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Abstract: This paper examines the creation of investment portfolios through convex 

optimization, multifactor models, and the multi-armed bandit (MAB) algorithms, focusing on 

the KL-UCB strategy to optimize decisions in uncertain settings. It explores the impact of 

systematic risk factors using the Fama-French three-factor model, estimating the influence of 

market, size, and value premiums via linear regression. The use of Monte Carlo simulation is 

detailed for generating potential asset allocations and calculating their expected returns, 

volatility, and Sharpe ratios. The optimize minimize function from the SciPy library is 

employed to construct an efficient frontier and determine optimal asset allocation, aiming to 

maximize returns or minimize volatility across various risk levels. The findings suggest that 

the strategy of dynamic weight adjustments combined with the KL-UCB algorithm enhances 

portfolio returns, particularly during market volatility. The research also reveals a portfolio 

inclination towards large-cap growth stocks due to the negative impacts of size and value 

premiums. It concludes that dynamic weight adjustment strategies offer significant potential 

in optimizing portfolio performance in complex market conditions, though leveraging 

increases risk and should be carefully managed according to investor risk tolerance. 

Keywords: MBA, Investment Portfolio Management, Multi-Factor Model, CVXPY, Monte 

Carlo 

1. Introduction 

Recent advancements in portfolio management emphasize the necessity of dynamic and robust 

optimization techniques, especially in response to the increasing volatility observed in global markets. 

Traditional models, such as those incorporating the Upper Confidence Bound (UCB) and Kullback-

Leibler Upper Confidence Bound (KL-UCB) algorithms [1], have predominantly focused on static 

settings without sufficient mechanisms for adjustment under market stress. These approaches often 

overlook the complex interdependencies of modern financial markets and fail to incorporate advanced 

computational methods that can enhance predictive accuracy and risk management [2]. 

This paper aims to bridge these gaps by introducing sophisticated methods for portfolio 

construction and analysis [3]. By integrating convex optimization and Monte Carlo simulation, it 

offers a nuanced approach that allows for detailed assessments of risk and return, aligning with the 

complexities of contemporary investment strategies [4]. Specifically, the work extends the 
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functionality of the KL-UCB algorithm to accommodate dynamic weight adjustments, providing a 

significant improvement in handling periods of high market volatility [5]. Moreover, the research 

advances the discourse on risk and leverage management by incorporating these elements into a 

cohesive strategy tailored to diverse investor profiles [6-7]. The empirical analysis and backtesting 

presented herein not only underscore the practical application of our methods but also demonstrate 

their superiority in real-market scenarios compared to more conventional models [8-10]. 

This introduction adheres to the guidelines set forth by the journal, ensuring that the manuscript is 

prepared for submission without the need for re-typing. The subsequent sections will delve into the 

model formulation, and detailed application processes, and discuss the theoretical and practical 

implications of the findings. 

2. Model Formulation 

2.1. The basic fundamental of MAB and KL-UCB Algorithm 

The Multi-Armed Bandit (MAB) algorithm is a decision-making algorithm used to make a series of 

choices in an uncertain environment to maximize total rewards. It originates from the problem of 

playing slot machines, where one machine may have multiple levers (arms), each with a different 

unknown probability distribution of rewards. Pulling an arm constitutes a trial, and the objective is to 

obtain as many rewards as possible within a finite number of trials.  

The core challenge of the Multi-Armed Bandit (MAB) algorithm revolves around the strategic 

balance between exploration and exploitation. Exploration involves testing different arms to 

accumulate data about their reward probabilities, which is essential for uncovering potentially higher-

yielding options. Conversely, exploitation capitalizes on this gathered information by selecting the 

arm that has historically provided the best returns, thereby maximizing rewards. This dynamic 

interplay aims to optimize decision-making processes by carefully weighing the potential benefits of 

discovering new opportunities against the advantages of leveraging known outcomes. No fixed 

formula describes all MAB algorithms since there are multiple strategies. However, the common 

objective of all strategies is to maximize the total rewards, typically represented as: 

 

,
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where:   R is the total reward and   T is the total number of periods. ijr is the reward obtained by pulling 

the arm  i at a time t . 

