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Abstract: This paper introduces an innovative approach that utilizes support vector machines
(SVMs) to predict the bankruptcy of financial institutions within the United States. The study
aims to identify influential factors that contributed to bankruptcy during two significant peri-
ods: the 2008 financial crisis and post-2013. The goal is to highlight both shared and distinc-
tive characteristics between these time frames. The proposed method incorporates a meticu-
lous feature selection procedure to identify the most critical variables for assessing a bank’s
financial stability. Subsequently, the SVM model is fed with data containing these key vari-
ables from various banks, initiating both the training and testing phases. Specifically, two
SVM models were trained: one utilizing a linear kernel, and the other employing a non-linear
kernel. The objective was to assess their effectiveness in distinguishing between solvent and
insolvent banks. Moreover, a neural network model was developed and subjected to a com-
parative analysis alongside the aforementioned SVM models, all with the aim of identifying
the optimal method for bankruptcy prediction. The training dataset comprised data from the
ten quarters preceding bank failures post-2013, as well as the eight quarters leading up to
bank failures in 2010, during 2008 financial crisis. The SVM models were implemented us-
ing Scikit-Learn, while the neural network model was trained using PyTorch. Through this
comprehensive approach, the paper contributes to the advancement of predictive methodolo-
gies for identifying potential financial institution bankruptcies.

Keywords: Machine learning; Support Vector Machine; Bank failures; Stress testing; Fore-
casting

1. Introduction

American banks, particularly some commercial banks, have undergone a prolonged period of restruc-
turing and consolidation. This transformative process dates back to the 19th century(or earlier). The
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exceptional and unparalleled consolidation process of the American banking system has garnered
significant research attention. According to the study conducted by Ahn and Choi (2009), it was
demonstrated that banks play an exceedingly vital role because of their central position within the
financial system [1].

However, American banks often confront various risks in their daily operations, particularly dur-
ing times of extreme volatility, fragile risk management can potentially endanger a bank’s stability. A
bank is considered as a bank failure when it is unable to fulfill its financial commitments to creditors
or depositors, leading to its closure under the oversight of federal or state regulators [2]. In addition,
as the number of bankruptcy increases, the expenses associated with post-failure resolution also surge
[3].

In line with recent analysis by Greg and Carey (2023), the FDIC could have saved $13.6 billion
had regulators previously adhered to the total loss-absorbing capacity standard. In this research, the
data was selected from 527 banks during the period of 2007-2010 [4]. Additionally, figures from 804
banks post-2013 were concurrently chosen for comparison, encompassing 44 insolvent banks and 760
solvent banks. All data were derived from the American market, primarily consisting of commercial
banks with minimal government involvement.

Predicting bank failures is a crucial aspect of financial supervision and regulatory oversight. It
enables authorities to step in early, maintain financial stability, safeguard depositor funds, and mitigate
broader economic risks. In 2009, Boyacioglu, Kara, and Baykan originally introduced a classification
approach to categorize banks as solvent or insolvent [5]. However, this paper proposes a more precise
outcome in the form of a 4-level risk model.

Some notable research approaches have been proposed recently. For instance, discriminant analy-
sis primarily aims to identify financial variables that differentiate between solvent and insolvent banks
[6]. According to GARP, stress testing estimates how a portfolio or financial institution would fare
under extreme market conditions,which means it can determine whether a bank possesses sufficient
capital and liquid assets to endure various scenarios. When combined with VaR/ES analyses, a more
comprehensive risk assessment can be presented [7]. Furthermore, as demonstrated by Awaworyi
Churchill’s (2019) experimentation, Panel Data Analysis can effectively process data across multiple
periods for different banks, a methodology also applied in this research [8]. This approach enables the
capture of trends and changes over time that could serve as potential indicators of impending failures.

Machine Learning, a subset of artificial intelligence, grants computers the ability to learn with-
out explicit programming (Katsafados et al., 2023), which is employed in this research, combining
multiple models to enhance prediction accuracy by capitalizing on their individual strengths [9]. Be-
sides, this work also conduct Artificial Neural Networks (ANN), seeking to emulate the information
processing capabilities of the human brain.

In conclusion, this study advances the comprehension of bank failure prediction. It yields insights
into model effectiveness, crisis implications, stress testing, and the provision of improvement sugges-
tions for bank managers. Additionally, some limitations and prospects are also addressed.

2. Methodology

2.1. Support Vector Machine

In this study, a range of methodologies will be employed to construct models intended for stress
testing and predicting bank failures. Subsequent to this, a comparison and contrast of their respective
outcomes will be carried out. While exploring various approaches, the primary emphasis will be
placed on the SVM (Support Vector Machine) model. This selection is based on its notable proficiency
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in scenarios involving limited training data, as evident in the case with only 51 recorded instances of
bank failures post-2013. The forthcoming sections will provide a concise overview of the SVM model.

In 1995, Corinna Cortes and Vladimir Vapnik introduced Support Vector Machines (SVM), which
have since become a prevalent supervised machine learning technique primarily used for binary clas-
sification tasks [10].The fundamental concept behind SVM learning is to identify a hyperplane that
effectively partitions the data while maximizing the margin between the two classes within the feature
space.

As depicted in Figure 1, the hyperplane w · x + b = 0 serves as a separator. While there are
infinitely many possible separators for a given dataset, but the one with the maximum margin from
both classes is unique.

Figure 1: The optimal hyperplane and the maximized margin 1
∥w∥ .

Before proceeding with the derivation, define the training dataset:

T = {(x1, y1), (x2, y2), ..., (xm, ym)}

Where:

xi ∈ Rn, yi ∈ {−1, 1} ∀i = 1, 2, ...,m,

xi represents the ith feature vector, which encompassing all n variables of the ith bank
yi indicates whether the bank fails. (yi = 1 signifies the bank’s solvency, while yi = −1 indicates

otherwise.)

