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Abstract: The main objective of this study is to increase the accuracy of option pricing of the 

Black-Scholes model by integrating GARCH models and analyzing the effectiveness of this 

method across different industries. This study focuses on the three major U.S. stock indices 

needed to achieve this goal and derive the results. By applying the GARCH model to options 

data from these indices, this study shows that the GARCH model significantly enhances the 

pricing accuracy for SPX and DJIA options while not yielding similar improvements for 

NDX options. This discrepancy highlights the GARCH model's effectiveness in more stable, 

less volatile industries like industrials and manufacturing but its reduced utility in the 

technology sector, where stock price fluctuations are more unpredictable. Finally, This study 

recommends that investors use the GARCH model in industries such as manufacturing and 

suggests that future research adopt more accurate and advanced models to enhance option 

pricing in highly volatile sectors, providing investors with better tools and methodologies. 

Keywords: Option Pricing, Black-Scholes Model, GARCH Model, Pricing Accuracy. 

1. Introduction 

1.1. Background 

It’s acknowledged that the value of financial derivatives is obtained from the underlying assets. Hence, 

the value of derivatives can be calculated theoretically by analyzing the characteristics of underlying 

assets. Therefore, accurate option pricing is essential for financial investors to construct investment 

portfolios. Options allow investors to hedge risks and enhance portfolio returns without owning the 

underlying assets.  

The Nasdaq Index, S&P 500 Index, and Dow Jones Industrial Average (DJIA) are the three most 

representative and influential indices in the United States. They can reflect the market's confidence 

in the macro-economy and various industries and influence investors' investment decisions. The three 

major indices have different focuses and do not use the same index measurement method. The 

NASDAQ-100 Index includes the 100 largest non-financial companies listed on the NASDAQ, 

focusing on the technology sector. The S&P 500 Index includes 500 top U.S. companies across 
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various industries, while the DJIA tracks 30 significant companies, emphasizing industrial enterprises. 

These indices are commonly used as underlying assets in numerous daily-traded options contracts. 

The Black-Scholes model is a widely used method for option pricing, which can provide a solution 

and offer high efficiency to market trends and daily trading. However, the BS model's assumption of 

constant volatility has always been criticized for its lack of realism, as realistic market volatility is 

often dynamic and constantly changing, potentially leading to inaccuracies in option pricing. 

1.2. Related Research 

1.2.1. Research on the BS Model 

Option pricing is critical for the financial industry as it helps determine the fair value of options, 

optimizes risk management, and supports investment decisions, thereby maintaining the overall 

robustness of financial markets and providing profit for the whole industry. The Black-Scholes model 

offers a theoretical foundation for option pricing in financial markets, introducing the no-arbitrage 

principle and helping market participants evaluate the theoretical value of options, promoting fairness 

and consistency in market pricing. Initially developed by Fischer Black and Myron Scholes, the BSM 

model posited that a theoretical option pricing formula could be derived by constructing a trading 

strategy that includes long/short options and their underlying assets, applicable not only to corporate 

liabilities but also to a broad range of underlying assets including stock indices [1]. Tong noted that 

the BSM model, grounded in stochastic processes and calculus, provides a mathematically derived 

closed-form solution for option pricing by constructing arbitrage strategies to eliminate the 

unpredictability of stochastic Brownian motion [2]. After creating the trading portfolio, many 

researchers noted that the constant volatility assumption in the BSM model does not hold in 

fundamental markets where volatility is constantly changing. Bayraktar and Poor expanded upon 

previous research by exploring stochastic volatility models modulated by fractional Brownian motion 

or its time changes [3]. They developed an arbitrage strategy suitable for a modified Black-Scholes 

model driven by fractional Brownian motion, especially when dealing with stochastic volatility. In 

their pursuit of methods to enhance option pricing accuracy within the BSM model, Lahouel and 

Hellara utilized newly modified GARCH processes to improve the constant fluctuations in the BS 

model to conditional volatility calculated based on historical volatility and data, using real data from 

the CAC 40 index to study the performance of various models in terms of maturity and moneyness 

[4]. They concluded that the GARCH approach was the most accurate method for providing more 

precise option pricing for the BSM model. 

