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Abstract: Portfolio Optimization is a crucial financial framework, designed to achieve 

balance in maximizing return and minimizing risk. The intrinsic uncertainty in the financial 

market leads to the consistent demand of investors to continuously improve the portfolios’ 

effectiveness and adaptability. Accurate forecasting enables investors to generate higher 

returns and hedge risks. This study integrates forecasts of machine learning models, 

specifically Light Gradient Boosting Machine and Random Forest, into portfolio optimization 

to present a robust investment strategy. Daily returns are forecasted using a rolling window 

approach, with models continuously updated to integrate the latest prediction. Through 

extensive Monte Carlo simulations and the visualization of the Efficient Frontier, optimized 

portfolios are systematically determined and evaluated. To assess their practical performance, 

these portfolios are further validated through applying actual, historical returns to weight 

allocation. The study finds that all optimized portfolios significantly outperform the S&P 500 

index. Compared to portfolios of Random Forest, despite lower predictive accuracy of the 

LightGBM model, its portfolios achieve higher cumulative return and Sharpe Ratios, 

especially the Minimum Variance portfolio. These findings not only showcase effective 

strategies to investors but also reveal the substantial yet untapped potential of combining 

machine learning-based forecasts with portfolio optimization techniques.  

Keywords: Portfolio optimization, Machine learning, Mean-Variance portfolio theory, 

Portfolio management. 

1. Introduction 

In the inherently uncertain environment of financial markets, characterized by drastic fluctuations in 

the prices of stocks, bonds, commodities, and other assets, portfolio management serves as a crucial 

mechanism for investors to oversee their assets actively. Performing a comprehensive return and risk 

analysis is indispensable to navigate through volatility [1]. By judiciously allocating assets in a 

portfolio, investors strategically optimize their investments by maximizing returns following their 

risk tolerances. Thus, portfolio optimization is an essential component of financial management. 

Constructing a successful portfolio is important not only in improving investment outcomes but also 

in mitigating investment risks [2]. Therefore, the pursuit of optimal portfolio strategies is pivotal in 

both academic research and practical financial applications. 

Harry Markowitz developed Modern Portfolio Theory, which forms the foundation of 

contemporary portfolio management. He introduced the revolutionary concept of efficient frontier, a 
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curve representing portfolios delivering the highest potential returns for specific risk amounts and the 

lowest risk for a designated return expectation. This mean-variance optimization framework shifted 

the focus from individual asset selection to the holistic composition of portfolios. Markowitz 

articulated that an effective portfolio is not merely a collection of good assets but a balanced whole 

that renders investors protection and opportunities across various circumstances [3].  

Extensive research has been made in the area of portfolio optimization, to address the limitations 

of the traditional Mean-Variance (MV) model introduced by Markowitz. Kalayci and Ertenlice 

extensively reviewed 175 papers, highlighting efforts to refine the MV model by incorporating real-

time conditions and developing various model variants [4]. Chen et al. utilized swarm intelligence 

algorithms to address complex challenges in portfolio optimization [1]. To address the estimation 

issue when applying portfolio optimization models to real data, Ban et al. put forward a performance-

based regularization (PBR) function that helps reduce estimation error [5]. Lee and Kim introduced 

two innovative sparse and robust portfolio selection models. Their approach involves an initial semi-

definite relaxation followed by an extension using L2 norm regularization [6].  Zhang, Li, and Guo 

critically examined the variations of the mean-variance portfolio model, particularly addressing the 

limitation to adapt to the constantly dynamic financial market and operational challenges in practice. 

The robust portfolio optimization, fuzzy portfolio optimization, and dynamic portfolio optimization 

are developed to offset the limitations. They also suggested that combining predictive models with 

portfolio optimization presents a promising approach for future research to mitigate risk and manage 

uncertainty [7].   

Indeed, many studies in recent years demonstrated that machine learning models are feasible tools 

to forecast dynamic movement in the financial market. It excels in capturing non-linear patterns with 

ensemble learning [8]. Algorithms including the Random Forest Model and Deep Neural Networks 

are utilized to predict stock prices and integrated to implement stock selection [9]. Nevertheless, while 

the integration of machine learning models into portfolio optimization shows promise, it is still 

insufficiently explored, highlighting significant potential for further research. Following Zhang’s 

research, this study aims to integrate forecasts with portfolio optimization techniques to formulate 

effective asset allocation strategies.  