2.1.1. SVM in linearly separable case

To begin, the initial assumption is that the dataset can be linearly separated.
Hence, a separator can be represented as:

w · x+ b = 0 (1)

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/97/20231278

65



satisfying:

yi(w · xi + b) > 0 for i = 1, 2, ...,m

The distance between the data point (xi, yi) and the separator is given by:

yi(
w

∥w∥ · xi +
b

∥w∥)

Therefore, the objective of maximizing the SVM margin can be expressed as:

max
w,b

min
i=1,2,..,m

yi(
w

∥w∥ · xi +
b

∥w∥)

Upon reparameterization, the Lagrangian for this specific problem can be formulated as follows:

L(w, b, λ1, λ2, ..., λm) =
1
2
∥w∥2 −

∑m
i=1 λi(yi(w · xi + b)− 1),

In this equation, λ1, ..., λm represent Lagrange multipliers, satisfying λi ≥ 0 for i = 1, ...,m.
Given the convexity of this optimization problem and its satisfaction of the Karush-Kuhn-Tucker

(KKT) conditions, strong duality is established. Thus, it becomes advantageous to tackle its dual
counterpart, which is defined as follows:

min
λ1,...λm

1
2

∑m
i=1

∑m
j=1 λiλjyiyj(xi · xj)−

∑m
k=1 λi

s.t.
∑m

i=1 λiyi = 0 and λi ≥ 0 for i = 1, ...,m

After obtaining the solution for the dual problem, denoted as λ∗
1, λ

∗
2, ..., λ

∗
m, the solution for the

primal problem is as follows:

w∗ =
∑m

i=1 λ
∗
i yixi (2)

b∗ = yj −
∑m

i=1 λ
∗
i yi(xi · xj) for some λj > 0

2.1.2. SVM in linearly inseparable case

In reality, the majority of datasets exhibit linear inseparability, as illustrated in Figure 1.
One approach to address this challenge involves improving SVM by introducing the concept of

soft margins. This concept permits a systematic approach to learning from training set errors [10].
In other words, this work permit certain points to satisfy yi(w·xi+b) < 1, and a penalty parameter

C will be introduced along with non-negative slack variables ξi. This allows the primal optimization
problem be reformulate as follows:

min
w,b,ξi

1
2
∥w∥2 + C

∑m
i=1 ξi

s.t. yi(w · xi + b) ≥ 1− ξi

Here, ξi = max{0, 1− yi(w · xi + b)}

Likewise, through the application of Lagrangian and its dual formulation, the result can be derived:

w∗ =
∑m

i=1 λ
∗
i yixi (3)

b∗ = yj −
∑m

i=1 λ
∗
i yi(xi · xj) for some 0 < λ∗

j < C

f(x) =
∑m

i=1 λ
∗
i yi(xi · x) + b∗ (4)
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Figure 2: The linearly inseparable dataset. As evident from the graph, none of the straight lines can
effectively segregate failed banks from solvent banks.

The value of f(x) predicts the probability of a bank failure to some extent.
In addition to the "soft margin" approach, linear inseparability can also be tackled using the "Ker-

nel Trick." As the required outcomes are solely based on the dot product, there is no necessity to
explicitly define the nonlinear transformation. By replacing the dot product with various Kernel func-
tions, the dataset can be mapped into a higher-dimensional space, achieving linear separability and
enabling the establishment of a non-linear SVM model without a substantial escalation in computa-
tional expenses.

In summary, the results in non-linear SVM model with soft margin should be:

b∗ = yj −
∑m

i=1 λ
∗
i yiK(xi,xj) for some 0 < λ∗

j < C

f(x) =
∑m

i=1 λ
∗
i yiK(xi,x) + b∗ (5)

In this study, the SVM model will undergo training using the following three distinct kernels:
(1) The inhomogeneous degree-1 polynomial kernel (Linear):

K(x,x′) = (x · x′ + c)

(2) The Gaussian kernel:

K(x,x′) = exp(−∥x−x′∥2
2σ2 )

(3) The inhomogeneous degree-4 Polynomial kernel:

K(x,x′) = (x · x′ + c)4

(The choice of a degree-4 polynomial kernel is driven by the observation that both degree-2 and
degree-3 polynomial kernels yield results that are approximately linear.)
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2.1.3. Class weight

The collected bank dataset exhibits a substantial class imbalance, with the number of solvent banks
being approximately fifteen times greater than that of failed banks. Given this scenario, it becomes
imperative to assign class weights that are approximately fifteen times higher to the failed banks.
The approach known as MetaCost prompts the model to attribute roughly 15 times higher values to
the penalty parameter ’C’ for the failed banks. Consequently, the cost associated with misclassifying
failed banks is amplified, effectively heightening the penalty for any misclassification errors related to
this minority class [11]. Through this process, the machine learning algorithm places heightened sig-
nificance on the underrepresented failed banks in contrast to the solvent banks. This strategic weight-
ing fosters a more equitable learning process, thereby enhancing the model’s ability to generalize
effectively.

2.2. Tenfold cross-validation method

As evident from the kernels above, the parameters c and σ are present. These parameters are com-
monly referred to as hyperparameters. Hyperparameters play a pivotal role in determining the struc-
ture of the SVM model, and their optimization during the learning process is of paramount importance
to ensure both effective performance and prevention of overfitting.

Overfitting, a prevalent occurrence in machine learning and statistical modeling, denotes a situ-
ation where the model achieves very high accuracy on the training data but fails to generalize ef-
fectively on new, unseen data. When overfitting occurs, the model exhibits poor performance on test
data, demonstrates unwarranted complexity, and produces predictions that lack coherence and appear
excessively irrational. Hence, preventing overfitting of training an SVM model is crucial. One effec-
tive approach is to employ cross-validation during model training, as this method provides enhanced
insights into its performance on previously unseen data.

In this study, a cross-validation technique termed tenfold cross-validation is employed. A brief
overview of this approach is provided follows below. Tenfold cross-validation stands as an established
and conventional methodology in practical applications, with thorough testing revealing that 10 is
about the right number of folds to get the best estimate of error [12].

In the tenfold cross-validation method, data is divided into ten equal partitions. In each iteration,
one partition serves as the test set while the others constitute the training set. This process is repeated
ten times, and the mean-squared-error (MSE) is computed by averaging the MSE across iterations.
The hyperparameter and factor selection associated with the lowest average MSE are ultimately cho-
sen.

2.3. Feature Selection

To reduce the risk of overfitting of the SVM model, it is necessary to simplify its complexity. One
effective strategy involves conducting feature selection prior to model training. Thus, this section
provides a concise introduction to the functioning of the feature selection method. The technique
employed in this work is known as ElasticNet [13]. This technique amalgamates both Ridge regres-
sion by Hoerl, A. E. and Kennard, R. W. in 1970 and LASSO regression by Robert Tibshirani 1996
methods [14,15]. This is achieved by modifying Q(β) to:

Q(β) = ∥y −Xβ∥2 + α(1− L1Ratio)∥β∥2+α(L1Ratio)
∑p

i=1 |β| (6)

Here, both α and L1Ratio are hyperparameter that need to be specified at the outset.
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In this scenario, L1Ratio = 0 corresponds to Ridge regression, and L1Ratio = 1 corresponds to
LASSO regression.

Since Q(β) incorporates an absolute value term, rendering it non-differentiable. Thus, employing
subgradient descent or coordinate descent methods becomes necessary to attain the optimal value of
β.