1.2.2. Research on the GARCH Model 

The BSM model initially assumed that volatility is constant. However, in financial markets, the 

volatility of the underlying assets fluctuates over time, so this assumption does not match the actual 

situation. Engle proposed the ARCH model to address this limitation to model volatility in time series 

data [5]. The ARCH model posits that current volatility depends not only on the mean of historical 

data but also on historical volatility, and it also predicts the variance of error terms through the square 

of past error terms. This approach is deemed suitable for volatility modeling in financial markets 

since it typically exhibits clustering effects. However, the ARCH model often requires many lag terms 

to capture volatility characteristics in the data, which increases complexity and might lead to 

overfitting problems. To deal with these problems, the GARCH model emerged as the times required, 

which improves and expands the ARCH model and enhances the model’s descriptive power. Duan 

extended the model by introducing a corresponding delta formula and demonstrated that under certain 

combinations of preference and distribution assumptions, the GARCH option pricing model can 

effectively reflect changes in the conditional volatility of the underlying asset [6]. Bhat and Arekar 

Proceedings of  the 3rd International  Conference on Financial  Technology and Business Analysis  
DOI:  10.54254/2754-1169/118/2024.18732 

88 



compared the performance of the BSM model and Duan’s NGARCH option pricing model in USD-

INR exchange-traded currency options, concluding that the GARCH model performed more 

accurately during periods of market volatility, particularly during periods of significant market 

turbulence [7]. Furthermore, Adesi proposed a new option pricing method based on the GARCH 

model using extensive empirical analysis of S&P 500 index options [8]. This enhanced the model's 

ability to adapt to market prices under incomplete market conditions. 

1.2.3. Research on Stock Index 

The Nasdaq Index, S&P 500 Index, and Dow Jones Industrial Index are three major indices in the 

U.S. financial market, each renowned for its unique calculation method, industry focus, and the 

specific market segments they reflect. These indices are also considered critical underlying assets in 

options trading. The Nasdaq-100 Index primarily focuses on the performance of large U.S. 

technology companies. Thomas pointed out that companies with a high proportion of critical patents 

are more likely to create breakthroughs in the field of technology, and these companies usually 

perform well in the Nasdaq capital market [9]. In contrast, Rahman’s research focuses on the Dow 

Jones Industrial Average(DJIA), emphasizing that the performance of DIJA largely depends on the 

performance of American industrial giants [10]. He found that the volatility of the DJIA is more 

dependent on historical data and that futures and futures options trading have not caused significant 

structural changes in the conditional volatility of its component stocks. On the other hand, the S&P 

500 Index is regarded as a representative indicator of the performance of the overall U.S. economy 

and multiple industries due to its broad industry coverage. By analyzing the distinct characteristics 

and focuses of these three indices, studying the impact of the refined GARCH model on the accuracy 

of the BS model in pricing options on these indices will provide researchers and traders with more 

profound and more valuable insights, especially in evaluating the application effect of the GARCH 

model in different industries. More specifically, this will further help determine which industries are 

most suitable for using the improved GARCH model to improve the accuracy of option pricing. 

1.3. Objective 

The purpose of this study is to improve the precision of option pricing by incorporating the GARCH 

model into the BS model, taking advantage of the GARCH model’s ability to capture the dynamic 

changes in market volatility, and evaluating the performance of the GARCH-enhanced BS model in 

different industries. The subjects of this study are options related to the three major US stock indices: 

the NASDAQ 100, the S&P 500, and the Dow Jones Industrial Average (DJIA). Through an in-depth 

analysis of the characteristics of these index constituent stocks, the research will reveal the effect of 

the GARCH model in improving the accuracy of BS model option pricing in different industry sectors. 

Ultimately, this study will provide specific insights into applying the GARCH model to enhance the 

BS model in various industries, providing a reference and decision-making basis for financial 

institutions and traders when choosing the most appropriate option pricing method. 