To achieve this objective, the study begins by selecting nine assets from diverse sectors, thereby 

constructing a diversified investment portfolio. It utilizes historical data spanning three quarters as a 

training set in forecast models, employing a rolling window approach to predict the returns of 

individual assets for the subsequent quarter. According to the Mean-Variance Portfolio theory, the 

study subsequently leverages Monte Carlo simulations to identify and visualize the Efficient Frontier, 

in order to determine the asset allocation strategy in optimal portfolios that deliver the maximum 

Sharpe Ratio or minimized volatility. For model validation, the optimal weights are applied to the 

historical returns of the individual assets in the next quarter. The performance metrics of these 

portfolios are then computed and compared with each other and against S&P 500 index’s performance. 

This validation through backtesting with actual market data enhances the credibility of the forecasting 

and optimization techniques used, demonstrating their practical applicability and robustness in a real 

investment context.  

2. Methodology  

2.1. Data Collection  

Following the principle of diversification, this paper selects eight assets from different sectors (See 

Table 1). 
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Table 1: Selected stocks 

Stock Symbol Company Sector 

MSFT Microsoft Corp. Technology 

GOOGL Alphabet Inc. Technology 

NFLX Netflix Inc. Communication Services 

FSLR First Solar Inc. Industrials 

PGR Progressive Corp Financial Services 

COST Costco Wholesale Corp Consumer Staple 

DUK Duke Energy Corp Utilities 

 

The dataset consists of historical price data for eight selected assets and the S&P 500, which serves 

as a representative indicator of the market for the later comparative performance evaluation. The data 

originate from Yahoo Finance (https://finance.yahoo.com/) and span from June 1, 2023, to June 1, 

2024. Instead of the standard closing price, the analysis is based on the adjusted close price as it 

accounts for corporate decisions like stock splits and dividends. Using the adjusted close prices 

ensures that the returns calculated are true reflections of investors’ profits. Compounded returns(log-

return) for each asset are computed, according to the following formula.  

𝐶𝑡  = 𝑙𝑛 (
𝑉𝑡  

𝑉𝑡−1

) 

(1) 

Table 2 illustrates the descriptive data of compounded return of considered assets. 

Table 2: Descriptive data of compounded return of considered assets 

 COST DUK FSLR GE GOOGL MSFT NFLX PGR 

Mean 0.0019 0.0008 0.0011 0.0027 0.0013 0.0009 0.0019 0.0020 

Standard 

deviation 

0.0113 0.0108 0.0293 0.0159 0.0018 0.0132 0.0218 0.0166 

Skewness -1.378 -0.020 1.226 1.104 -0.389 -0.349 0.938 -1.605 

Kurtosis 10.405 0.133 5.153 3.623 8.224 0.316 11.082 24.831 

 

Notably, PGR (0.0020) and COST (0.0019) have the highest mean compounded returns among 

the considered assets, suggesting relatively better average performance. FSLR (0.0293) and NFLX 

(0.0218) have the highest standard deviations, indicating higher risk associated with these assets. In 

contrast, GOOGL (0.0018) has the lowest standard deviation, suggesting it is the least volatile asset. 

Skewness provides insights into the asymmetry of return distributions. PGR (-1.605) has a 

significantly negative skewness, indicating a tendency for extreme negative returns. Conversely, 

FSLR (1.226) and GE (1.104) exhibit positive skewness, suggesting a propensity for extreme positive 
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returns.  Kurtosis measures the “tailedness” of the return distribution. PGR (24.831) and NFLX 

(11.082) have extremely high kurtosis values, implying the presence of extreme outliers. This 

indicates a higher likelihood of experiencing extreme returns, both positive and negative. 

