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Abstract: Accurately predicting the prices of metal futures such as aluminum, copper, lead, 

nickel, tin, and zinc is crucial for investors, manufacturers, and policymakers due to their 

significant impact on economic activities and industrial processes. This paper presents a 

comprehensive study on the prediction of futures prices using a hybrid model combining 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks. The 

research utilizes historical data from 2014 to 2024, including daily open, high, low, close 

prices, trading volumes, and return. Data preprocessing involved interpolation for missing 

values and normalization using MinMaxScaler. The model’s performance was evaluated with 

various accuracy metrics, such as Root Mean Squared Error (RMSE), Mean Squared Error 

(MSE), Mean Absolute Error (MAE) ect, showing high accuracy for lead, tin, and zinc futures 

in both train and test datasets. However, the model performed well only on the train data for 

aluminum, copper, and nickel, indicating the need for more iterations, additional factors, or 

the consideration of unexpected events. The results highlight the efficacy of the LSTM-GRU 

hybrid model in futures price prediction, with significant implications for informed 

investment decisions. Future research should consider cross-market analysis and additional 

factors to enhance model accuracy further. 
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1. Introduction 

Futures are financial derivatives that allow trading parties to agree to buy or sell a certain amount of 

underlying assets at a specific point in the future at an agreed price. In particular, metal futures such 

as aluminum, copper, lead, nickel, tin, and zinc play a crucial role in the global economy. These 

metals are integral to various industries, including construction, manufacturing, and technology, 

making their price stability and predictability essential for economic planning and investment 

strategies. Accurate forecasting of metal futures prices is vital for stakeholders to make informed 

decisions, manage risks, and optimize their operations. 

In financial markets, accurate prediction of metal futures prices is crucial for investors, producers 

and traders. Traditional time series forecasting methods, such as Auto-Regressive Moving Average 

Model (ARIMA) and exponential smoothing, often fall short in capturing the complex, non-linear 

patterns present in financial data. In recent years, deep learning models, particularly those based on 

recurrent neural networks (RNNs), have shown promise in addressing these challenges.  
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LSTM stands for Long Short-Term Memory. It was created by Hochreiter & Schmidhuber and 

later developed and popularized by many researchers [1]. It’s a type of RNN architecture used in the 

field of deep learning. LSTMs are designed to overcome the limitations of traditional RNNs, 

particularly the problem of long-term dependencies, where the influence of a given input diminishes 

over time [2]. GRU is a variant of RNN in deep learning, proposed by KyungHyun Cho et al. in 2014. 

Similar to Long Short-Term Memory Networks, GRU is also designed to address the long-term 

dependency problem in traditional RNNs [3]. LSTM models are particularly well-suited for time 

series forecasting due to their ability to learn long-term dependencies, making them ideal for 

predicting the highly volatile future market.  

This study explores the application of an LSTM-GRU hybrid model for predicting futures prices, 

leveraging the strengths of both architectures to ensure predictive performance. This model has two 

advantages. On one hand, the LSTM-GRU hybrid model could be designed to handle different types 

of dependencies. For example, LSTM could be used to handle long-term dependencies, and GRU 

could be used to handle the short-term dependencies. On the other hand, GRUs are more 

computationally efficient than LSTMs. The hybrid model could use a combination of LSTM and 

GRU units within the same network, allowing the network to employ LSTM units where long-term 

memory is required and GRU units where computational efficiency is needed. 

2. Literature Review 

2.1. Time Series Forecasting in Financial Markets 

Time series forecasting in financial markets has been extensively studied. Classical methods, 

including ARIMA, have been widely used but often lack the ability to handle non-linearities in the 

data. Machine learning approaches, such as support vector machines (SVM) and decision trees, have 

provided some improvements but still face limitations in dealing with sequential dependencies [4]. 

For example, SVM and decision trees are typically designed for static and structured data, making it 

difficult to directly process sequential data such as text, time series, and other time-dependent data. 

And these methods often struggle to capture long-term dependency relationships because they do not 

have built-in memory mechanisms to effectively process time series information in data. 

2.2. Deep Learning Approaches 

The advent of deep learning has revolutionized time series forecasting. LSTM and GRU, both variants 

of RNNs, have been particularly effective in capturing long-term dependencies in sequential data. 

