
 

 

Enhancing Anti-Money Laundering Systems Using 
Knowledge Graphs and Graph Neural Networks 

Qilong Yu1,a,* 

1Department of economics, University College London, London, UK 

a. uctpqyu@ucl.ac.uk 

*corresponding author 

Abstract: In today's increasingly complex financial landscape, traditional anti-money 

laundering (AML) systems are often inadequate in combating sophisticated financial crimes. 

This research aims to bridge that gap by integrating knowledge graphs with graph neural 

networks (GNNs) to enhance AML detection capabilities. The study leverages financial 

transactional data to construct a knowledge graph, employing GNN architectures, particularly 

Graph Attention Networks (GAT), to predict and detect potential money laundering activities. 

Empirical results demonstrate that GNNs are highly effective at uncovering intricate 

transaction patterns that conventional methods frequently miss. However, the GAT model 

encounters issues with generalization and overfitting, especially on larger test datasets. 

Sensitivity analyses highlight the critical influence of features such as transaction timestamps 

and payment formats on model performance. This research provides a data-driven, Artificial 

Intelligence (AI)-enhanced approach to advancing AML systems, offering practical insights 

for optimizing models and improving detection accuracy. Additionally, the findings present 

valuable recommendations for financial institutions and regulatory bodies, aiming to enhance 

compliance and fortify the security of financial markets. Future research will focus on further 

optimizing these models to address existing challenges and improve generalization.  

Keywords: Anti-Money Laundering (AML), Graph Neural Networks (GNN), Knowledge 

Graph. 

1. Introduction 

Data has become a crucial driver in modern finance, advancing quantitative finance and improving 

decision-making. However, technological advancements have also facilitated more sophisticated 

financial crimes, such as money laundering. To address these threats, financial institutions must adopt 

advanced risk monitoring tools. Regulatory measures like the Patriot Act in the U.S. and the anti-

money laundering (AML) directive in Europe have imposed stricter compliance requirements, 

highlighting the need for innovative AML strategies. Jack et al. [1] investigated graph neural 

networks (GNNs) and recurrent neural networks (RNNs) for analyzing transaction patterns to detect 

money laundering, while Akash et al. [2] compared various machine learning algorithms for fraud 

detection. Yongshan et al. [3] proposed a method combining comparative learning with generative 

adversarial networks (GANs) for anomaly detection in multivariate time series. Despite AI's potential, 

challenges such as model interpretability and reliance on labeled data remain. 
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In addition to traditional machine learning methods, GNN technology has increasingly been 

applied to the field of AML. Liyu & Qiang [4] explored how GNNs can capture complex 

dependencies between nodes in a graph and improve model accuracy through a message-passing 

mechanism that updates node features. Additionally, Simone & Stefano [5] applied various GNN 

architectures, including Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), 

Chebyshev space Convolutional Neural Networks (ChebNet), and Graph Sample and Aggregated 

(GraphSAGE), to classify bitcoin transactions, demonstrating the effectiveness of GNNs in handling 

complex financial data. Moreover, Bin et al. [6] introduced multi-fraud, a heterogeneous learning 

framework that utilizes multi-view heterogeneous information GNNs for advanced fraud detection. 

These studies indicate that integrating GNNs with knowledge graphs significantly enhances the 

intelligence and automation of AML systems. 

This research aims to enhance AML systems by integrating knowledge graphs and GNNs. By 

modeling financial transactions as knowledge graphs and applying GCNs and GATs, it identifies 

hidden money laundering patterns that traditional rule-based methods often miss. This approach 

addresses inefficiencies in existing systems and reduces compliance costs. Experimental results show 

that combining GNNs with knowledge graphs significantly improves detection accuracy, especially 

with GCNs. These findings offer financial institutions and regulators scalable tools to better detect 

suspicious activities, streamline compliance, and strengthen financial market security. 

2. Methodology 

2.1. Dataset Description and Preprocessing  

This research used a synthetic dataset provided by International Business Machines Corporation 

(IBM), which is designed to simulate financial transaction data while addressing privacy and 

proprietary concerns associated with real financial data [7]. The dataset comprises 1,243 detailed 

transactions from various banks, starting from September 1, 2022. It includes information such as 

transaction timestamps, involved accounts, banks of receipt and payment, transaction amounts, 

currencies, payment methods, and a label indicating whether a transaction is suspected of money 

laundering. A description of the relevant variables is presented in Table 1. During the preprocessing 

phase, categorical variables such as payment method and currency type were encoded numerically, 

and timestamps were normalized. Account details were consolidated into unique identifiers to 

maintain consistency. 