3. Experiments

3.1. Data

The dataset of this research comprises 44 banks that encountered failure after 2013 and possessed over
10 consecutive quarters of accessible data before their collapse. For each failed bank, it is matched
with approximately 17 solvent banks, and data over the 10 quarters preceding the collapse of the failed
bank were collected for all banks in this group. This approach resulted in the final dataset comprising
data from 44 failed banks and 760 solvent banks across a span of 10 quarters.

Throughout this timeframe, this research gathered 42 factors (as detailed in Table 1) for each bank.
(Data from Assets and Liabilities are expressed as a ratio to total assets, while data from Income and
Expense are expressed as a ratio to total interest income.)

Furthermore, this research extended the analysis to banks that failed during the 2008 financial
crisis to enable a comparative study. For this purpose, data with same factors was collected from 47
randomly chosen failed banks and 480 solvent banks within that timeframe.

Table 1: 42 factors collected for each bank

Source Category Name Detail

A&L Assets CDDI Cash and due from depository institutions

A&L Assets LLA Loan loss allowance

A&L Assets GOI Goodwill and other intangibles

A&L Liabilities TD Total Deposits

A&L Liabilities IBD Interest-bearing deposits

A&L Liabilities SD Subordinated debt

A&L Memoranda AAY Average Assets, year-to-date

A&L Memoranda VL Volatile liabilities

A&L Memoranda ULC Unused loan commitments

A&L Memoranda T1RC Tier 1 (core) risk-based capital

A&L Memoranda T2RC Tier 2 risk-based capital

A&L Memoranda TUC Total unused commitments

I&E Interest Expense TIE Total interest expense

I&E Other Expense TNE Total noninterest expense

I&E Other Expense SEB Salaries and employee benefits

I&E Other Expense PLLL Provision for loan and lease losses

I&E Other Income TNI Total noninterest income

I&E Other Income TAGF Trading account gains and fees

I&E Other Income ANI Additional Noninterest Income

I&E Other Income PNOI Pre-tax net operating income
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Source Category Name Detail

I&E Other Income SGL Securities gains (losses)

I&E Other Income NIBM Net income of bank and minority interests.

I&E Other Income CD Cash dividends

I&E Other Income NOI Net operating income

P&C Performance Ratios YEA Yield on earning assets

P&C Performance Ratios CFEA Cost of funding earning assets

P&C Performance Ratios NIM Net interest margin

P&C Performance Ratios ROA Return on assets (ROA)

P&C Performance Ratios ROE Return on Equity (ROE)

P&C Performance Ratios NCL Net charge-offs to loans

P&C Performance Ratios CLPNC Credit loss provision to net charge-offs

P&C Performance Ratios ER Efficiency ratio

P&C Performance Ratios APE Assets per employee ($millions)

P&C Condition Ratios LAL Loss allowance to loans

P&C Condition Ratios LLANL Loan loss allowance to noncurrent loans

P&C Condition Ratios NLL Noncurrent loans to loans

P&C Condition Ratios NLLD Net loans and leases to deposits

P&C Condition Ratios NLLTA Net loans and leases to total assets

P&C Condition Ratios ECA Equity capital to assets

P&C Condition Ratios CCR Core capital (leverage) ratio

P&C Condition Ratios T1RCR Tier 1 risk-based capital ratio

P&C Condition Ratios TRCR Total risk-based capital ratio

(A&L: Assets and Liabilities, I&E: Income and Expense. P&C: performance and condition ratios. Variables from A&L are expressed as ratios to total
assets, while variables from I&E are expressed as ratios to total interest income.)

3.2. Feature selection

To enhance the efficiency of the SVM model, the identification of relevant, useful, and uncorrelated
features before training is crucial. In this study, the feature selection process will be conducted using
the ElasticNet Regression Algorithm, as introduced in the methodology part. Acknowledging the
potential variation in the influence of specific factors across different time periods, once relevance
indices are acquired for 420 variables, these indices will be combined for each factor over ten quarters
to do the feature selection. Hence, for banks that experienced failure after the year 2013, the ten most
significant factors ranked by relevance have been determined. These factors are presented in Table 2.
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Table 2: Results of feature selection for data of bank failures after 2013

Name Detail

NLL Noncurrent loans to loans

NCL Net charge-offs to loans

TRCR Total risk-based capital ratio

ECA Equity capital to assets

T1RC Tier 1 (core) risk-based capital to total assets

LAL Loss allowance to loans

TD Total Deposits to total assets

GOI Goodwill and other intangibles to total assets

NLLTA Net loans and leases to total assets

Similarly, in the case of bank failures during the 2008 financial crisis, the ten most relevant factors
are also identified. These factors are presented in Table 3.

Table 3: Results of feature selection for data on bank failures during the 2008 financial crisis

Name Detail

T1RC Tier 1 (core) risk-based capital to total assets

CCR Core capital (leverage) ratio

TD Total Deposits to total assets

VL Volatile liabilities to total assets

ECA Equity capital to assets

NLL Noncurrent loans to loans

LAL Loss allowance to loans

TIE Total interest expense to total interest income

NCL Net charge-offs to loans

3.3. Training SVM model

Following the completion of the feature selection process, the remaining variables are input into the
SVM model. A linear SVM model and two non-linear SVM models (with Gaussian Kernel, 4-degree
Polynomial Kernel) were constructed. Through utilization of the hyperplane equation, accuracy of the
SVM models can be deduced by assessing each vector against the separator. Table 4 outlines details of
the three distinct SVM models. (Given that selecting 20 variables might introduce a greater amount of
noise, this research use a more comprehensive approach by not only employing cross-validation but
also partitioning 20% of banks into a separate testing set. Furthermore, the table includes a so-called
CV score, which represents the evaluated accuracy obtained through cross-validation.)

Table 4: The accuracy of 20-dimensional SVM models based on data from post-2013

Model Solvent Accuracy Insolvent Accuracy General Accuracy CV Score Factor employed

Linear SVM 100% 86.364% 99.254% 99.536% ECA, TRCR

Gaussian SVM 99.474% 90.909% 99.005% 98.288% ECA, NLL

Degree-4 Poly. SVM 95.921% 95.455% 95.896% 94.553% NLLTA, TRCR

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/97/20231278

71



Based on Table 4, all three trained SVM models exhibit remarkable accuracy in predicting bank
failures. The Linear SVM model stands out, boasting 100% accuracy in solvent accuracy, 86.364% ac-
curacy in insolvent accuracy, and an general accuracy of 99.254%. The Gaussian SVM also performs
well, achieving 99.474% solvent accuracy, 90.909% insolvent accuracy, and an general accuracy of
99.005%. As for the Degree-4 Poly SVM, although its solvent accuracy of 95.921% and general ac-
curacy of 95.896% are comparatively lower, it excels with the highest insolvent accuracy, reaching
95.455%.