LSTM networks, introduced by Hochreiter and Schmidhuber, use a gating mechanism to control the 

flow of information, thereby addressing the vanishing gradient problem. GRUs, proposed by Cho et 

al, simplify the LSTM architecture while maintaining similar performance [5]. 

2.3. Hybrid Models 

Hybrid models combining different neural network architectures have been explored to leverage their 

complementary strengths. For instance, combining CNNs with RNNs has been effective in various 

domains, such as Natural Language Processing (NLP), computer vision and stock price prediction 

[6]. However, the combination of LSTM and GRU for financial time series forecasting remains 

relatively underexplored. As is known, LSTM effectively preserves and utilizes the long-term 

information of historical data by introducing memory units and gating mechanisms such as input 

gates, forget gates, and output gates. GRU also uses gating mechanisms such as update gates and reset 

gates, which can efficiently capture short-term dependencies in time series data. This study aims to 
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fill this gap by investigating the performance of an LSTM-GRU hybrid model in predicting metal 

futures prices. 

3. Data and Methodology 

3.1. Data Collection and Preprocessing 

This paper utilizes historical data for aluminum, copper, lead, nickel, tin, and zinc futures from 2014 

to 2024, all the data comes from https://cn.investing.com/commodities/metals which is a professional 

website for investors. The dataset includes daily open, high, low, close prices, volume of trades and 

return of each day. The data was preprocessed to ensure consistency and completeness. Missing 

values were handled through interpolation, and features were normalized using MinMaxScaler to 

facilitate model training. In addition, the author established several 3X2 regions to display the close 

price, return and return distribution of six futures, showing as Figure 1 and Figure 2. From the Figure 

1, it can be seen that all futures’ close prices experience rapid growth in early 2022. According to 

news reports, the geopolitical conflict between Russia and Ukraine erupted at that time. Affected by 

this event, the market's concerns about supply chain disruptions continue to heat up, and commodities 

related to conflicts such as copper, nickel, aluminium, etc. are highly sought after by capital. Figure 

2 indicates that nickel exhibits the smallest return fluctuation. The return fluctuations of the other five 

futures prices are mostly between minus 0.05 and plus 0.05. 

 

Figure 1: Close Price of Aluminium, Copper, Lead, Nickel, Tin, Zinc Futures 
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Figure 2: Return of Aluminium, Copper, Lead, Nickel, Tin, Zinc Futures 

What’s more, the author put the close prices of six types of futures into a plot and use different 

colors to represent different futures for easy observation of their changes, such as green line means 

copper and yellow line means tin, showing as figure 3. From Figure 3, it shows that the aluminium, 

zinc, copper and lead futures were quite stable during last ten years. Instead, the tin and nickel futures 

changed rapidly during last decade, particularly between 2020 and 2023. Maybe due to the COVID-

19 epidemic, the soaring demand for tin and nickel has led to a rapid increase in their prices. 

 

Figure 3: Close Price of Different Futures over Time 
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Two heatmaps of the correlation matrix were drawn using the seaborn library to visually display 

The correlation between six futures closing prices and the correlation between six futures returns, 

showing as Figure 4 and Figure 5 below. The color intensity of the heatmap indicates the strength of 

the correlation, with the redder of color showing the stronger correlation of two futures. If the color 

intensity is 1, it shows red color and means the two futures are highly positively correlated. But if the 

color intensity is -1, it shows blue color and means the two futures are highly negatively correlated.  

Based on Figure 4, which shows the correlation matrix of close price for different futures, it 

indicates that the close price of copper and aluminium, tin and aluminium, zinc and aluminium, 

copper and tin has very high correlation. And the close price between nickel and lead has lowest 

correlation. 

 

Figure 4: Correlation Matrix of Close Prices for Different Futures 

Figure 5 shows the correlation matrix of returns for different futures. It indicates that the net 

changes between these six futures are not very related. There is a certain correlation only between 

lead and copper, tin and copper, but not strong.  

 

Figure 5: Correlation Matrix of Returns for Different Futures 
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3.2. Model Architecture 

Table 1 below shows the summary information of the hybrid model, including the name of each layer, 

output shape, number of parameters, and total parameters. The hybrid model combines two LSTM 

layers followed by two GRU layers, and a dense layer at last. This architecture is designed to capture 

both short-term and long-term dependencies in the data. It starts with two LSTM layers to capture 

long-term dependencies. Then two subsequent GRU layers are added to capture additional patterns. 

Finally, a dense layer at the end produces the final output. 