2. Data and Method 

The sample for this study consists of the S&P 500, NASDAQ-100, and the Dow Jones Industrial 

Average ETF (DIA). The NASDAQ-100 Index was selected over the NASDAQ Composite because 

its number of constituent companies aligns more closely with the S&P 500 and the Dow Jones 

Industrial Average. Furthermore, the NASDAQ-100's emphasis on the technology sector is valuable 

for this study’s examination of option pricing across various industries. The choice of DIA is due to 

its similar sector weighting as the Dow Jones Industrial Average but with a higher daily trading 

volume, enhancing the robustness of the analysis. 
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2.1. Data Description 

This study aims to empirically analyze U.S. stock index options to investigate the effectiveness of the 

GARCH model in enhancing the BSM model's option pricing capabilities and to compare its 

optimization effects across different industries. Therefore, the study has collected trend data spanning 

five years, from August 13, 2019, to August 13, 2024, for the NASDAQ-100 Index, S&P 500 Index, 

and SPDR Dow Jones Industrial Average ETF Trust. Before implementing the BSM model and 

GARCH optimization, this study will analyze the data for these three indices to ensure their 

characteristics are suitable for BSM pricing and GARCH model enhancements. 

In this study, the log return distributions and autocorrelation plots for these three assets will be 

used to analyze the overall data distribution. 

 

Figure 1: The log return distributions and autocorrelation plots 

Figure 1 shows that the logarithmic returns of the Nasdaq 100 are approximately normally 

distributed but have significant leptokurtic (fat-tailed) characteristics, indicating that extreme returns 

occur more frequently than normal Distribution predictions. Such fat-tailed phenomena are 

commonly observed in financial markets, particularly in indices dominated by high-volatility tech 

stocks. Similarly, the S&P 500 log return distribution also approximates normal but with comparable 

leptokurtic features. Given its broader market coverage across various industries, the overall volatility 

of the S&P 500 typically remains lower than that of the NASDAQ-100, yet it still exhibits notable 

volatility clustering. Meanwhile, the Dow Jones Industrial Average also shows fat-tailed 

characteristics, albeit to a lesser extent. This may be attributed to the index comprising mature 

industrial and consumer goods firms, which inherently exhibit lower volatility. Despite this, the 

potential for extreme outcomes remains even in an index with lower volatility. 

Based on the log return distribution charts for the three major indices, this study found that the 

logarithmic return distributions of each index exhibit the typical characteristics of a normal 

distribution found in financial time series. However, there is also a prominent presence of 

leptokurtosis or "fat tails.", which indicates a higher probability of extreme positive and negative 

returns, suggesting more significant market risks than those projected by a standard normal 

distribution. 
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From the autocorrelation distribution charts for three indices, log returns exhibit little significant 

autocorrelation across most lags. This independence of market-day price changes is consistent with 

the efficient market hypothesis. Nevertheless, there is often an observable volatility clustering during 

periods of high market volatility. This phenomenon can lead to autocorrelation at certain lags, 

particularly over extended periods. Such patterns underscore the applicability of the GARCH model, 

which is particularly adept at modeling and forecasting time-varying volatility, making it a 

fundamental tool for understanding and mitigating risks in financial markets. This study provides a 

compelling argument for using GARCH models to enhance the robustness of financial analytics, 

especially in turbulent market conditions. 

2.2. Calculation Method 

2.2.1. BSM Model 

The Black-Scholes-Merton (BSM) model provides a mathematical method to price European call 

options. The BS formula for calculating the value of the option on a non-dividend underlying stock 

is as follows: 

C0 = S0N(d1) − Ke−rTN(d2) (1)                                                    

N(x) ≔ P[Z ≤ X] =
1

√2π
∫ e−

y2

2
dyx

−∞
(2)                                              
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1

σ√T−t
[log (

s(t)

K
) + (r +

σ2

2
) (T − t)] (3)                                           

d2 =
1

σ√T−t
[log (

S(t)

K
) + (r −

σ2

2
) (T − t)] = d1 − σ√T − t (4)                            

For a European put option, the formula is slightly modified: 

P = Ke−rTN(−d2) − S0N(−d1) (5)                                         

C0 is the call option price, S0 is the asset's current price, K is the option's strike price, r is the risk-

free interest rate, T is the option's time to expiration, and σ is the volatility of the stock’s returns. 

2.2.2. GARCH model 

The GARCH model is a significant extension of the ARCH model, providing an advanced method 

for analyzing the volatility in time series data. The GARCH (1,1) model, the most used variant, is 

mathematically expressed as: 

σ2 = ω + αϵt−1
2 + βσt−1

2 (6)                                               

Where σ2 represents the conditional volatility at time t, calculated based on all available historical 

data, including the past volatility and stock prices, forecasting the volatility of returns at time t; ϵt−1
2  

is the squared residual at time t-1, reflecting the deviation between actual and predicted returns; 

ω,αandβare model parameters, typically estimated through maximum likelihood estimation. These 

parameters capture the volatility of asset returns and reflect the dynamic self-adjusting capability of 

volatility. 