For the linear SVM model, it assigns an importance index to each variable and establishes a
hyperplane based on a subset of these variables. In the post-2013 SVM model, which refers to the
model covering the period after 2013, its hyperplane equation involves 20 variables, encompassing 2
factors over a span of 10 quarters. The hyperplane equation is as follows:

−5.544×ECAQ1− 3.329×ECAQ2− 2.720×ECAQ3− 1.893×ECAQ4− 1.681×ECAQ5

−0.910×ECAQ6− 0.721×ECAQ7− 0.515×ECAQ8− 0.511×ECAQ9− 0.347×ECAQ10

−6.281×TRCRQ1−2.891×TRCRQ2−1.884×TRCRQ3−1.021×TRCRQ4−0.346×TRCRQ5

+0.632× TRCRQ6 + 0.693× TRCRQ7 + 0.715× TRCRQ8 + 0.438× TRCRQ9 + 0.496×
TRCRQ10 + 2.078 = 0

(Values are retained to three decimal places)
Among the factors, "ECA" (Equity capital to assets) and "TRCR" (Total risk-based capital ratio)

emerge as the two most relevant variables to bank failures during the overall 10-quarter period. The
quarters are denoted as Q1 for the final quarter preceding bank failures, Q2 for the penultimate quarter,
and so forth.

Based on the above results, as time distances itself from the bankruptcy event, the absolute coef-
ficients linked to ECA (Equity capital to assets) remain negative and tend to decrease. This indicates
that the equity capital of a poorly managed bank usually constitutes a smaller ratio of its total assets
compared to other normal banks. In addition, more recent data holds a stronger influence on predictive
outcomes.

Similarly, the coefficients of TRCR (total risk-based capital ratio) increase as time moves further
away from the collapse event. This suggests that the total risk-based capital ratio of a failed bank
consistently declines as it approaches its failure.

In addition to the straightforward trend, both data sets display a distribution closely resembling a
logarithmic curve in relation to the quarters.

3.3.1. A linear SVM model with only two variables

Visualizing a hyperplane in a 20-dimensional space, however, is intricate and unfeasible through a
graph. To present more comprehensible results and reduce the complexity of the model, a model se-
lecting only 2 variables from a pool of 100 variables was trained. (As using only 2 variables contain
significantly less noise, cross-validation alone is sufficient to tackle overfitting.) This model demon-
strates inferior performance compared to the 20-variable model, achieving a prediction accuracy of
98.756%, and the hyperplane equation of this model is:

−10.117× T1RCQ1− 11.741× ECAQ1 + 1.362 = 0

The key variables that hold substantial predictive significance in anticipating instances of bank
failures comprise T1RCQ1 (Tier 1 (core) risk-based capital to total assets in Quarter 1) and ECAQ1
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(Equity capital to assets in Quarter 1). Remarkably, the variable T1RCQ1 does not emerge as a selec-
tion within the scope of the 20-dimensional linear SVM model. This observed disparity could be at-
tributed to the overarching influence wielded by the TRCR factor throughout the complete ten-quarter
period leading up to occurrences of bank failures, whereas T1RC demonstrates a more pronounced
influence as a constituent variable within specific quarters. Moreover, these two factors exhibit a sig-
nificant degree of interrelation, thus the identification of a variable change subsequent to an alteration
in the count of selected variables is a coherent outcome.

Figure 3 visually presents the hyperplane and dataset within a 2-dimensional context.

Figure 3: The bank dataset along with the 2D hyperplane

3.3.2. Classify the risk level

As evident from the analysis, a noteworthy portion of failed banks continues to be categorized as
solvent under the linear SVM model. To address this limitation, a refinement in this approach is
introduced, whereby banks are separated into four distinct level of risk (L1 for highest risk, L4 for
lowest risk and so on). In the subsequent sections of this paper, this model is referred to the ’4-level
model’ to prevent any confusion with the linear SVM model.

In the following, separators for these risk levels will be abbreviated, e.g. "Sep12" representing
the separator between L1 and L2. The hyperplane generated earlier shows a remarkable accuracy in
classifying the solvent banks, so it can effectively act as Sep12.

To establish the boundaries for the remaining three risk levels, a multi-classification approach is
required for the SVM . Thus, a manual manipulation similar to the one-against-all method by Hsu and
Lin in 2002 is executed on the penalty parameter ’C’. Through an increase in penalties associated with
the erroneous classification of failed banks, and with a reduction in penalties for the misclassification
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of solvent banks, this research purposefully modify the class weighting scheme [16]. This adjustment
culminates in the formulation that substantially advances the precision of failed bank classification.
Consequently, through a calibration of the penalty parameter ’C’, the other two separators are able to
derived, which distinguish L2, L3 and L4. It’s worth noting that while this process utilizes an approach
similar to multi-classification, the dataset exclusively provides information regarding the occurrence
of bank failures, rather than offering explicit insight into their distinct risk levels. Consequently, the
4-level model does not strictly qualify as a genuine multi-class SVM.

Given that increasing the penalty parameter ’C’ for a relatively small class (failed banks) can
potentially lead to overfitting, it becomes evident that reducing the complexity of the machine learning
approach is essential.Thus, the new model is designed to operate in a two-dimensional space, as
described above, instead of utilizing all 20 variables. The accuracy, along with the corresponding
equations for each separator, have been presented in Table 5, and the graphical representation of the
separators can be observed in Figure 4.

Table 5: The accuracy and equation of three separators for post-2013 4-level model.

Separator Solvent Accuracy Insolvent Accuracy General Accuracy CV Score Equation

Sep12 99.868% 81.818% 98.881% 98.877% -10.117×T1RCQ1-11.741×ECAQ1=-1.362

Sep23 97.368% 88.636% 96.891% 96.765% -8.026×T1RCQ1-16.820×ECAQ1=-1.979

Sep34 95.132% 95.455% 95.149% 91.935% -6.068×T1RCQ1-17.950×ECAQ1=-2.013

Figure 4: Graph of separators for post-2013 4-level model
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3.3.3. Long-term forecasting

In previous experiments, a forecasting model using the dataset is formulated, enabling an evaluation of
risk levels for individual banks. Managers input historical data spanning the past 10 quarters, and the
model generates a risk assessment for the bank in the upcoming month. Consequently, this forecasting
model can only offer risk assessments for the immediate future. This limitation might not fully satisfy
the needs of managers and regulators seeking to evaluate bank risks over a more extended period.
To address this limitation, a long-term risk assessing model was developed by adapting this 4-level
model in the following manner:

Select two most influential factors within "Q1-Q10" (20 variables) to build a 4-level model, as
previously done.