The KL-UCB algorithm offers a refined strategy for the multi-armed bandit (MAB) problem, 

aiming to maintain a balance between exploration and exploitation. This approach involves 

determining a confidence upper bound for each option, or "arm," at every decision point. The 

algorithm then proceeds to select the arm with the highest upper bound, reflecting the most promising 

potential reward given past performances and uncertainties. The critical aspect of KL-UCB is the 

computation of these bounds, which are derived through an optimization process. Specifically, the 

upper bound for each arm is calculated by solving an optimization problem that estimates the most 

optimistic potential outcome for that arm, based on the data accumulated up to that time. This 

calculates upper bound guides the selection process, steering decisions towards either exploiting a 

well-performing arm or exploring less tried arms that might offer greater rewards. 

 
( ) ˆ( ) max : ( ) ( ), log( ) log(log( ))i i iUCB t q N t KL p t q t c t=   + 

           (2) 

Proceedings of  the 8th International  Conference on Economic Management and Green Development 
DOI:  10.54254/2754-1169/104/2024ED0075 

56 



 

 

where: ( )iUCB t is the confidence upper bound a time  t .   (_ )N i t  is the number of times an arm i has 

been selected up to time  t . ˆ ( )ip t is the empirical success probability of arm i up to time  t . KL(p, q) 

is the Kullback-Leibler divergence between two probabilities p , and q . c is a positive parameter that 

adjusts the level of exploration. 

Kullback-Leibler divergence is an asymmetric measure of the difference between two probability 

distributions, defined as: 

 

1
( , ) log (1 ) log

1

p p
KL p q p p

q q
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−                            (3) 

In this context, p  is typically the actual success probability of i the arm, while q  is the value we 

are seeking, representing an upper bound on the estimated success probability at time  t . 

2.2. The establishment of the Fama-French Three-Factor Model  

The Fama-French Three-Factor Model analysis conducted in this report is rooted in the understanding 

that the returns of a portfolio are influenced by various systematic risk factors. These factors are 

believed to capture the majority of the diversifiable risk of a portfolio and are used to explain the 

returns above and beyond what can be explained by the market risk alone. The model postulates that 

the expected return of a portfolio over the risk-free rate (excess return) can be explained by its 

sensitivity to three factors: Market Risk Premium (Mkt-RF) represents the additional return investors 

require for investing in stocks compared to risk-free securities. Size Premium (SMB) captures the 

excess return of small-cap stocks over large-cap stocks, while Value Premium (HML) represents the 

excess return of value stocks over growth stocks.  

The linear regression model to estimate the coefficients that describe the relationship between 

these factors and the portfolio returns is represented as follows: 

 , , , ,( )p t f t mkt m t f t smb t hml t tr r r r SMB HML   − = + − + + +ò
                (4) 

Where: ,  p tr
is the return of the portfolio at time t , ,f tr

is the risk-free rate at time t , ,  m tr
is the return 

of the market portfolio at time t . is the intercept, representing the portfolio's excess return that is 

not explained by the model. 
, ,mkt smb hml  

These are the sensitivities of the portfolio to the market 

excess return, size premium, and value premium, respectively. tò is the error term of the regression at 

time t . 

2.3. Portfolio Construction and Efficient Frontier Analysis 

2.3.1. Application of Monte Carlo Simulation in Portfolio Analysis 

Monte Carlo simulation is a statistical simulation technique used to estimate the probability 

distribution characteristics of complex systems. In portfolio management, it is used to generate 

potential asset allocations and calculate the expected returns, volatility (standard deviation), and 

Sharpe ratio of these allocations. 

Construction process:  

Firstly, prepare the data by gathering historical return data for the assets you want to analyze, as 

this is crucial for estimating the expected returns and volatility of each asset.  
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Simulating asset weights:              
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Where 
 iX
 is a random number for the  thi

asset. 