The core advantage of the GARCH model lies in its efficient capture of "volatility clustering"—

the situation in which volatility tends to be concentrated within specific periods rather than evenly 

distributed. The GARCH model offers an analytical framework that more closely aligns with the 

actual behavior of financial markets. It dynamically adjusts volatility forecasts, aligning more closely 

with the characteristic variability of stock, index, or other asset prices over time. 
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3. Result 

This study first calculates the option pricing of the three major stock indices using the BS model and 

Monte Carlo simulations. Then, this study uses the GARCH model to estimate the conditional 

volatility to enhance the accuracy of volatility within the BS model. Finally, the RMSE evaluation of 

the option prices obtained by the two methods is conducted to demonstrate whether GARCH 

optimization significantly affects the accuracy of option pricing. The Monte Carlo method is used in 

this study to improve option price estimation. 

3.1. Original BS Model in Mont-Carlo Simulation 

3.1.1. Option Pricing in SPX Index 

For the SPX index simulation, this study selected a European call option with a maturity date of 

January 17, 2025, as the subject of analysis (Figure 2). The risk-free rate used in the simulation was 

the 10-year U.S. Treasury bond yield at the time of the study (the same risk-free rate was applied in 

the option pricing analysis for both NDX and DIA). 

 

Figure 2: Fixed volatility simulated stock price paths in SPX 

Based on the BS model and Monte Carlo simulations, this study conducted 10,000 simulations on 

the SPX index. The final option prices under different strike prices are calculated in Table 1. 

Table 1: SPX Option Pricing Across Varying Strike Prices 

Number Strike Price Call Option Price 

1 3000 2502.74 

2 3100 2398.05 

3 3200 2295.82 

4 3300 2201.76 

5 3400 2106.91 

6 3500 1993.37 

7 3600 1902.12 

8 3700 1799.85 

9 3800 1703.15 

10 3900 1603.60 
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11 4000 1524.76 

12 4100 1420.75 

13 4200 1314.94 

14 4300 1237.71 

15 4400 1150.11 

16 4500 1044.06 

17 4600 948.97 

18 4700 885.51 

19 4800 787.04 

20 4900 714.06 

21 5000 657.71 

3.1.2. Option Pricing in NDX Index 

In the simulation of the NDX index, to maintain consistency in the trading times of the options across 

the three indices, this study selected a European call option with a maturity date of January 17, 2025, 

as the subject of analysis. The specific simulation results and the prices under different strike prices 

are shown in Figure 3 and Table 2. 

 

Figure 3: Fixed volatility simulated stock price paths in NDX 

Table 2: NDX Option Pricing Across Varying Strike Prices 

Number Strike Price Call Option Price 

1 15000 4390.90 

2 15100 4379.00 

3 15200 4198.49 

4 15300 4087.22 

5 15400 4061.53 

6 15500 4011.74 

7 15600 3891.21 

8 15700 3854.23 

9 15800 3700.26 

10 15900 3632.62 

Table 1: (continued). 
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11 16000 3530.23 

12 16100 3476.18 

13 16200 3440.24 

14 16300 3263.87 

15 16400 3221.82 

16 16500 3150.47 

17 16600 3026.50 

18 16700 3028.66 

19 16800 2931.42 

20 16900 2882.19 

21 17000 2783.50 

3.1.3. Option Pricing in DIA Index 

In the simulation of the DIA index, to maintain consistency in the trading times of the options across 

the three indices, this study selected a European call option with a maturity date of January 17, 2025, 

as the subject of analysis. The specific simulation results and the prices under different strike prices 

are shown in the Figure 4 and Table 3. 

 

Figure 4:  Fixed volatility simulated stock price paths in DIA 

Table 3: DIA Option Pricing Across Varying Strike Prices 

Number Strike Price Call Option Price 

1 100 300.10 

2 150 250.66 

3 200 202.01 

4 250 152.94 

5 300 103.94 

6 350 59.25 

7 400 25.29 

8 450 8.44 

9 500 2.26 

Table 2: (continued). 
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3.2. GARCH Integration in Mont-Carlo Simulation 

After confirming that the options for all three indices in this study (SPX, NDX, and DIA) are suitable 

for fitting using the GARCH model, the conditional volatility for SPX, NDX, and DIA was first 

calculated. Figure 5, Figure 6 and Figure 7 illustrate the conditional volatility trends for the three 

indices: SPX, NDX, and DIA. 