Table 1: Summary Information of the Model 

Layer(type) Output Shape Param # 

lstm(LSTM) (None, 15, 32) 4352 

lstm_1(LSTM) (None, 15, 32) 8320 

gru(GRU) (None, 15, 32) 6336 

gru_1(GRU) (None, 32) 6336 

Dense (Dense) (None, 1) 33 

Total params  25377 

3.3.  Model Training 

The author divided the dataset into two parts, 60% data for training and the rest 40% data for testing. 

The author uses the fit function in Keras to train a neural network model, which iterates 100 times 

over the entire training set. At each iteration, the number of samples used by the model to update 

weights is 5. There are several benefits of using a mini batch of data with a size of 5. Firstly, small 

batch training is more efficient than single sample training. By processing multiple samples 

simultaneously, the parallel computing power of modern hardware such as GPUs can be utilized to 

accelerate model training speed. Secondly, updating weights with the average gradient of multiple 

samples in each iteration helps reduce variance during training and makes the training process more 

stable. This stability can help the model converge to a better solution faster. Thirdly, small batch 

training helps the model better generalize to unseen data. By calculating gradients and updating 

weights on multiple samples, the model is more likely to learn the overall features of the dataset rather 

than the specific noise of individual samples. 

3.4. Model Evaluation 

The performance of hybrid LSTM-GRU models is assessed using various evaluation metrics, 

including RMSE, MSE, MAE, Variance Regression Score, R2 Score, Mean Geometric Deviation 

(MGD) and Mean Percentage Deviation (MPD). By evaluating these metrics for both training and 

testing data, insights into the LSTM and GRU models' performance in terms of accuracy, error 

magnitude, and predictive power can be gained. These metrics collectively provide a comprehensive 

assessment of how well the models generalize to unseen data and handle the prediction task at hand. 

3.4.1. RMSE 

RMSE measures the average magnitude of the errors between predicted values and actual values. It 

penalizes larger errors more heavily, giving a sense of the model's overall accuracy [7].  Lower RMSE 

values indicate better model performance in terms of predictive accuracy. 
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3.4.2. MSE 

MSE calculates the average squared differences between predicted and actual values [8]. It provides 

a measure of the model's prediction error. Like RMSE, lower MSE values signify better model 

performance with smaller prediction errors. 

3.4.3. MAE 

MAE computes the average absolute differences between predicted and actual values [9].  And it 

gives a direct measure of average prediction error magnitude. Also like RMSE, lower MAE values 

can indicate better predictive accuracy, providing insight into the model's average performance in 

terms of absolute errors. 

3.4.4. Variance Regression Score 

The variance score calculates the proportion of the variance in the dependent variable that is 

predictable from the independent variable. When a score closer to 1 indicates a stronger correlation 

and better prediction effect [10].  

3.4.5. R2 Score (Coefficient of Determination): 

R2_score quantifies the proportion of the variance in the dependent variable that is predictable from 

the independent variable [11]. It provides a measure of how well future samples are likely to be 

predicted by the model. Like the variance score, R2 score closer to 1 indicates better model 

performance in explaining the variability of the data about the mean. 

3.4.6. MGD 

MGD calculates the geometric mean of the ratio of predicted to actual values. It's a multiplicative 

error measure, so a lower MGD indicates better model accuracy, especially for applications sensitive 

to proportional errors. 

3.4.7. MPD 

MPD calculates the average percentage deviation between predicted and actual values. It's a measure 

of relative prediction error, also a lower MPD indicates better model accuracy, particularly in terms 

of percentage deviation from actual values. 

4. Results 

4.1. Performance Metrics 

The table 2 below displays all the evaluation results for each futures. For example, focus on the 

R2_score, the R2_store of the training data portion for the six futures is greater than or very close to 

0.99. And the R2_store of the testing data portion for the lead, tin and zinc futures is greater than 0.94, 

while the R2_store of the testing data portion for the aluminium, copper and nickel futures is less than 

0.86. The table 2 shows that the hybrid model has a good fitting effect on both the train data and test 

data of futures of lead, tin and zinc. However, it only has a good fitting effect on the train data of 

futures of aluminium, copper and nickel, has a poor fitting effect on the test data. Perhaps there are 

the following reasons: First of all, the number of iterations is too small or the sample space is too 

small. What’s more, perhaps there are too few factors to consider, and additional factors such as 

politics and economic development need to be added. Last, failure to consider unexpected events. 
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The experimental results demonstrate that the effectiveness of the hybrid model in capturing long-

term and short-term dependencies. 