2.2. Forecast: Rolling Window Approach 

The rolling window approach is a robust method employed for forecasting stock returns, particularly 

effective for time series analysis in dynamic environments such as financial markets. This method 

utilizes a fixed-size segment of historical data, termed a “window,” to continuously train and update 

forecasting models. Specifically, the dataset, consisting of historical returns from 252 trading days, 

is separated into a training set (189 trading days) and a validation set (63 days).  

The process updates training set daily. After predicting the next day’s return, the model integrates 

this newly estimated data point and discards the oldest data. The window slides forward incrementally 

by one day at a time, with the model being re-trained with each shift. The process continues until the 

window reaches the end of the forecast horizon. It enables the model to generate accurate predictions 

based on its previous forecasts [10].  

The purpose of including estimated return rather than actual return in the training process is to 

maintain an unbiased evaluation of the model. Beyond mere backtesting, the primary aim is not to 

perfect daily predictions—which is impractical for daily portfolio adjustments—but rather to 

determine optimal portfolio weights based on estimated returns. This approach aligns with the 

practical demands of portfolio management, emphasizing long-term performance and risk mitigation 

over short-term market fluctuations. 

2.3. Light Gradient Boosting Machine  

Researchers have validated the effectiveness of LightGBM in predicting short-term stock volatility 

[11]. A comparative study by Hartanto et al. illustrates that LightGBM outperforms other boosting-

based forecasting models such as XGBoost and CatBoost in projecting stock prices [12]. Motivated 

by these findings, this study employs the LightGBM model optimized by Optuna. It dynamically 

inputs values for various hyperparameters within specified ranges, trains the model and iteratively 

adjusts the parameters based on lower root mean squared error (RMSE). This optimization process 

aims to refine the model parameters to minimize the RMSE of predictions. 

Given that gradient boosting utilizes tree-based learning algorithms, LightGBM is recognized for 

its faster training speed and higher accuracy. It addresses the limitation of traditional gradient-

boosting decision trees by incorporating a gradient-based one-sided sampling method to split trees. 

This technique not only reduces memory usage but also enhances efficiency and accuracy, 

particularly in scenarios with large and imbalanced datasets (See Figure 1).  

 

Figure 1: Flowchart of Light Gradient Boosting Machine model [13] 
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The diagram shows how each decision tree (Tree 1, Tree 2, …, Tree K) is built sequentially, with 

each tree learning from the residuals of the previous tree. Each tree produces a leaf score based on 

the inputs. The summing of leaf scores across all trees to produce a final predicted value. Such 

aggregation combines the incremental improvement from all the trees. The flow from 

multidimensional inputs through trees to a cumulative output illustrates how LightGBM keeps 

improving prediction from iterations.  

2.4. Random Forest 

This study utilizes the Random Forest model to project the compounded returns of individual stocks. 

The model is fine-tuned using GridSearchCV to identify optimal parameters, which are then used to 

evaluate the model’s performance via RMSE on a test set. Subsequently, the model is employed in a 

rolling prediction approach, where it iteratively forecasts future returns by including the newly 

estimated data points and removing the most outdated entry. The Random Forest model is considered 

as a robust machine learning technique that employs a collection of multiple decision trees to carry 

out tasks such as classification and regression (See Figure 2). 

 

Figure 2: Illustration of Random Forest Model 

As Figure 2 shows, the Random Forest (RF) model is an ensemble method comprising numerous 

trees whose collective decisions determine the outcome. Decisions are aggregated through either 

majority voting or averaging, to improve performance and avoid overfitting, which are the major 

advantages of the Random Forest approach. The empirical research by Basak et al. establishes a 

model that leverages random forest and gradient-boosted decision trees to forecast stock price 

movements. It concludes that random forest is preferred because it employs a substantial number of 

independent decision trees and aggregates predicting through a voting mechanism, making it 

particularly effective in the stock market context [14].  

