where the Student's t-distribution serves as an illustrative example). The goal is to 

maximize the likelihood of observing the given dataset. 

To engage in maximum likelihood estimation, our initial step involves creating the log-likelihood 

function for the Student's t-distribution. This log-likelihood function is derived from the probability 
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density function (PDF) of the Student's t-distribution. The PDF for the Student's t-distribution with a 

parameter v (degree of freedom) is presented as follows: 

𝐹𝑜𝑟 𝑣 > 1 𝑒𝑣𝑒𝑛: 
Γ (

𝑣 + 1
2

)

√𝑣𝜋Γ (
𝑣
2

)
=

(𝑣 − 1)(𝑣 − 3) ⋯ 5 ∙ 3

2√𝑣(𝑣 − 2)(𝑣 − 4) ⋯ 4 ∙ 2
                                 (1) 

𝐹𝑜𝑟 𝑣 > 1 𝑜𝑑𝑑: 
Γ (

𝑣 + 1
2

)

√𝑣𝜋Γ (
𝑣
2

)
=

(𝑣 − 1)(𝑣 − 3) ⋯ 4 ∙ 2

𝜋√𝑣(𝑣 − 2)(𝑣 − 4) ⋯ 5 ∙ 3
                                  (2) 

To obtain the log-likelihood function, you can simply calculate the natural logarithm of the 

probability density function: 

ln(𝑓(𝑥; 𝑣)) =  ln (Γ (
𝑣 + 1

2
)) − ln (√𝑣𝜋Γ (

𝑣

2
)) + ln ((1 +

𝑥2

𝑣
)

−
𝑣+1

2

)                  (3) 

ln(𝑓(𝑥; 𝑣)) = ln (Γ (
𝑣 + 1

2
)) − ln (√𝑣𝜋Γ (

𝑣

2
)) −

𝑣 + 1

2
ln (1 +

𝑥2

𝑣
)                    (4) 

In the case of a dataset consisting of independently and identically distributed (i.i.d.) observations, 

the log-likelihood function is calculated by adding together the log-likelihoods for each individual 

observation.: 

ln(𝐿(𝑥1, 𝑥2, ⋯ , 𝑥𝑛; 𝑣)) =  ∑ ln(𝑓(𝑥𝑖; 𝑣))                                                   (5) 

Finding the value of 𝑣 (degree of freedom) that maximizes the log-likelihood function. Then, this 

value is the optimal parameter’s value. 

4. Testing the Student’s T-Distribution Hypothesis 

When we possess a dataset and hold a supposition that it conforms to a t-distribution, our aim is to 

assess the validity of this assumption based on the real data. To do so, we employ a test designed to 

evaluate how well the data fits this hypothesis, yielding a probability value (p-value) that quantifies 

the degree of support for our t-distribution hypothesis. This evaluation centers on quantifying the 

discrepancy between the observed distribution of the data and the presumed t-distribution model. We 

then juxtapose this discrepancy against similar measurements obtained from simulated datasets 

generated under the same t-distribution framework. The p-value is calculated as the proportion of 

these simulated discrepancies exceeding the one observed in the actual data. A high p-value (close to 

1) suggests that the divergence between the real data and the t-distribution model is likely due to 

random statistical fluctuations. Conversely, a low p-value indicates that the t-distribution may not be 

a suitable representation of the data. 

In the section titled "Power-Law Distributions in Empirical Data" subsection 3.3, the essay 

introduced a test known as the Kolmogorov-Smirnov (KS) statistic [4], and here are the specifics of 

this test: 
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To commence, we initiate the process by fitting our data to a t-distribution and estimating the 

relevant distribution parameters. In Python, we employ the kstest function to compute the 

Kolmogorov-Smirnov (KS) statistic. This statistic is computed by comparing the empirical 

cumulative distribution function (CDF) of our data with the theoretical CDF of the t-distribution. 

Following this step, we generate a substantial number of synthetic datasets, typically of the same size 

as our real data, each adhering to the t-distribution characterized by the previously estimated 

parameters. For each of these synthetic datasets, we calculate the KS statistic by comparing its 

empirical CDF with the theoretical CDF of the t-distribution. We track how often the KS statistic for 

the actual data is smaller than the KS statistic for the synthetic datasets. The proportion of times this 

occurs serves as the p-value for our test [4]. 