Then, simulate various asset weights by generating random numbers for each asset, ensuring that 

the sum of all weights equals one. In the second step, calculate the expected portfolio return using the 

formula.  

Expected portfolio return 
( )pE R

: 

                                
( ) T

pE R w =
                                  (6) 

Portfolio volatility p
: 

                                
T

p w w = 
                                   (7) 

where  is the vector of asset returns,  is the covariance matrix, and w  is the weight vector. 

Finally, repeat this simulation multiple times—commonly 100,000 iterations—to generate a broad 

range of potential portfolios. This extensive simulation helps in plotting the efficient frontier, which 

visually depicts the trade-off between portfolio risk and return, allowing investors to choose portfolios 

that align with their risk tolerance and return objectives. 

2.3.2. Building the Efficient Frontier Using SciPy for Portfolio Optimization 

SciPy can solve optimization problems to find asset allocations that provide maximum expected 

returns at different levels of risk or minimize volatility.The process for constructing an optimized 

investment portfolio involves several key steps, aimed at either minimizing volatility or maximizing 

the Sharpe ratio under given constraints. 

Firstly, the objective is set to minimize portfolio volatility, subject to constraints such as achieving 

a specific target return and ensuring the sum of asset weights equals one. 

Minimize volatility: 

                                   
min T

w w w
                                (8) 

Constraints: Tw R = (target return), 
1

1
n

i

i

w
=

= (sum of weights equals one). 

Secondly, the objective shifts to maximizing the Sharpe ratio, again subject to appropriate 

constraints. 

Maximize Sharpe ratio: 

                                

 max

T

f

w
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w r
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The third step involves solving the optimization problem, Finally, the results of this optimization 

are analyzed to determine the optimal asset allocations that meet different target returns or desired 

risk levels, thereby guiding investment decisions. 

2.3.3. Constructing Efficient Frontier through Convex Optimization Techniques  

Convex optimization is a special mathematical optimization method used to handle optimization 

problems with convex functions or convex constraints. In portfolio theory, convex optimization is 

used to find the optimal trade-off between risk and return. 

To construct an optimized investment portfolio, it begins by formulating an optimization problem.  

The objective function aims to maximize the expected return of the portfolio adjusted by a risk 

aversion coefficient, while minimizing the portfolio's risk. This balancing act of risk and return forms 

the crux of the optimization. It imposes necessary constraints to ensure the solution is practical, such 

as those on the sum of asset weights.  

Objective function: 

                              
max ( )T T

w w w w − 
                             (10) 

where  are the risk aversion coefficient, Tw   the expected return of the portfolio, and Tw w  the 

risk of the portfolio. 

Constraint: 1

1
n

i

i

w
=

=
 

Next, it employs convex optimization techniques using libraries like cvxpy to solve this problem, 

allowing us to determine the optimal asset allocations that balance risk and return efficiently. Finally, 

it explores the role of leverage in portfolio optimization. By varying leverage levels, it analyzes how 

they expand the range of achievable risk and return profiles on the efficient frontier, potentially 

enhancing the portfolio's performance under different market conditions. 

3. Results 

3.1. Analysis of MAB and KL-UCB Algorithm 

The study examined how dynamic weight adjustments using the KL-UCB algorithm can optimize 

asset management. This part of the analysis focused on observing asset weight changes over time 

within an investment portfolio. 

Through using the model, it can get the following results: 
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Figure 1: Asset Weights over time 

The Figure 1 shows distinctive trends. AAPL initially holds a dominant weight, which decreases 

sharply, suggesting an initial overestimation of its returns, but it later begins to rise again. GOOG 

(Alphabet Inc. - Google) consistently increases in weight, eventually becoming the most heavily 

weighted asset. IBM's weight quickly declines to near zero, indicating its poor performance relative 

to other assets. MSFT (Microsoft Corporation) experienced a significant mid-term increase in 2020 

due to strong market performance but later decreased as the weight shifted towards GOOG, reflecting 

the algorithm's adaptation to market changes. 