 

Figure 5: SPX Conditional Volatility Based on the GARCH(1,1) Model 

 

Figure 6: NDX Conditional Volatility Based on the GARCH(1,1) Model 

Table 3: (continued). 
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Figure 7: DIA Conditional Volatility Based on the GARCH(1,1) Model 

Calculated the conditional volatility for the SPX, NDX, and DIA indices, this study applied the 

GARCH-fitted conditional volatility to the BS model for Monte Carlo simulations. Using the same 

data and options as the original BSM model, the option prices for the SPX, NDX, and DIA indices 

were obtained with the GARCH-fitted volatility. The pricing trends of the options for these three 

indices are illustrated in Figure 8, Figure 9, and Figure 10. 

 

Figure 8: GARCH volatility simulated SPX price paths. 

 

Figure 9: GARCH volatility simulated NDX price paths. 
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Figure 10: GARCH volatility simulated DIA price paths 

Table 4, Table 5, and Table 6 presents the pricing forecasts for options on the three indices across 

various strike prices following the optimization of the GARCH model: 

Table 4: SPX Option Pricing Across Varying Strike Prices 

Number Strike Price Call Option Price 

1 3000 2477.25 

2 3100 2394.66 

3 3200 2302.42 

4 3300 2199.35 

5 3400 2102.50 

6 3500 2006.61 

7 3600 1909.32 

8 3700 1803.35 

9 3800 1705.27 

10 3900 1615.21 

11 4000 1523.18 

12 4100 1414.27 

13 4200 1308.73 

14 4300 1230.23 

15 4400 1119.54 

16 4500 1023.53 

17 4600 929.07 

18 4700 843.80 

19 4800 750.75 

20 4900 660.52 

21 5000 577.47 
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Table 5: NDX Option Pricing Across Varying Strike Prices 

Number Strike Price Call Option Price 

1 15000 4295.13 

2 15100 4273.94 

3 15200 4135.13 

4 15300 4052.81 

5 15400 3930.50 

6 15500 3891.94 

7 15600 3802.83 

8 15700 3713.29 

9 15800 3651.60 

10 15900 3540.44 

11 16000 3419.50 

12 16100 3315.21 

13 16200 3300.31 

14 16300 3208.34 

15 16400 3118.21 

16 16500 3021.34 

17 16600 2938.62 

18 16700 2892.62 

19 16800 2770.18 

20 16900 2705.66 

21 17000 2638.10 

Table 6: DIA Option Pricing Across Varying Strike Prices 

Number Strike Price Call Option Price 

1 100 299.36 

2 150 251.21 

3 200 202.28 

4 250 152.47 

5 300 103.99 

6 350 55.28 

7 400 17.83 

8 450 2.73 

9 500 0.23 

3.3. The RMSE Value Comparison 

After computing the option prices for the SPX, NDX, and DIA index options, this study computed 

the RMSE (Root Mean Square Error) for the three indices based on data derived from the original 

BSM and the GARCH-optimized models. After calculating the option prices using two different 

methods, this study will retrieve the actual market prices of options with the same maturity date and 

similar transaction times from Yahoo Finance. The real market prices will then be compared with the 

option prices derived from the two models, and the RMSE will be calculated to assess the pricing 

accuracy of both methods. The results are presented below (Table 7): 
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Table 7: Comparison of RMSE of Two Methods 

INDEX RMSE of BS Model with Market RMSE of GARCH Model with Market 

SPX 161.92506235296477 150.15425276281596 

NDX 821.5395105150449 831.5793363338647 

DIA 7.665207820408978 6.375752223575422 

 

The study results indicate that for the SPX and DIA indices, the RMSE values were reduced by 

7.27% and 16.83%, respectively, after applying the GARCH model optimization. This reduction in 

RMSE indicates that the GARCH model more accurately captures the dynamic volatility patterns 

present in these indices, leading to better alignment with the actual market prices of the options. In 

contrast, for the NDX index, the RMSE value after GARCH optimization did not decrease compared 

to the original BSM model, suggesting that the GARCH model did not significantly enhance pricing 

accuracy for the NDX index.  