Likewise, in the case of "Q2-Q10" (comprising 18 variables), after two quarters, identify the two
most relevant variables. These chosen variables will then be input into the 4-level model to derive
the updated separator equations. It is worth noting that the resulting separator equations are likely to
differ from those of the initial model.

Repeat this process for "Q3-Q10" (16 variables) and "Q4-Q10" (14 variables) to create two ad-
ditional models. These models enable predictions of the bank’s risk level after 3 and 4 quarters,
respectively.

Combine these four linear SVM models and establish a forecasting model that predicts bank
failures 4-quarter in advance.

In practice, with managers inputting a bank’s data from the past 10 quarters, data from 9, 8, and 7
moset recent quarters can be selected. This selected data can then be utilized as input for the risk level
classification model, resulting in the bank’s risk level prediction for the following 2, 3, and 4 quarters,
respectively.

In this experimental setup, four 4-level models (Q1-Q10, Q2-Q10, Q3-Q10, and Q4-Q10) were
developed, and evaluations were conducted for each model. The separator equations, their correspond-
ing accuracy, and the accompanying graphs have been derived and are presented below. (Results for
Q1-Q10 have already been derived above, so the following (Table 6 to Table 8 and Figure 5 to Figure
7) contains results for the remaining three models):

Table 6: The accuracy and equation of separators for post-2013 Q2-Q10 4-level model

Separator Solvent Accuracy Insolvent Accuracy General Accuracy CV Score Equation

Sep12 99.079% 81.818% 98.134% 98.136% -9.763×ECAQ3-12.688×ECAQ2=-1.619

Sep23 95.921% 90.909% 95.647% 96.148% -12.753×ECAQ3-15.086×ECAQ2=-2.295

Sep34 84.605% 97.727% 85.323% 84.468% -14.542×ECAQ3-15.234×ECAQ2=-2.762
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Figure 5: Graph of separators for post-2013 Q2-Q10 4-level model

Table 7: The accuracy and equation of separators for post-2013 Q3-Q10 4-level model

Separator Solvent Accuracy Insolvent Accuracy General Accuracy CV Score Equation

Sep12 99.737% 75% 98.383% 98.383% -11.199×ECAQ4-10.488×TRCRQ3=-1.911

Sep23 90.395% 86.363% 90.174% 88.815% -14.895×ECAQ4-11.271×TRCRQ3=-2.675

Sep34 77.5% 97.727% 78.607% 79.002% -15.137×ECAQ4-10.099×TRCRQ3=-2.731

Figure 6: Graph of separators for post-2013 Q3-Q10 4-level model
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Table 8: The accuracy and equation of separators for post-2013 Q4-Q10 4-level model

Separator Solvent Accuracy Insolvent Accuracy General Accuracy CV Score Equation

Sep12 97.895% 77.273% 96.766% 96.523% -9.806×ECAQ5-11.933×ECAQ4=-1.642

Sep23 87.763% 88.636% 87.811% 87.942% -12.325×ECAQ5-15.274×ECAQ4=-2.416

Sep34 60.789% 95.455% 62.686% 63.211% -12.229×ECAQ5-15.201×ECAQ4=-2.777

Figure 7: Graph of separators for post-2013 Q4-Q10 4-level model

Based on the results above, the accuracy trends of the 4-level model align with the expected
pattern, where the general accuracy predicting for bankruptcies that are more distant in the future
tends to decrease. For instance, the general accuracy of the Sep12 prediction trained by Q1-Q10
reduces from 98.881% to 96.766% when trained by Q4-Q10. In other words, as the model is trained
with data from time points further removed, its overall accuracy tends to decline.

However, a slight fluctuation in insolvent accuracy persists. For instance, the general accuracy of
the Sep12 prediction trained by Q3-Q10 data, which stands at 98.383%, is slightly higher than the
98.134% achieved when trained by Q2-Q10 data. This slight fluctuation is primarily can be attributed
mainly to the constrained size of the failed banks dataset. In summary, despite the accuracy decline,
the 4-level model maintains a relatively high overall accuracy even trained with quarters Q4-Q10. This
suggests that the model retains its ability to effectively forecast the prospective risk level of a bank in
the next year, thereby offering valuable insights to bank managers for enhancing their institutions.

4. Discussion

4.1. Application

In previous experiments, feature selection methods and SVM theory were used to construct two dif-
ferent models. The linear SVM models give a prediction whether a specific bank will fail while the
4-level model derive its risk level. However, in practice, merely forecasting failure or risk level is not
enough for managers and regulators. In this part, several practical application of these two models are
introduced:
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4.1.1. Stress testing model

Instead of solely inputting data exclusively from the bank under examination into the models, bank
managers also have the option to input a combination of their bank’s data along with data from failed
banks or data from specific severe economic scenarios. This approach enables them to evaluate, under
these rigorous conditions, whether the bank might potentially fail based on the prediction of the linear
SVM model or whether the bank could maintain its present risk level based on the result of the 4-level
model.

Additionally, beyond directly altering the data, managers can consider adverse economic events
as a vector, denoted as v, within the context of a two-dimensional scenario depicted in Figure 8.

Importantly, the utilization of a two-dimensional graph is intended to enhance the comprehen-
siveness and clarity of this approach. It is crucial to note that this methodology is not limited to two
dimensions. Rather, it is applicable across all dimensions and is effective for both the linear SVM
model and the 4-level model. This event exerts a negative impact on the bank, causing it to shift
towards the lower-left side of the graph. A new separator can be defined by displacing the original
separator w · x + b in the opposite direction of v with a magnitude of ∥v∥ (illustrated as the dashed
line in Figure 8). This new separator is parallel to the initial one, and its equation is:

w · (x+ v) + b = 0

In financial terms, this hyperplane determines whether the bank will transition into the insolvency
class (or a higher risk level) as a result of the impact of the event v.

Now, let’s consider two banks, namely Bank A and Bank B, with their respective positions illus-
trated in Figure 8. Notably, Bank A is positioned farther from the original separator (w · x + b) in
comparison to Bank B. This positioning implies that Bank A often demonstrates a greater resilience
against adverse economic conditions or systemic shocks. Furthermore, upon introducing the new sep-
arator (w · (x+v)+ b), despite both institutions are classified as solvent in the linear SVM model (or
categorized as Li in the 4-level model, where i = 2, 3, 4, thereby making w ·x+b represent Separator
of Li and L(i−1) ), there remains a notably high potential risk for Bank B under the influence of this
event. (Bank B is anticipated to transition into the insolvency class or a higher risk level.)