It's crucial to note that a high p-value does not necessarily confirm the correctness of the t-

distribution as the ideal fit for our data. Other data distributions may equally or even more effectively 

represent the data. Consequently, we must compare and eliminate the possibility of "good fits but 

incorrect" distributions. Our objective is to identify the best-fit distribution for the data in general, 

rather than exclusively for our specific observed dataset. Furthermore, exercising caution with high 

p-values is advisable when the sample size (n) is small. In such cases, the data might adhere to a t-

distribution only for a subset of observations rather than the entire dataset. Therefore, it is prudent to 

conduct these tests on larger datasets for more robust results.5. Determine the sample size that best 

fits the student’s t-distribution 

The determination of an appropriate sample size for effectively fitting the student’s t distribution 

also needs to be solved in this essay. For example, a dataset comprising 40 daily returns may achieve 

accurate fitting, and a dataset comprising 100 daily returns may not achieve accurate fitting. 

Addressing this query, we employ the Kolmogorov-Smirnov (KS) statistic, a rigorous statistical 

technique detailed in Chapter 4. The KS method operates as a robust tool for gauging the goodness 

of fit between a given dataset and a designated distribution. Through this analytical apparatus, a 

significant parameter is derived—the p-value, which resides within the range of 0 to 1. Elevated p-

values indicate a more favorable convergence between the dataset and the distribution. Consequently, 

by scrutinizing the variances in p-values contingent upon shifts in sample size, a discernible pattern 

emerges, illuminating the sample size that best approximates the Student's t-distribution.  

Assume we collect the daily returns from Day 1 to Day N. The daily return of Day 1 is 𝑅1 . 

ATheoptimum sample size is 𝑋. Normally, the sample size required to fit a distribution must be at 

least 30. Therefore, 𝑋 ≥ 30 .T  Then, we use ca computer toto generate random number 𝑎 (1 ≤
𝑟𝑒𝑡𝑢𝑟𝑛𝑠from 𝑅𝑎 to 𝑅𝑎+29 (30 daily returns in total) and fit to student’s t distribution. Using Kthe -

test, a p-value for this data is obtained Then, we add another daily return. Now, the data of daily 

returns s from 𝑅𝑎 to 𝑅𝑎+30. Then, we calculate the p-value for this data also. We repeat this process 

until we get the daily returns from 𝑅𝑎 to 𝑅𝑁, and calculate the p-value. Comparing the p-values we 

calculated, we can get the sample size that gets the maximum p-value. We called this sample size 𝐸1. 

Then, we will use ca computer to generate another random number repeat this process, and get another 

sample size 𝐸2 that gets the largest p-value. We will repeat this process 100 times and calculate the 

average of these ample sizes which is the optimum sample size𝑋:𝑋 =  
∑ 𝐸𝑖

100
𝑖=1

100
 

The X we calculate is 50. 

5. Check Whether the Normal Distribution or The Student’s T-Distribution Fits Better 

In this essay, we believe the data of daily returns fits better to t-distribution compared with normal-

distribution, and we will prove this idea in this chapter. We have two methods two prove this. 

The first method is assuming we have daily returns from Day 1 to Day N, and we declare a variable 

named TbestFit which its initial value is 0. Then, we get daily returns from Day 1 to Day X. Fitting 
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this data into student’s t distribution and normal distribution, we can get two p-values. If the p-value 

of student’s t distribution is larger than p-value of normal distribution, we will increase the value of 

TbestFit 1. Then, we will get daily returns from Day X+1 to Day 2X, and do the same calculation. 

We will repeat this process until the end day of the data we need to get exceeds Day N. Then, we will 

calculate the value of 
𝑇𝑏𝑒𝑠𝑡𝐹𝑖𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑒 𝑑𝑜𝑛𝑒
× 100%. We get daily returns of stocks Apple 

(AAPL), NVidia (NVDA), AEP, NEE. Therefore, we get 4 values: 72%, 88%, 79%, 81%. We can 

see that 70% of data fit t-distribution better compared with normal distribution. 