Table 2: Evaluation Results of Aluminium, Copper, Lead, Nickel, Tin, Zinc Futures 

Name Indicator Train data Test data 

alu RMSE 22.04 147.48 

alu MSE 485.55 21750.17 

alu MAE 17.41 71.45 

alu variance_score 0.99 0.88 

alu R2_score 0.99 0.86 

alu MGD 0.00014 0.00268 

cop RMSE 66.81 465.17 

cop MSE 4463.06 216386.62 

cop MAE 49.39 361.96 

cop variance_score 0.99 0.93 

cop R2_score 0.99 0.84 

cop MGD 0.00014 0.00258 

cop MPD 0.78 23.60 

lead RMSE 24.50 26.65 

lead MSE 600.44 710.04 

lead MAE 18.22 20.16 

lead variance_score 0.99 0.98 

lead R2_score 0.99 0.98 

lead MGD 0.00014 0.00016 

lead MPD 0.30 0.34 

nic RMSE 250.38 2079.11 

nic MSE 62692.40 4322710.50 

nic MAE 187.13 576.70 

nic variance_score 0.99 0.85 

nic R2_score 0.99 0.85 

nic MGD 0.00043 0.01803 

tin RMSE 205.67 1713.01 

tin MSE 42299.90 2934409.06 

tin MAE 150.81 1004.41 

tin variance_score 0.99 0.96 

tin R2_score 0.99 0.95 

tin MGD 0.00014 0.00217 

tin MPD 2.44 78.85 
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zinc RMSE 30.43 57.42 

zinc MSE 925.83 3296.87 

zinc MAE 23.18 39.27 

zinc variance_score 1.00 0.99 

zinc R2_score 1.00 0.99 

zinc MGD 0.00016 0.00038 

zinc MPD 0.38 1.11 

 

Figure 6 displays the comparison between original close price of each future and train predicted 

close price and test predicted close price. The difference between different futures can be clearly and 

intuitively seen from Figure 6, and the same conclusion can be drawn as Table 2. 

 

Figure 6: Prediction Price VS Original Price 

5. Discussion 

5.1. Model Refinement and Optimization 

Future work should focus on increasing the number of iterations and expanding the sample space to 

improve the model's performance, especially for commodities like aluminum, copper, and nickel. 

Table 2: (continued). 
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Additionally, exploring advanced optimization techniques and hyperparameter tuning could further 

enhance predictive accuracy. 

5.2. Incorporating Additional Factors 

To improve the model's robustness, incorporating more diverse factors such as political events, 

economic indicators, and unexpected events could be beneficial. This would help in capturing the 

broader context affecting futures prices. 

5.3. Exploring Other Hybrid Architectures 

While the LSTM-GRU hybrid model has shown promising results, experimenting with other 

combinations of neural network architectures, such as integrating CNNs or Attention Mechanisms, 

could provide further improvements. 

5.4. Cross-Market Analysis 

Extending the study to include other markets and financial instruments could validate the model's 

applicability across different domains. Analyzing cross-market interactions and their impact on 

futures prices could offer deeper insights. 

By addressing these areas, future research can build on the findings of this study to develop more 

accurate and reliable futures price prediction models, ultimately benefiting market participants in 

making informed investment decisions. 

6. Conclusion 

This study demonstrates the efficacy of a hybrid LSTM and GRU neural network model in predicting 

futures prices for various metal futures, including aluminum, copper, lead, nickel, tin, and zinc. By 

leveraging the strengths of both LSTM and GRU architectures, the hybrid model effectively captures 

both short-term and long-term dependencies in the data, resulting in high predictive accuracy. The 

analysis also highlights the significant correlations between the close prices of different futures, 

offering valuable insights for market participants. However, the model's performance varies across 

different commodities, suggesting that further refinements are necessary to enhance its 

generalizability. Future research should address issues such as insufficient iterations, limited sample 

size, and the exclusion of external factors like political and economic developments, which can 

improve the accuracy of model predictions. Additionally, exploring other hybrid neural network 

architectures and conducting cross-market analysis are also crucial to enhancing the model's 

robustness and applicability. Overall, the LSTM-GRU hybrid model presents a promising approach 

for futures price prediction, assisting market participants in making informed investment decisions. 
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