Consequently, both of the methods mentioned above provide a practical application for utilizing
this linear SVM models as well as the 4-level model in stress testing. These methods aid bank man-
agers in evaluating their bank’s capacity to withstand adverse conditions and the potential impact of
economic downturns on their institutions.
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Figure 8: Graph of two separators, Bank A, Bank B, and the event vector v

4.1.2. Improvement strategy

In addition to negative influences, certain events can also positively impact a bank’s operations. How-
ever, it is important to note that bank managers cannot rely solely on the occurrence of these events
to enhance their bank’s operations. Instead, they must proactively make improvements to the bank’s
operations through strategic actions. In the following, the paper will introduce how to use the linear
SVM model or a 4-level model mentioned in the previous part to enhance bank operations.

Figure 9 illustrates a simplified 2-dimensional scenario. However, it is important to emphasize
that our methodology is applicable across all dimensions. Within this context, point C represents
a particular bank (referred to as bank C) and is characterized by its position vector xc. According
to the 4-level model, this bank is classified as L1 which means it has very high risk of potential
failure. (or predicted to fail in a near future in linear SVM model) To shift it into L2, the high-risk
category, (or solvency class in linear SVM model) various strategies are viable for bank C. This can
be accomplished by elevating either feature 1, feature 2, or both, until the bank’s position lies above
the separator.

For bank managers aiming to enhance their institution’s operations, the primary objective is to
identify the improvement strategy that incurs the minimal opportunity cost. Initially, let us consider a
loss function denoted by f(x), which quantifies the impact of altering the bank’s state by a vector x.
The manager’s objective is to reduce the bank to a lower risk level by adjusting its position through a
vector x, where the equation of the separator is:

w · x+ b = 0

This problem can be formalized as follows:

min
x

f(x) s.t. w · (xc + x) + b > 0

By employing the Lagrangian approach, the problem can be written as:

min
x

f(x)− λ(w · (xc + x) + b− z)
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Here, λ represents the Lagrange multipliers and z acts as a slack variable, with the conditions
λ > 0 and z > 0

As a result, the optimal strategy for improvement, denoted as x̂, can be derived by differentiating
the equation with respect to x and subsequently satisfying the equation:

∇f(x̂) = λw

Figure 9: A simplified 2-dimensional scenario for improving strategy of the bank

4.2. Comparison

In the preceding sections, this research developed a long-term forecasting model to assess the risk of
bank failure, and the SVM model has exhibited a high accuracy. In this section, several distinct types
of comparisons will be undertaken.

4.2.1. Comparison between SVM and Neural Networks

The study conducted by Iturriaga and Sanz (2015) gave a comparative analysis of the Artificial Neural
Networks and Support Vector Machines (SVM) in the context of predicting U.S. bank failures from
2002 to 2012 [17]. Their investigation indicated that Neural Network methodologies are more accu-
rate in a short period, specifically in the immediate year prior to a bank’s failure, whereas the SVM
approach outperforms over long durations (2 to 3 years preceding a bank’s failure).

In this study, two distinct models were formulated: a linear Support Vector Machine (SVM) model
and an Artificial Neural Networks (ANN) model. Both model are trained with ten-fold crsoss vali-
dation to avoid the overfitting happens. These models were trained using data from different time
intervals to evaluate the accuracy of predictions in both the short term and long term. The outcomes
of the analysis are comprehensively outlined in Table 9. Notably, the ANN model demonstrates sev-
eral distinctive characteristics:
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(a) The first phenomenon is similar to the long-term SVM model which has been developed in
the preceding section. The predictive accuracy of the ANN model also demonstrates a decline for
bankruptcies projected further into the future. In other word, as the model incorporates data from
more distant time points during training, its overall accuracy tends to diminish. This trend aligns
precisely with our expectations. For instance, the general accuracy of the prediction results obtained
from the ANN model exhibits a decrease from 82.090% to 79.104%. Moreover, owing to the restricted
dataset size, a certain degree of fluctuation remains evident. For instance, the general accuracy of the
ANN model trained using Q4-Q10 data is marginally higher than that achieved using Q3-Q10 and
Q2-Q10 data.

(b) Despite the relatively poor overall accuracy demonstrated by the ANN model, it is noteworthy
that the accuracy pertaining to insolvent cases is higher in the ANN model compared to the SVM
model across all four training phases. However, through the strategic manipulation of the penalty
parameter, the SVM model can also achieve a heightened level of accuracy in predicting insolvent
cases. A comparative analysis of the Sep23 (Separator of L2 and L3) accuracy between the SVM
and Neural Network models is presented in Table 9. Evidently, all three accuracy types of Sep23
are higher than those of the neural network, thereby indicating that when confronted with a limited
dataset, the performance of the neural network are inferior than that of the SVM model across all
evaluated dimensions.

(c) Furthermore, the ANN model operates with a notably intricate algorithm. While it outper-
forms in accomplishing precise classifications, the decision boundary is often not as transparent. This
presents two challenges. First, upon categorizing a bank as insolvent, the ANN model does not of-
fer the proximity of this classification to the solvent region, nor does it quantify the associated risk
level. Second, the ANN model falls short in delivering feasible recommendations to specific banks,
rendering it less effective in assisting bank managers with practical solutions. In contrast, the ap-
plication of the Linear SVM model yields distinct advantages. The model establishes a hyperplane
with precision, furnishing a clear separation between categories. This distinct boundary empowers
us to provide concrete recommendations to bank managers, enhancing the model’s utility in offering
feasible solutions.

Table 9: The accuracy of Sep23 and Artificial Neural network in short and long term

Train Phases
Linear SVM model (Sep23) Neural Network

Solvent Accuracy Insolvent Accuracy General Solvent Accuracy Insolvent Accuracy General

Q1-Q10 97.368% 88.636% 96.891% 81.711% 88.636% 82.090%

Q2-Q10 95.921% 90.909% 95.647% 77.895% 86.364% 78.358%

Q3-Q10 90.395% 86.363% 90.174% 77.763% 86.364% 78.234%

Q4-Q10 87.763% 88.636% 87.811% 78.816% 84.091% 79.104%

4.2.2. Comparison between feature selection results in two periods

For training the SVM models in the two distinct periods, it was necessary to perform feature selection
separately. The outcomes of this process hold valuable insights for analysis as well. The results of
feature selection for the two timeframes are presented in Table 2 and Table 3 in the earlier section.
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Although the result of feature selection are relatively similar in two periods, this experiment indicates
there is still several remarkable difference between results of two periods:

(1) GOI (Goodwill and other intangibles to total assets) and TRCR (Total risk-based capital ratio)
plays a more important role recently;

(2) The importance of CCR (Core capital (leverage) ratio) and VL (Volatile liabilities to total
assets) drops significantly.

Although both ratios provide valuable insights,there is a trend that the importance of TRCR over
CCR.Here is the breakdown of their differences and potential reasons:

(a) The Total Risk-Based Capital Ratio takes into account a broader range of risks that a bank
might face, including credit risk, market risk, and operational risk. This makes it a more comprehen-
sive measure of a bank’s overall financial strength and ability to withstand various types of economic
and financial shocks.