It aims to analyze and compare the performance of two different investment portfolio strategies: 

one based on a reference portfolio with balanced asset allocation (referred to as the "Reference 

Portfolio"), and the other utilizing a dynamic weight adjustment strategy (referred to as the "Strategy 

Portfolio"). The weight adjustment in the Strategy Portfolio is based on the KL-UCB algorithm, 

which dynamically adjusts the weights of assets in the portfolio based on their historical performance. 

For comparison purposes, we calculate the cumulative returns of both portfolios and present them on 

the same chart. 
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Figure 2: Portfolio and Cumulative returns 

By observing Figure 2, it can be observed that especially during the market volatility in early 2020, 

the Strategy Portfolio exhibits better resilience compared to the Reference Portfolio. This may be 

attributed to the KL-UCB algorithm continuously adjusting the weights and effectively capturing the 

market rebound, leading to the allocation of funds accordingly.  

KL-UCB algorithm demonstrates an advantage over the Reference Portfolio in terms of overall 

returns, particularly during periods of significant market fluctuations. This finding highlights the 

potential value of utilizing dynamic weight adjustment strategies in asset management. The data and 

analysis results presented in this report provide investors with valuable insights, indicating that by 

leveraging advanced algorithms such as KL-UCB, portfolio performance can be optimized effectively 

in complex market environments. 

3.2. Analysis of the Fama-French Three-Factor Model: 

This section evaluated how well the Fama-French three-factor model explains the returns of the 

portfolio, focusing on the impact of market risk premium, size premium, and value premium. 

Regression Statistics: 
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Figure 3: OLS Regression Results 

The Figure 3 effectively captures the dynamics of the portfolio's returns, as indicated by the high 

R-squared value of 0.82, which shows that the model accounts for a significant portion of the variation 

in the portfolio's excess returns. The statistical robustness of the model is further underscored by a 

high F-statistic of 1524 and a near-zero p-value, highlighting its significance. The analysis of 

regression coefficients reveals that the portfolio has a strong positive relationship with market 

movements, as evidenced by the Market Risk Premium coefficient of 1.1191. This suggests that a 1% 

increase in the market yields approximately a 1.1191% increase in the portfolio's performance, 

reflecting high market sensitivity. In contrast, the coefficients for Size Premium and Value Premium, 

at -0.2554 and -0.3301 respectively, show that small-cap and value stocks negatively impact the 

portfolio's excess returns, with value stocks having a more substantial detrimental effect. This rolling 

regression analysis provides crucial insights into how different market factors influence the portfolio 

over time, shedding light on its performance characteristics. 

 

Figure 4: Rolling Fama-French Three-Factor model  
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The Figure 4 provides insightful trends in the coefficients over time. The intercept, though volatile, 

stays close to zero across different periods, suggesting minimal unexplained variance in the model. 

The market risk premium (Mkt-RF) coefficient shows strong positive fluctuations, underscoring its 

significant influence on the portfolio's performance across various market conditions. Conversely, 

the coefficients for SMB (size premium) and HML (value premium) generally exhibit a negative 

correlation, highlighting a strategic preference for large-cap growth stocks within the investment 

portfolio. This analysis illustrates how different market factors dynamically affect the investment 

strategy's returns. 

 The regression analysis showed a high R-squared value of 0.82, indicating that the model 

effectively captures the variations in the portfolio's excess returns. The market risk premium was 

identified as a significant positive influencer, while size and value premiums negatively affected the 

portfolio, suggesting a bias towards large-cap growth stocks. The rolling regression analysis 

highlighted how these factor sensitivities varied over time. 

3.3. Analysis of Convex Optimization Techniques:  

This section investigated the use of convex optimization techniques and Monte Carlo simulations to 

determine the optimal asset allocation for maximizing returns and minimizing volatility. 