2.5. Mean-Variance Portfolio 

In Mean-Variance Portfolio theory, portfolios are evaluated on two dimensions: the expected return 

and risk, or the variance of return. The Efficient Frontier visually delineates the collection of 

portfolios that optimally balance the tradeoff between risk and return. Markowitz presents the Monte 

Carlo simulation as a powerful tool in portfolio optimization. By simulating numerous random 

portfolios with distinct weight allocations, investors can estimate the distribution of returns and risks, 

thereby allowing them to identify the portfolios lying on the Efficient Frontier. It is visualized as an 
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upward-sloping curve, indicating the positive correlation between risk and return. Inside the 

Markowitz model, three indicators are crucial for the optimization: expected return, volatility, and 

Sharpe Ratio. These indicators are formulated below. 

This metric is computed by aggregating the expected returns of each constituent asset in the 

portfolio, weighted according to their allocation proportions. Mathematically, it is represented as: 

𝐸(𝑅𝑝)  = ∑ 𝑤𝑖  𝐸(𝑅𝑖)

𝑛

𝑖=1

  =  ∑ 𝑤𝑖 𝜇𝑖 

𝑛

𝑖=1

 

(2) 

The portfolio’s risk is measured by volatility, or the variance of the portfolio’s expected return.  It 

is calculated by summing the products of the weights and covariances of all pairs of assets, as the 

following shows: 

𝜎𝑝
2

 = 𝑣𝑎𝑟 (∑ 𝑤𝑖  𝐸(𝑅𝑖)

𝑛

𝑖=1

)  = ∑ ∑ 𝑤𝑖𝑤𝑗 𝑐𝑜𝑣(𝑟𝑖𝑟𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

(3) 

The Sharpe Ratio helps in understanding how much additional return the portfolio has relative to 

its risk, compared to a risk-free asset. It quantifies the average excess return per unit of risk. 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝐸(𝑅𝑝)  −  𝑅𝑓

𝜎𝑝
 

(4) 

3. Results 

This study implements the LightGBM and Random Forest model trained by historical compounded 

return in three quarters to forecast return for the next quarter on a rolling window basis. Through 

Monte Carlo simulations based on forecasted returns, a significant number of optimal portfolios are 

identified, delineated along the Efficient Frontier. Notably, two portfolios stand out and provide the 

optimal weight allocation strategy: the Maximum Sharpe Ratio portfolio and Minimum Volatility 

portfolio. The performance of optimal weights is validated by applying optimal weights to the actual 

return and evaluating with return, volatility, and Sharpe Ratio.  

3.1. Forecast Results 

Optimized by the hyperparameter tuning framework Optuna, the LightGBM model exhibits an RMSE 

of 0.024301, which is a relatively low error rate. This indicates an average deviation of 2.43% 

between the model’s forecast and the historical returns (See Figure 3). 

 

Figure 3: Forecast return of the individual assets from hyperparameter-tuned LightGBM  
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Figure 3 displays the predicted compounded return percentages for all assets from March to June 

2024. The lines do not show extreme volatility, which suggests the model predicts a stable market or 

smoothes out the extreme fluctuations. Moreover, the trends of each line remain in the same direction, 

reflecting consistent predictive performance. However, it might also imply that the LightGBM could 

be oversimplifying the dynamic market movement (See Figure 4). 

 

Figure 4: Forecast return of the individual assets from the optimized Random Forest model 

The Random Forest model exhibits an RMSE of 0.019581, indicating a relatively lower average 

error compared to the LightGBM. The low RMSE value suggests that the Random Forest model has 

performed quite effectively in predicting the returns of assets. The forecasted compounded return 

predicted by the optimized Random Forest model, from March to June 2024, is represented in Figure 

4. The plot exhibits significant fluctuation, with all asset lines illustrating peaks and troughs. It implies 

that the RF model is sensitive to volatile market movement and can capture short-term shifts in asset 

performance.  

3.2. Efficient Frontier and Optimal Weights 

3.2.1. Light Gradient Boosting Model 

By numerously performing Monte Carlo simulations, a significant number of portfolios are generated 

based on random weights and forecast returns predicted by the LightGBM model (See Figure 5).  

  

Figure 5: Efficient Frontier - LightGBM model  
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Evaluated by expected return and volatility, Figure 5 displays the portfolios by points in a scatter 

plot format. The Efficient Frontier is highlighted by a blue dotted line, delineating the portfolio 

combinations that achieve the maximized expected gains for defined volatility amount or the minimal 

volatility for certain expected rewards. Figure 6 showcases the Maximum Sharpe Ratio portfolio 

identified by the star symbol and the Minimum Volatility portfolio denoted by a plus symbol.  