(b) The Total Risk-Based Capital Ratio adjusts the capital requirement based on the risk profile
of a bank’s assets and activities. This means that banks with riskier portfolios will be required to hold
more capital to cover potential losses. This sensitivity to risk makes the Total Risk-Based Capital
Ratio more reflective of a bank’s actual risk exposure.

(c) The Total Risk-Based Capital Ratio is designed to assess a bank’s ability to weather economic
downturns and financial crises. By incorporating various risk factors, it provides a more realistic
assessment of a bank’s resilience in adverse scenarios.

To sum up, the Total Risk-Based Capital Ratio is often considered more comprehensive and re-
flective of a bank’s risk exposure. It takes into account a wider range of risks, aligns with international
standards, and is used as a regulatory compliance measure.

In addition, GOI also plays an essential role among these correlative factors.Goodwill and other in-
tangibles generally represent non-physical assets such as brand value, intellectual property, customer
relationships, and patents.The ratio of Goodwill and other intangibles to total assets is a financial met-
ric that provides insights into a bank’s financial structure and the extent to which intangible assets,
like goodwill, contribute to its overall asset base.The reasons why this ratio can be important and what
it signifies are:

(a) The ratio helps assess the significance of intangible assets on a bank’s balance sheet. It provides
an indication of how much of the bank’s value is tied up in assets that do not have a physical presence.

(b) Goodwill is often recorded when a bank acquires another bank for a price that exceeds the
fair value of its identifiable tangible and intangible assets. This excess is recorded as goodwill. Banks
need to periodically assess whether their recorded goodwill has become impaired due to changes in
economic conditions. A higher ratio of goodwill to total assets might indicate a higher risk of goodwill
impairment, which could impact a bank’s financial health.

(c) The presence of a significant amount of goodwill and intangibles can impact financial ratios,
such as return on assets (ROA) and return on equity (ROE). Since these intangibles typically do
not generate immediate cash flows, their inclusion in the asset base might lead to lower returns on
these metrics, potentially affecting how depositors and funder perceive the bank’s profitability and
efficiency.

(d) Banks with a high ratio of goodwill and other intangibles to total assets might experience
greater volatility in their financial performance. Intangibles are often more difficult to value and can be
subject to changes in market sentiment. This can lead to fluctuations in reported assets and potentially
impact a bank’s stability during economic downturns or changes in economy dynamics.
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4.2.3. Comparison between SVM model

During 2008 financial crisis, numerous banks succumbed to bankruptcy. However, after 2013, in-
stances of bank failures experienced a marked reduction. This transformation can be attributed to
enhancements in the risk management framework and the steady economic progress in the United
States. In this study, a comparative analysis of bank failures occurring in 2010 and those failed af-
ter 2013 was conducted. The objective of this work was to discern similarities or differences in the
contributing factors for bankruptcy during these two distinct periods. Consequently, this research con-
structed two types of SVM models: the first utilizing a dataset of insolvent and solvent banks in 2010,
while the second model was founded upon data after 2013.

At first, feature selection methods were utilized and the result was in Table 2. Then this work
established a hyperplane in 16 dimensions (2 factors in 8 quarters), the equation shows below:

3.924×NLLQ1 + 2.194×NLLQ2 + 1.865×NLLQ3 + 2.160×NLLQ4
+1.515×NLLQ5 + 1.102×NLLQ6 + 1.032×NLLQ7 + 0.260×NLLQ8
−3.440× ECAQ1− 3.046× ECAQ2− 2.057× ECAQ3− 1.113× ECAQ4
−1.129× ECAQ5− 0.652× ECAQ6− 0.179× ECAQ7− 2.228× ECAQ8− 0.088 = 0
Additionally, a 4-level model is also trained which demonstrated four different risk levels. The

evaluation of two models in different periods are presented in Table 10. and the equations and the
graph of three separators show below:

Sep12:
10.799ECAQ2 + 10.317TIEQ1− 1.246 = 0

Sep23:
12.817ECAQ2 + 10.564TIEQ1− 1.637 = 0

Sep34:
12.237ECAQ2 + 7.651TIEQ1− 1.684 = 0

Figure 10: graph of 4-level model for 2008 financial crisis
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Table 10: The comparison between rank of factors from linear SVM model

Post-2013 2008 financial crisis

ECA (Equity capital to assets) NLL (Noncurrent loans to loans)

TRCR (Total risk-based capital ratio) ECA (Equity capital to assets)

TD (Total Deposits to total assets) CCR (Core capital (leverage) ratio)

NLLTA (Net loans and leases to total assets) TD (Total Deposits to total assets)

NLL (Noncurrent loans to loans) NCL (Net charge-offs to loans)

T1RC (Tier 1 (core) risk-based capital to total assets) TIE (Total interest expense to total interest income)

LAL (Loss allowance to loans) T1RC (Tier 1 (core) risk-based capital to total assets)

NCL (Net charge-offs to loans) VL (Volatile liabilities to total assets)

GOI (Goodwill and other intangibles to total assets) LAL (Loss allowance to loans)

Based on the results of two models, this research present an analysis of temporal changes in the
factors of SVM model:

The 2007–2008 financial crisis is commonly viewed as the worst financial crisis since the Great
Depression of the 1930s [18].

According to the definition given by Ross and Shibut (2021) , the non-current loans to loans ratio
(NLL) is a financial metric that measures the percentage of non-current loans (loans that are past due
by 90 days or more) to the total amount of loans held by a bank or financial institution [19]. It is also
known as the non-performing loan (NPL) ratio, an important indicator of the health of a bank’s loan
portfolio, as it reflects the percentage of loans that are at risk of default. This research result infers
that NLL ratio is particularly significant during a financial crisis, the possible reasons are:

First of all, during a financial crisis, economic conditions are likely to deteriorate, leading to
reduced income, business closures, and job losses. This can result in borrowers struggling to make
timely loan payments, which will increase the NLL ratio. And a high NLL ratio indicates that a
significant portion of a bank’s loans are at risk of not being repaid (the quality of the bank’s loan
portfolio decreases). Thus, NLL ratio can reveal the credit risk exposure of a bank, affecting the
bank’s capital adequacy, profitability, and overall financial health.

Non-current loans to loans ratio ties up a bank’s resources and capital, limiting its ability to lend
and invest. If the NLL ratio is high, the bank’s capital may be eroded due to provisions set aside to
cover its potential loan losses. This may impact the bank’s ability to absorb further losses and maintain
stability. Moreover, non-current loans can reduce a bank’s cash flow as loan repayments are delayed
or not received. This will impact the bank’s liquidity position to some extent, making it harder to meet
obligations and respond to deposit withdrawals during times of stress.