3.3.1. Monte Carlo simulation  

Monte Carlo simulation is a statistical simulation technique used to estimate the probability 

distribution characteristics of complex systems. In portfolio management, it is used to generate 

potential asset allocations and calculate the expected returns, volatility (standard deviation), and 

Sharpe ratio of these allocations. 

To use Monte Carlo simulation to find the efficient frontier, it first calculates the stock prices of 

the considered assets and daily returns of the considered assets.  

 

Figure 5: Stock prices and Daily returns 
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The figure 5 illustrates the price trends and daily return distribution of four stocks. And then it 

shows the frontier:  

 

Figure 6: Efficient Frontier 

The Figure 6 displays a scatter plot of a Monte Carlo simulation, showcasing the expected returns 

(Y-axis) and volatility (X-axis) of various investment portfolios. The color of the dots represents the 

Sharpe ratio. The curve in the scatter plot represents the efficient frontier, which is the set of 

investment portfolios that offer the maximum expected returns for a given level of risk. Dots above 

the efficient frontier represent portfolios with higher risk but higher expected returns. 

 

Figure 7: Min and Max Sharpe Ratio portfolio 

The Figure 7 present the performance and weight allocation of two specific investment portfolios. 

One is the portfolio with the maximum Sharpe ratio, and the other is the portfolio with the minimum 

volatility. The portfolio with the maximum Sharpe ratio has an expected return of 40.89%, volatility 

of 29.18%, and a Sharpe ratio of 1.40 (or 140.15%), indicating higher expected excess returns for 

each unit of total risk undertaken. The weight allocation shows that this portfolio is primarily invested 

in AAPL and GOOG, accounting for over 98% of the total investment. The portfolio with the 

minimum volatility has an expected return of 21.21%, volatility of 24.57%, and a Sharpe ratio of 0.86 

(or 86.31%), indicating a relatively conservative portfolio primarily invested in MSFT and IBM. 
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Figure 8: Efficient Frontier 

The Figure 8 highlights the positioning of these two specific investment portfolios on the scatter 

plot, showcasing how they perform about other potential portfolio allocations. 

The simulation helped plot an efficient frontier, showing various potential investment portfolios' 

expected returns against their volatility. The analysis highlights portfolios that optimize the risk-

return trade-off. 

3.3.2. SciPy for Portfolio Optimization 

Using the optimization function "minimize" from SciPy, a series of investment portfolios is generated 

to construct the efficient frontier by finding the weights of each asset that minimize volatility for a 

given range of target returns. These portfolios have the lowest possible risk at the specified expected 

return levels. They are ideal choices for investors aiming to optimize investment returns at specific 

risk levels. The results are as follows: 

 

Figure 9: Efficient Frontier 
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According to the Figure 9, it can be concluded that: 

The minimum volatility portfolio aims to minimize the investment's fluctuations while still 

offering a reasonable return. It achieves a return of 21.42% with a volatility of 24.57% and a Sharpe 

ratio of 87.15%. The portfolio's stock weight allocation is as follows: AAPL accounts for 11.10%, 

IBM for 30.47%, MSFT for 46.63%, and GOOG for 11.79%. This allocation strategy ensures that 

MSFT has the highest weighting in the portfolio, while GOOG and AAPL have smaller proportions, 

and IBM holds the second-largest allocation. 

The Maximum Sharpe Ratio portfolio is designed to maximize excess returns relative to volatility 

(measured by the Sharpe ratio) after adjusting for the risk-free rate. With a return of 40.92% and a 

volatility of 29.14%, it achieves an impressive Sharpe ratio of 140.40%. The stock weight allocation 

for this portfolio is as follows: AAPL accounts for 38.71%, IBM 0.00%, MSFT 0.00%, and GOOG 

61.29%. Notably, the majority of the portfolio's weight is allocated to GOOG and AAPL, totaling 

almost 100%. This indicates that the strategy of the Maximum Sharpe Ratio portfolio is to concentrate 

investments in assets expected to deliver optimal performance.  