The second method is likelihood ratio test. First, this section is thought, but not executed in our 

example. The fundamental concept of the likelihood ratio test involves determining how well the data 

fits two different distributions that are in competition. To make this comparison, we compute the ratio 

of the likelihoods of the data under these two distributions. This ratio is greater than zero or less than 

zero, depending on which distribution is superior, or it can be zero if the two distributions perform 

equally well [5]. 

First, we set null hypothesis that normal distribution is the better fit for the data, and t-distribution 

as an alternative hypothesis. Then we calculate log-likelihood of each distribution. In this example, 

we use t-distribution and normal distribution as an example. We define two functions for calculating 

log-likelihood of distributions. In each function, we use np.sum () on logpdf values in order to 

calculate the sum of the logarithm of the pdf at each data point. This is a common approach to 

calculate the log-likelihood of a set of data points. Then the likelihood ratio statistic is computed by 

subtracting two log-likelihoods times two. To further evaluate the p-value, we need to take additional 

steps. In the likelihood ratio test, we compare a statistic known as the likelihood ratio statistic to a 

chi-squared distribution with one degree of freedom. The p-value is subsequently calculated as 1 

minus the cumulative distribution function (cdf) of the chi-squared statistic with df=1. This p-value 

then guides our decision-making process. If the obtained p-value is less than 0.05, using a significance 

level of 0.05, we reject the null hypothesis and lend support to the t-distribution as a more suitable fit. 

[4] Conversely, if the p-value is greater than or equal to 0.05, we do not reject the null hypothesis and 

instead consider the normal distribution to be a better fit. This method allows us to eliminate potential 

distributions that may have initially appeared favourable in the goodness-of-fit test due to a large p-

value but are subsequently rejected as the null hypothesis in the likelihood ratio test.  

6. Calculate the Fluctuation of Returns of the Stock 

We believe there is a relationship between the volatility of the stock and the degree of freedom of t-

distribution. First, the degree of freedom of student’s t-distribution is determined by the probability 

of extreme values occur. When the degree of freedom is close to positive infinite, the student’s t 

distribution is the normal distribution which has thinner tails in probability density function (the 

probability that extreme values occur is low). When the degree of freedom is close to 0, the student’s 

t-distribution has heavier tails in probability density function (the probability that extreme values 

occur is large). I believe there is a positive relationship between the fluctuation of the stock and the 

probability that extreme values occur. Since, the more fluctuant the stock is, the more likely the 

extreme returns may occur. To show the fluctuation of the stock, we use two methods: calculating the 

standard deviation of the stock’s data or interquartile range divided by mean of the stock’s data. 

7. Draw the Scatter Plot Between Fluctuation of the Stock and the Degree of Freedom 

For each data, we can get the degree of freedom, standard deviation, and 
𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒

𝑚𝑒𝑎𝑛
. Then, we 

will draw the scatter plot of degree of freedom and standard deviation (Graph 1) and the scatter plot 

of degree of freedom and 
𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒

𝑚𝑒𝑎𝑛
 (Graph 2). Here are the graphs: 
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Figure 1: The scatter plot of degree of freedom (y-axis) and standard deviation (x-axis) 

 

Figure 2: the scatter plot of degree of freedom (y-axis) and 
𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒

𝑚𝑒𝑎𝑛
 (x-axis) 

All these graphs’ x axis is degree of freedom and y axis is the fluctuation of stock returns. We can 

see that these two variables have inverse relationship which prove our ideas. 

8. Conclusion 

The essay shows that the degree of freedom has a inverse relationship with the fluctuation of the stock.  

In summary, this academic essay provides empirical evidence supporting the assertion that the 

student’s t-distribution offers a superior fit when compared to the normal distribution for modeling 

stock returns. Additionally, the essay underscores the efficiency of employing Maximum Likelihood 

Estimation (MLE) as a suitable method for estimating the parameters of both the student’s t-

distribution and the normal distribution in this context. Lastly, the study illuminates a noteworthy 

finding, indicating an inverse relationship between the degree of freedom and the volatility of stock 

returns. 
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