Table 1: Variable-related descriptions. 

# Column Non-Null Count Dtype 

1 Timestamp 1243 non-null object 

2 From Bank 1243 non-null int64 

3 Account 1243 non-null object 

4 To Bank 1243 non-null int64 

5 Account.1 1243 non-null object 

6 Amount Received 1243 non-null float64 

7 Receiving Currency 1243 non-null object 

8 Amount Paid 1243 non-null float64 

9 Payment Currency 1243 non-null object 

10 Payment Format 1243 non-null object 
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2.2. Proposed Approach 

This research aims to develop an efficient money laundering detection model by applying GNNs to a 

knowledge graph constructed from comprehensive financial transaction data. The process begins with 

data preprocessing, which involves encoding categorical variables, normalizing timestamps, and 

merging account details into unique identifiers (as illustrated in Figure 1). A knowledge graph is then 

constructed, where nodes represent accounts and edges represent transactions, capturing complex 

relationships and attributes such as transaction amounts, currencies, and payment methods. The model 

is based on GAT, chosen for its ability to learn node features through an attention mechanism. The 

architecture consists of four graph attention layers with multiple heads to aggregate attention weights, 

followed by a fully connected layer for classification, using focus loss to handle class imbalance. 

Performance is evaluated through standard metrics, and the structure of the knowledge graph is 

visualized and analyzed. This study hypothesizes that GAT can effectively capture intricate 

relationships within the data, leading to improved detection accuracy. While the model shows 

promising results during training, further optimization is needed to address overfitting and potential 

data distribution discrepancies. Ultimately, this research seeks to provide a robust and scalable 

solution that enhances the security and compliance capabilities of financial institutions. 

 

Figure 1: Research process.  

2.2.1. Knowledge Graph 

A Knowledge Graph is a structured semantic network that represents entities and their relationships 

through nodes and edges [8], adding semantic meaning to data for deeper insights and reasoning [9]. 

Key features include semantic understanding, structured organization, scalability, and reasoning 

capabilities, making Knowledge Graphs valuable for analyzing large, complex datasets in areas like 

recommender systems and search engines (see in Figure 2). In this experiment, a knowledge graph is 

built from financial transaction data, where nodes represent bank accounts, edges depict transactional 

relationships, and attributes like transaction amounts and money laundering labels are included. The 

GAT model is used for classification, applying a four-layer attention mechanism and a fully 

connected layer for final predictions. Focal loss is employed to handle class imbalance and improve 

performance.  
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Figure 2: Graph visualization.  

2.2.2. Graph Neural Networks (GNNs) 

GNNs are neural network models designed to process graph-structured data, capturing relationships 

between nodes and edges [10]. Unlike traditional networks, GNNs excel in learning node 

representations by aggregating and updating information from neighboring nodes, making them 

highly effective for tasks like classification and prediction. They capture both local and global 

information, handle irregular data structures, and adapt to graph topology [11], making them useful 

in fields like social network analysis and bioinformatics. Among GNN variants, GAT enhances 

flexibility by incorporating an attention mechanism that assigns different weights to nodes, improving 

performance on heterogeneous graphs. In this experiment, a four-layer GAT model is trained on 

financial transaction data, with focal loss applied to address class imbalance. The model's 

performance is evaluated using accuracy, precision, recall, and F1 score, with ongoing optimization 

to improve generalization. 

2.2.3. Focal Loss 

Focal loss is a loss function specially designed to solve the problem of category imbalance, especially 

in target detection and classification tasks. The core idea is to improve the model's ability to recognise 

a small number of classes by decreasing the loss contribution to easy-to-categorise samples and thus 

increasing the attention to difficult-to-categorise samples [12]. The formula for focal loss is as 

equation (1): 

𝐹𝑜𝑐𝑎𝑙𝑙𝑜𝑠𝑠 = −𝑎𝑡(1 − 𝑝𝑡)
𝛾
log(𝑝𝑡) (1) 