3.3.3. Convex Optimization Techniques 

This model maximizes the investment portfolio's return based on the average return and covariance 

matrix while subtracting a term associated with risk (regulated by γ). The optimization problem is 

solved using covariance programming (using the copy library), iterating through different γ values to 

obtain optimal investment portfolio weights at different risk aversion levels. 

 

Figure 10: Weights allocation per risk-aversion level 

The model considers different levels of risk aversion. In the Figure 10, the x-axis represents the 

risk aversion coefficient (denoted as γ), which is on a logarithmic scale ranging from very low (almost 

no risk aversion, more inclined towards pursuing high returns) to very high (extreme risk aversion, 

more inclined towards safe investments). The y-axis represents the weights allocated to each asset, 

with a total sum of 1. As the risk aversion coefficient increases, It can observe how the weights of 

different assets in the investment portfolio change. When the risk aversion coefficient is very low, 

the model tends to allocate the investment solely to one asset (in this case, AAPL). However, as the 
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risk aversion coefficient increases, the investment gets diversified into other assets, which is often 

considered a more conservative investment strategy with greater risk diversification. 

 

Figure 11: Efficient Frontier for different max leverage 

The Figure 11 depicting the efficient frontier demonstrates how investment portfolios perform 

under varying levels of maximum leverage, illustrating the trade-offs between risk and return. With 

a leverage of 1, the frontier shows portfolios that balance lower risk and return. As leverage increases 

to 2, the frontier shifts upward and to the right, suggesting that portfolios can secure higher returns at 

the cost of taking on more risk. The trend intensifies with a maximum leverage of 5, where the frontier 

moves even further right, indicating the potential for even higher returns, albeit paired with 

significantly increased risk. This progression highlights the direct correlation between leverage levels 

and both potential returns and associated risks in portfolio management.          

 

Figure 12: Weights allocation per risk-aversion level 
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The Figure 12 showcasing asset weight allocation under different levels of maximum leverage and 

varying degrees of risk aversion, represented by the coefficient γ, reveals how investment strategies 

adjust based on risk preferences. At a leverage of 1, with low γ indicating minimal risk aversion, 

portfolios are highly concentrated in specific assets like AAPL. However, as γ increases, indicating 

heightened risk aversion, asset allocation becomes more diversified to mitigate risk. When leverage 

rises to 2 and then to 5, asset weight shifts become more pronounced, with even negative weights 

emerging at the highest leverage, suggesting the use of short positions to hedge or leverage risks 

associated with other investments. This dynamic illustrates how portfolios adapt to balance return 

objectives against risk tolerance, particularly as leverage and risk aversion levels change. 

The application of the copy library helped in optimizing the portfolio by varying levels of risk 

aversion, showing how asset weights adjusted according to different risk preferences, and further 

expanded on this by adjusting levels of leverage to explore wider ranges of risk-return combinations. 

4. Conclusions 

The Strategy Portfolio utilizing the KL-UCB algorithm showcases superior overall returns compared 

to the Reference Portfolio, especially during significant market fluctuations, underscoring the 

effectiveness of dynamic weight adjustment strategies in asset management. Analysis with the Fama-

French three-factor model reveals the market risk premium as the main driver of the portfolio's excess 

returns, with negative impacts from size and value premiums suggesting a preference for large-cap 

growth stocks. These insights advocate for ongoing risk monitoring and strategic adjustments, 

particularly against SMB and HML factors. Additionally, portfolios with different Sharpe ratios 

highlight the trade-offs between expected returns and volatility, affecting investor choices based on 

risk appetite. The use of leverage, as demonstrated, increases both potential returns and associated 

risks, indicating that while higher leverage can enhance returns, it also requires careful risk 

management. Moderate leverage levels, such as a maximum of 2, offer a balanced approach between 

risk and return, emphasizing the need for tailored investment strategies that align with individual risk 

preferences and market conditions. 
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