The result reflects the suitability of the GARCH model for indices dominated by industrial and 

consumer goods companies, where volatility is more stable and follows predictable patterns over time. 

In contrast, the NDX index results, primarily composed of technology companies, present a different 

picture. The RMSE value for NDX after applying the GARCH optimization did not show any 

significant reduction compared to the original BSM model. This suggests that the GARCH model 

does not provide a meaningful enhancement in capturing the volatility structure of the NDX index. 

Given that technology stocks are known for their high volatility and often exhibit sudden, nonlinear 

price movements, it is possible that the GARCH model, which is more suited for time-varying but 

smoother volatility, needs to effectively model the erratic and jumpy behavior of the tech sector 

options. 

4. Discussion 

This study empirically analyzed option pricing optimization for three major indices in the U.S. 

financial markets—SPX, NDX, and DIA—using both the BS and GARCH-optimized models. The 

final RMSE results indicate that the RMSE values for SPX and DIA based on GARCH optimization 

were significantly lower than those without GARCH optimization. However, the RMSE for NDX 

after GARCH optimization did not outperform the RMSE of the unoptimized NDX. 

Upon analysis, this study attributes these findings to several vital factors. The DJIA and SPX are 

primarily composed of traditional industrial companies and financial firms—mature sectors with 

relatively low volatility. These sectors typically exhibit strong volatility clustering effects, a 

characteristic that GARCH models are particularly adept at capturing. Hence, GARCH models can 

effectively model the natural movement of volatility; they yield better-fitting results for these indices. 

On the other hand, the NASDAQ-100 Index (NDX) is heavily comprised of leading technology 

companies like Apple, Microsoft, and Nvidia. These companies driven by innovation have to face 

intense market competition and technological revolution, resulting in volatility that is more 

significantly influenced by sudden events or breaking news. The volatility clustering effect is less 

evident in the technology sector than in traditional industries. Tech stocks often exhibit abrupt and 

irregular volatility, making it challenging for the GARCH model to effectively capture these complex 

and erratic volatility patterns. 

Furthermore, the constituent companies of DJIA and SPX operate in relatively stable industry 

sectors, where macroeconomic factors, including interest rates, inflation, and GDP growth, influence 

volatility more. These macro variables tend to change gradually, resulting in smoother volatility 

dynamics that GARCH models are better adapted to predict by analyzing past fluctuations. On the 

other hand, most of the NASDAQ-100's constituent companies are high-growth, high-risk tech firms 
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highly sensitive to market sentiment, technological breakthroughs, and geopolitical events. Their 

volatility can experience sudden spikes or declines, displaying jump behaviors and nonlinear 

characteristics, leading to less accurate fits. 

In conclusion, GARCH models are effective for DIA and SPX primarily because the volatility of 

these indices reflects a more evident clustering effect and smoother dynamic characteristics attributed 

to the primary industries of the selected companies. However, the NASDAQ-100 index, due to the 

high volatility, jump behavior, and asymmetry of its tech stocks, presents challenges for the GARCH 

model in effectively capturing its volatility patterns. 

5. Conclusion 

This study conducted an empirical analysis of option pricing using both the BS and GARCH-

enhanced models, focusing on major U.S. indices. The aim was to evaluate the effectiveness of 

integrating GARCH models into option pricing, mainly through Monte Carlo simulations for 

European call options using the GARCH model. 

The results show that the incorporating method significantly improves option pricing accuracy for 

indices dominated by industrial and manufacturing companies, such as the DIA and SPX, which have 

more stable volatility patterns. However, the GARCH model did not significantly improve the 

NASDAQ-100, which consists mainly of high-growth tech companies with volatile and unpredictable 

behavior. The listed companies in NASDAQ-100 are more sensitive to market shocks, making it 

difficult for the GARCH model to predict such volatility. 

To increase research efficiency and reduce the probability of errors in practice, this study only 

utilized the GARCH(1,1) model and did not explore more advanced models. This study reasonably 

assumes that adopting more complex and precise models like EGARCH and TGARCH models can 

further enhance the accuracy of option pricing and address the limitations observed in this study, 

particularly in the technology sector. Therefore, future research is recommended to use more 

advanced volatility models to enhance the accuracy of option pricing across different industries. 
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