𝑝𝑡 represents the predicted probability: if the true label y = 1, then 𝑝𝑡 = 𝑝; if y = 0, then 𝑝𝑡 = 1−
𝑝, where p is the model’s predicted probability for the positive class. αt is an optional balancing factor 

used to adjust the balance between positive and negative samples, typically to control the weighting 

for class imbalance. The parameter γ is a focusing parameter, which controls the rate at which easy 

and hard samples’ loss decays. Generally, when γ ≥ 0, the harder-to-classify samples (i.e., smaller 

pt ) have larger weights. 
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Focal loss introduces the term (1 − 𝑝𝑡)
𝛾 , which dynamically adjusts the loss weight of each 

sample. For easy-to-classify samples (i.e., 𝑝𝑡 close to 1), this term approaches 0, reducing their loss 

contribution; for hard-to-classify samples (i.e., smaller pt), this term is larger, increasing their loss 

weight. This mechanism ensures that the model focuses more on difficult-to-classify samples during 

training, thereby improving the recognition performance for minority classes. Focal Loss reduces the 

loss contribution from easy samples, allowing the model to better learn from minority class samples, 

and can be flexibly applied to different tasks by adjusting the parameters γ and α. 

3. Result and Discussion  

3.1. Model Performance   

This research builds a model for money laundering detection using the GAT applied to knowledge 

graph data. The process involves data preprocessing to convert the data into a graph structure, 

followed by model training and evaluation. Focal Loss is used to handle class imbalance, and the final 

results include a classification report and graph visualization. The hypothesis is that the GAT can 

capture complex relationships between nodes, enhancing the detection of money laundering activities. 

Table 2: Training set model performance. 

Model Loss Accuracy Precision Recall F1-score 

GAT 4.3261 0.75 0.76 (0.0) 

0.71(1.0) 

0.74(0.0) 

0.73(1.0) 

0.76(0.0)  

0.72(0.0) 

Table 3: Testing set model performance. 

Model Loss Accuracy Precision Recall F1-score 

GAT 4.3261 0.75 0.73 (0.0) 

0.68 (1.0) 

0.70 (0.0)  

0.71 (1.0) 

0.71 (0.0)  

0.69 (1.0) 

 

As displayed in Table 2 and Table 3, on the training set, the GAT model achieved a loss of 4.33 

and 75% accuracy, with better metrics for category 0 than category 1, indicating strong performance. 

However, on the test set, the model's loss increased to 4.88, and accuracy dropped to 70%, showing 

reduced generalization, likely due to overfitting or data distribution differences. Overall, while the 

GAT model shows promise for detecting money laundering (see in Figure 3), it requires further tuning 

to improve prediction performance on test data. Sensitivity analysis on different data volumes will 

help assess and enhance the model’s robustness, improving stability and accuracy in practical 

applications. 

 

Figure 3: Confusion matrix of test set prediction results.  
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3.2. Sensitivity Analysis   

In financial data analysis, the stability and generalization ability of a model is very important [13]. In 

order to further assess the robustness of the GAT model in AML tasks, this research conducts a 

detailed sensitivity analysis, which aims to determine the model's response to different data variations 

and assess its performance under various conditions. 

3.2.1. Volume Analysis  

To test the model's sensitivity to variations in data volume, this research randomly generated subsets 

of 2000, 3000, and 4000 transaction records to evaluate the model's performance. This approach aims 

to assess the model's stability and check for signs of overfitting or underfitting. 

Table 4: Comparison of model performance with different amount of data. 

Data Volume Accuracy Recall Rate F1-score 

2000 0.70 0.67 0.71 

3000 0.68 0.64 0.68 

4000 0.65 0.60 0.65 

 

As illustrated in the Table 4, with 2000 records, the model performs best, achieving an accuracy 

of 0.70, recall of 0.67, and an F1 score of 0.71, indicating that it classifies effectively with smaller 

datasets. However, the superior performance suggests potential overfitting. As the data volume 

increases to 3000 records, the accuracy drops slightly to 0.68, with recall at 0.64 and F1 score at 0.68, 

reflecting a more stable performance, and the model seems to generalize better at this data level. 

When the data volume increases to 4000 records, the model's performance declines further, with 

accuracy falling to 0.65, recall to 0.60, and the F1 score to 0.65, suggesting underfitting as the model 

struggles to capture the complex patterns in larger datasets. 

3.2.2. Feature Importance Analysis   

In order to further understand the behaviour of the model, this research analysed the importance of 

the features and assessed the performance of the model after removing certain features by calculating 

the extent to which each feature affects the model predictions. The analysis of the importance of 

features helps to identify which features are most critical to model performance (as shown in Table 

5), thus providing further direction for optimisation. 