 

Figure 6: Maximum Sharpe Ratio and Min Volatility Portfolios based on predicted return of 

LightGBM model  

The optimal weights distributed to each asset in the two optimal portfolios are shown in the 

following Table 3: 

Table 3: Weights allocated to each asset in the optimized portfolios based on the forecast return of 

the LightGBM model 

 MSFT GOOGL NFLX FSLR COST GE PGR DUK 

Max Sharpe Ratio  12.11% 0.43% 0.42% 11.10% 8.94% 41.57% 25.37% 0.05% 

Min Volatility 19.99% 23.58% 0.57% 21.97% 10.62% 19.38% 19.38% 3.80% 

3.2.2. Random Forest Model 

By implementing the Monte Carlo Simulation and constructing numerous portfolios from multiplying 

random weights and forecast results of the Random Forest Model, an Efficient Frontier is plotted in 

Figure 7.  

 

Figure 7: Efficient Frontier - Random Forest model  
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Figure 8 exhibits the locations of optimal portfolios lying on the Efficient portfolio, denoted by 

the star sign and the plus sign. Related weights are shown in the following Table 4. 

 

Figure 8: Maximum Sharpe Ratio and Min Volatility Portfolios based on predicted return of Random 

Forest model  

Table 4: Weights allocated to each asset in the optimal portfolios based on the forecast return of 

Random Forest model  

 MSFT GOOGL NFLX FSLR COST GE PGR DUK 

Max Sharpe Ratio  23.91% 11.17% 0.72% 23.06% 25.17% 1.28% 6.27% 8.43% 

Min Volatility 31.84% 21.41% 0.71% 13.18% 14.50% 7.17% 3.81% 7.38% 

3.3. Backtesting Results 

To evaluate the performance of optimal weights in real-life scenarios, portfolios are constructed by 

applying these weights to actual historical compounded returns, from March to June 2024. The 

performance of these portfolios is then assessed by computing key metrics, including return, volatility, 

and the Sharpe Ratio. These measurements provide a comprehensive view of portfolio performance 

and allow for a detailed comparison against other strategies or benchmarks. 

The backtesting results for portfolios optimized using LightGBM and Random Forest models 

indicate significant performance differences when compared to the S&P 500 benchmark.  

3.3.1. Light Gradient Boosting Machine  

For the LightGBM model, the Maximum Sharpe Ratio portfolio delivered a remarkable cumulative 

return of 24.35% with a high annual volatility of 19.1%, significantly outperforming the market, 

represented by the S&P 500 index, which exhibits a cumulative return of only 2.7% with volatility of 

11.2%. Demonstrating superior risk-adjusted performance, the Sharpe Ratio optimized portfolio 

stands at 4.66, markedly higher than the S&P 500 index’s ratio of 1.02. The Minimum Volatility 

portfolio based on the LightGBM model presents an even higher return at 28.26% with a slightly 

increased volatility of 20.7%. Both portfolios surpass the market index in cumulative return and 

Sharpe Ratio. In comparison, although the annual volatility metrics of both optimized portfolios are 
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markedly above the market’s volatility of 11.2%, it is noticeable that the S&P 500 experienced a 

higher maximum drawdown of -5.5%, compared to the optimized portfolios. Additionally, while the 

Minimum Volatility Portfolio is supposed to deliver minimized volatility at a specified level of return 

in theory, it exhibits slightly higher volatility with a more rewarding cumulative return compared to 

the Maximum Sharpe Ratio portfolio (See Table 5). 