A widespread increase in NLL ratios across multiple banks will contribute to systemic risk, where
the health of the entire financial system is compromised. A crisis-induced surge in non-current loans
can lead to a credit crunch, making it harder for businesses and consumers to access credit. As a result,
investor confidence in a bank’s financial health and management may be eroded. This will further lead
to decreased stock prices, increased borrowing costs, and reduced access to capital markets.

Regulatory authorities closely monitor NLL ratios as a measure of a bank’s risk exposure. During
a crisis, regulators may require banks to maintain higher capital buffers to withstand potential loan
losses, ensuring the stability of the financial system.

ECA becomes especially important during financial crises and after regulatory changes, such as
those introduced after 2013 with the implementation of Basel III banking regulations. The following
are the possible reasons why ECA is vital:
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During the period of financial crisis, banks may face unexpected losses due to economic down-
turns, credit defaults, and market turmoil. A higher equity capital to assets ratio provides a buffer that
enables the bank to absorb losses without jeopardizing its financial stability.

Moreover, in bad times, banks might be hesitant to lend because of increased credit risk. A strong
capital base can enhance a bank’s confidence to continue lending, helping to maintain the flow of
credit to individuals and businesses, which is crucial for economic recovery.

Regulators normally require banks to maintain a minimum capital adequacy ratio to ensure their
stability. In a drastic situation, regulatory authorities might impose stricter capital requirements to
enhance the resilience of the financial system.

Stricter capital requirements for banks were implemented by the Basel III framework after 2013
to increase their resilience to financial crises. To reduce risks and guard against potential losses, banks
must maintain stronger equity capital to assets ratios. Risk-based capital requirements, which relate
the necessary capital to the riskiness of a bank’s assets, were also introduced by Basel III. As a
result, banks holding riskier assets must maintain greater levels of equity capital, underscoring the
significance of the equity capital to assets ratio for risk management.

4.3. Limitations and Solution

4.3.1. Limitations:

The previous experiments have established a linear SVM model and 4-level model regarding bank
failures. Nevertheless, this research has some limitations and inadequacies, which can be outlined as
follows:
1. Limited data volume: Owing to regulation improvements, the number of bank failures in the
United States decreased significantly after 2013. Consequently, only 44 banks possess complete data
for the ten quarters preceding their collapse. As a result, the dataset used in this study is relatively
limited in size. The relatively small size of the dataset has posed difficulties in generalization and
contributed to overfitting in the two models.
2. The authenticity of the data: The dataset, sourced from FDIC via U.S. bank quarterly call reports,
contains a significant number of non-listed banks. This raises concerns about data reliability due
to their lack of transparency and regulatory oversight. Non-listed banks may submit inaccurate or
fabricated reports to conceal financial risks or engage in improper activities. Even without deliberate
manipulation, data from these banks may be unreliable due to less rigorous internal reporting and
record-keeping. Consequently, models trained on such data may be influenced by false information,
potentially distorting the accuracy of the resulting 4-level or linear SVM model.
3. Regional Scope: In this study, the period of the models extends from 2013 and this research is
specifically centered on domestic banks within the United States. In fact, different countries exhibit
unique economic conditions and national policies, leading to diverse reasons for bank failures and
a wide range of risks encountered by banks. Therefore, both the linear SVM model and the 4-level
model are exclusively applicable to banks operating within the United States.

4.3.2. Potential solution for the limitation:

1. Limited Data Volume: To address the limitations arising from the dataset’s limited size, integrating
relevant datasets from other countries that share similar economic conditions and national policies
with the United States may help. Alternatively, extending the time period covered by the dataset
can also provide supplementary data. These adjustments have the potential to enhance the models’
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performance and alleviate the challenges mentioned earlier. Moreover, an Artificial Neural Network
can be trained using this expanded dataset, which is likely to yield improved results.
2. Authenticity of the Data: Addressing concerns about data authenticity and reliability can be ap-
proached as follows:

(a) Implement more rigorous procedures for data validation and cleaning. Instead of relying
solely on FDIC data, expand the scope to incorporate additional data sources. This will enable cross-
referencing of data from diverse sources to identify inconsistencies and erroneous entries more effec-
tively.

(b) Assess the models’ robustness by conducting simulations to evaluate the impact of potential
data inaccuracies. This can be achieved by introducing synthetic errors into the dataset and observing
the effects on the models’ results.
3. Regional Scope: To address the issue of regional scope and generalizability:

(a) Extend these modeling techniques to other regions or countries with distinct economic con-
ditions and policies compared to the United States. This expansion would provide a comprehensive
perspective on bank failure prediction across diverse contexts.

(b) Conducting a comparative analysis of the models’ performance across various regions offers
valuable insights into potential variations when applied beyond the United States.

(c) If certain factors used in the SVM model or 4-level model are specific to the United States,
modify the models to incorporate context-specific variables that align with the characteristics of each
respective region.

4.4. Prospects

The knowledge of human analysts can be supplemented with machine learning. Analysts can con-
centrate on higher-level decision-making and scenario refinement by using it to generate insights,
uncover hidden patterns, and automate repetitive processes.While there is a lot of potential for em-
ploying machine learning for stress tests, there are also issues that need to be resolved in the future,
including data quality, model interpretability, regulatory approval, and potential algorithmic biases.
Domain experts, data scientists, and regulators must work together to make sure that ML-driven stress
testing becomes a dependable and widely used procedure in the banking sector.

5. Conclusion

This paper discusses the importance of ensuring the healthy operations of banks to prevent failures,
especially in challenging economic conditions. It presents a forecasting model that can be used by
bank managers and governments for this purpose. The model can also function as a stress testing tool
by incorporating data from banks under extreme scenarios to assess their resilience.

The research used a dataset that included data from failed U.S. banks from 2014 to 2023, matched
with solvent banks for analysis. A total of 42 variables were collected for each bank over ten consecu-
tive quarters before a bank’s failure. A feature selection process was used to identify the most relevant
variables for prediction and classification.

The retained 10 factors from the dataset were used to train a Support Vector Machine (SVM)
model with a tenfold cross-validation approach to fine-tune hyperparameters. The optimized hyper-
plane accurately distinguished between solvent and insolvent banks with an impressive accuracy rate
of 99.341%. The model also assessed the risk level of potential bank failures, providing a more nu-
anced view.
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The paper compares the SVM model with a Neural Network algorithm, finding comparable ac-
curacy but noting the SVM’s advantage in risk assessment due to its transparency. Additionally, it
compares highly correlated factors in two different time intervals, revealing changes in the impor-
tance of specific variables.

The findings and details of these comparisons are discussed in the paper.
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