Table 5: Importance scores for different features. 

Feature 
Importance 

Score 

Accuracy After 

Removal 

Recall Rate After 

Removal 

F1-score After 

Removal 

Timestamp 0.25 0.68 0.62 0.67 

Account  0.18 0.70 0.64 0.69 

Payment 

Format 
0.22 0.69 0.63 0.68 

Amount 

Received 
0.15 0.67 0.60 0.66 

Amount Paid 0.20 0.68 0.61 0.67 
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This table demonstrates that 'Timestamp' is the most critical feature, with its removal causing the 

greatest performance drop (accuracy to 0.68, recall to 0.62, F1-score to 0.67). Removing 'Payment 

Format' also leads to a significant decline (accuracy to 0.69), while 'Account' and 'Payment Amount' 

cause smaller reductions in performance. For instance, removing ' Amount Paid' drops accuracy to 

0.68, but has less impact overall. These findings highlight the importance of 'Timestamp' in 

optimizing the model, while 'Amount received' has the least effect, guiding better feature selection 

and model tuning. 

3.2.3. Time Period Analysis    

The time period sensitivity analysis divides data into "Morning" (6:00-12:00), "Afternoon" (12:00-

18:00), and "Evening" (18:00-24:00) intervals. Removing the "Timestamp" showed a more 

significant impact on model performance in the evening compared to morning and afternoon. This 

suggests the model relies more on this feature in the evening, highlighting opportunities for 

optimizing performance based on time of day. 

Table 6: Importance scores for different time periods. 

Feature 
Importance 

Score 

Accuracy After 

Removal 

Recall Rate After 

Removal 

F1-score After 

Removal 

Timestamp 0.25 0.68 0.62 0.67 

Account  0.18 0.70 0.64 0.69 

Payment 

Format 
0.22 0.69 0.63 0.68 

Amount 

Received 
0.15 0.67 0.60 0.66 

Amount Paid 0.20 0.68 0.61 0.67 

 

The Table 6 reveals the feature importance scores, along with the accuracy, recall, and F1 score 

for each time period. In the morning, the feature importance score is highest at 0.30, with the model 

performing robustly—achieving an accuracy and F1 score of 0.70. During midday, despite a lower 

feature importance score of 0.20, the model achieves the highest accuracy (0.72), although the recall 

is lower at 0.66, indicating a potential bias in the predictions. In the evening, the feature importance 

score is 0.25, with the model's performance slightly lower than midday, showing a decline in overall 

prediction effectiveness. These results highlight the significant impact of time-specific features on 

model accuracy, with morning characteristics contributing most to the model’s success. 

3.3. Model Comparison   

In this subsection, this research compares the performance of four graph neural network models: GAT, 

GCN, GraphSAGE, and GIN. By applying these models to the anti-money laundering detection task 

on the test set data, the accuracy, recall and f1 score of each model are analyzed in detail and their 

performance is evaluated (as shown in Figure 4). 
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Figure 4: Comparison of different graph neural network models.  

The GIN model outperforms others with the highest accuracy (0.72) and F1-score (0.71), showing 

its ability to classify effectively and balance precision and recall. In contrast, the GAT model excels 

in recall (0.68), making it particularly effective at detecting money laundering activities, but it has a 

slightly lower accuracy (0.70) and F1-score (0.70) compared to GIN. While both GIN and GAT 

demonstrate strong performance, GIN's higher accuracy suggests better overall classification, 

whereas GAT's higher recall highlights its superior detection of positive instances. Overall, GIN is 

better at capturing key features and managing complex, nonlinear relationships, while GAT offers 

enhanced sensitivity to detecting rare events. 

4. Conclusion   

This research investigates the integration of knowledge graphs and GNNs to strengthen AML efforts, 

addressing the growing demand for advanced technological solutions in the financial sector. While 

the GAT model demonstrated strong performance on the training data, it faced challenges in 

generalization and overfitting on the test data, particularly with larger datasets. Feature analysis 

underscored the significance of variables like timestamps, offering valuable insights into model 

optimization and feature selection. Further analyses revealed that the GAT model performed more 

effectively during morning transaction periods, and suggested that the GIN model may offer superior 

data processing capabilities under certain conditions. These findings provide practical 

recommendations for enhancing AML systems through AI-driven methods. Future research could 

focus on refining the models to improve generalization, paving the way for further advancements in 

AML technology. 
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