Table 5: Performance metrics of portfolios  

 Cumulative 

Return 

Annual 

Volatility  

Sharpe 

Ratio 

Max 

drawdown 

Daily Value at 

Risk 

Max Sharpe 

Ratio  

24.35% 19.1% 4.66 -2.77% -2.1% 

Min Volatility 28.26% 20.7% 4.91 -4.6% -2.2% 

S&P 500 2.7% 11.2% 1.02 -5.5% -1.4% 

3.3.2. Random Forest Model  

For the Random Forest model, Table 5 and Table 6 exhibit that all portfolios generated by optimal 

weights outperform the market performance. The Maximum Sharpe Ratio Portfolio produces an 

extraordinary cumulative return of 22.52% with a volatility of 18.7%, which surpasses the return of 

the S&P 500.  Meanwhile, it yields a Sharpe Ratio of 4.44, reflecting its effectiveness in providing 

higher risk-adjusted returns relative to benchmark’s ratio of 1.02. The Minimum Volatility Portfolio 

also shows a more profitable profile with a cumulative return of 19.09% and a Sharpe Ratio of 4.21. 

The optimized portfolios undertake annual volatility of around 17% and 18.7%. 

Table 6: Performance metrics of portfolios  

 Cumulative 

Return 

Annual 

Volatility  

Sharpe 

Ratio 

Max 

drawdown 

Daily Value at 

Risk 

Max Sharpe 

Ratio  

22.52% 18.7% 4.44 -3.5% -2.0% 

Min Volatility 19.09% 17.0% 4.21 -4.0% -1.9% 

S&P 500 2.7% 11.2% 1.02 -5.5% -1.4% 

 

Based on these results, one could observe the following: 

Both the LightGBM and Random Forest models generate portfolios that substantially exceed the 

performance of the S&P 500 with significantly higher cumulative returns and Sharpe Ratios. It 

manifests the effectiveness of using machine learning models for portfolio optimization. Both models 

also demonstrate lower maximum drawdowns than the S&P 500, suggesting that the diversification 

of portfolio effectively reduces the risk exposure. The Random Forest model shows lower RMSE, 

which usually indicates greater prediction accuracy. Nevertheless, both its Maximum Sharpe Ratio 

and Minimum Volatility portfolios deliver lower cumulative returns and lower Sharpe Ratios 

compared to those from the LightGBM model. While both models show similar volatility levels, 

portfolios from the Random Forest model tended to have slightly lower returns than those from the 
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LightGBM model. Despite capturing less market dynamic in the aspect of forecast return, the 

LightGBM’s optimized portfolio exhibits a more remarkable cumulative return and Sharpe Ratios, 

while maintaining similar levels of volatility. It underscores LightGBM’s superior performance in 

optimizing risk-adjusted returns.  

4. Conclusion  

This study investigates the integration of machine learning-based forecast models with portfolio 

optimization techniques, aiming to identify the optimal asset allocation and introduce a novel 

approach of investment strategy. Taking historical compounded returns in three quarters as the 

training set, Light Gradient Boosting Machine and Random Forest models are employed to forecast 

the daily return of next quarter with a rolling window approach, which ensures the robustness of 

prediction. On the basis of Mean-Variance Portfolio theory, optimized portfolios are determined by 

performing Monte Carlo simulations. The strategy of weights allocation is validated by simulating 

the performance in real-life scenarios backed by actual historical return.  

The empirical results manifest that Maximum Sharpe Ratio portfolios and Minimum Volatility 

portfolios of both models significantly outperform the S&P 500 index with significantly higher 

cumulative returns and Sharpe Ratios. This confirms the substantial potential of combining machine 

learning model and portfolio optimization in investment strategy. Notably, despite similar volatility 

levels and slightly lower predictive accuracy indicated by RMSE, the LightGBM model excels the 

Random Forest model in achieving higher returns and Sharpe Ratios, indicating a more robust 

performance in optimizing risk-adjusted return.  

These findings highlight the practical utility of machine learning techniques in managing portfolios, 

substantiating the unexploited potential. The success of these portfolios in outperforming benchmark 

index presents a compelling vision for investors in contemporary investment strategies. Backtesting 

with real-time data enhances the reliability and practical applicability in the live trading environments. 

Future research could leverage advanced machine learning models and incorporate broader economic 

indicators to refine the forecasting accuracy. Additionally, exploring the relationship between 

predictive accuracy and portfolio performance in the market could further bolster the efficacy of data-

driven investment strategies.  
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