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Abstract: The COVID-19 pandemic has posed significant challenges to global public health, 

necessitating the development of effective predictive models to anticipate future outbreaks 

and allocate healthcare resources efficiently. This study aims to forecast the number of 

COVID-19 infections in four European countries—Germany, Italy, Malta and Sweden—

during April and May of 2022. Two distinct forecasting models are employed: the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model and a Random Forest 

regression model. The analysis utilized data up to the end of March 2022, incorporating 

factors such as lagged case numbers, vaccination rates, temperature, and jurisdictional 

policies. The results indicate that while the SARIMA model captures the general seasonal 

trends, the Random Forest model outperforms SARIMA in predictive accuracy, as reflected 

by lower Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values. 

Moreover, feature importance analysis from the Random Forest model highlights that recent 

infection rates (lagcases7) significantly impact future case predictions, suggesting the utility 

of machine learning techniques in capturing complex interactions within epidemiological data. 

These findings provide valuable insights for policymakers in planning effective pandemic 

responses.  
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1. Introduction 

Accurately predicting the spread of infectious diseases is critical for public health planning and 

response. Reliable forecasts of infection rates enable governments and healthcare systems to allocate 

resources, implement timely interventions, and mitigate the spread of the disease. For COVID-19, in 

particular, the ability to anticipate future outbreaks can directly influence the effectiveness of 

pandemic management strategies. Accurate predictions help avoid overwhelming healthcare 

infrastructures, inform vaccination distribution, and guide policy decisions such as travel restrictions 

and quarantine measures. Therefore, developing effective predictive models for COVID-19 infection 

rates is essential for maintaining public health and safety. 

Over the past few years, numerous studies have focused on forecasting COVID-19 cases using a 

range of statistical and machine learning methods. For example, Petropoulos and Makridakis applied 

time series models to provide short-term forecasts of COVID-19 cases globally, highlighting the 

effectiveness of simple statistical methods in pandemic forecasting [1]. Similarly, Tuli et al. utilized 

machine learning models, including Random Forests and Long Short-Term Memory (LSTM) 
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networks, to predict infection trends and assess healthcare demands. In another study, Chakraborty 

and Ghosh reviewed various forecasting techniques and proposed the use of ARIMA models to 

capture the temporal dynamics of COVID-19 spread in different regions [2-3]. 

Additional research efforts have employed hybrid models to enhance predictive accuracy. For 

instance, Arroyo-Marioli et al. combined classical epidemiological models with machine learning 

techniques to improve the forecasting of COVID-19 infection peaks [4]. Bandyopadhyay and Dutta 

leveraged deep learning models such as Convolutional Neural Networks (CNNs) to capture the 

spatial-temporal dynamics of COVID-19 transmission [5]. More recently, Vaid et al. incorporated 

vaccination rates and government policy stringency as features in their forecasting models, 

emphasizing the importance of integrating multiple factors for comprehensive pandemic forecasting 

[6]. 

Despite these efforts, the study of accurately predicting COVID-19 infection cases remains 

relatively underexplored given the scale of this pandemic. As the largest global health crisis of the 

21st century, there is a pressing need for more research focused on precise infection case forecasting, 

which is crucial for future disease prevention and management. 

In this study, this gap is addressed by undertaking the following tasks: first, utilizing data up to the 

end of March 2022 from four European countries—Germany, Italy, Malta, and Sweden—to predict 

COVID-19 infection numbers for April and May 2022; second, applying two different forecasting 

models: the Seasonal Autoregressive Integrated Moving Average (SARIMA) model, which is 

designed to capture seasonal patterns in time series data, and a Random Forest regression model, 

which is a machine learning technique capable of modeling complex, nonlinear relationships; third, 

incorporating various factors into the models, including lagged case numbers (lagcases7), daily 

vaccination rates, temperature (maximum daily), and jurisdictional policies to enrich the predictive 

analysis; fourth, evaluating the performance of both models using Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE) to identify the more effective forecasting method; fifth, conducting 

a feature importance analysis using the Random Forest model to identify key variables influencing 

COVID-19 case predictions, providing insights into the factors that drive infection trends. 

The significance of this study lies in its comparative analysis of classical statistical models and 

advanced machine learning techniques in forecasting COVID-19 infections. The results not only 

highlight the potential of machine learning models in improving predictive accuracy but also offer 

valuable information for policymakers. By identifying critical factors that drive infection trends, this 

research contributes to the development of more effective strategies for future pandemic responses 

and public health interventions. 

2. Data 

2.1. Data Source and Time Range 

The main data used in this study are collected from the European Centre for Disease Prevention and 

Control (ECDC) database which provides daily reported COVID-19 infection cases for various 

European countries. The analysis centers on data from representative countries, namely Germany, 

Italy, Malta, and Sweden, covering the period from 2020 to 2022.The prediction target is the infection 

cases for April and May of 2022, using data up until the end of March of 2022. 

Additionally, complementary data on population, daily vaccinations, maximum temperature of the 

biggest city, death cases and national jurisdiction extents were sourced from Kaggle, Meteostat and 

OxCGRT, which serve as exogenous variables [7]. 
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2.2. Data Processing 

In this study, several data preprocessing techniques are implemented to ensure the quality and 

reliability of the dataset used for the prediction. First, the issue of missing values was addressed. For 

each country, the dataset was filtered to remove any missing entries in the daily reported COVID-19 

cases. Following the removal of missing values, the process of identifying and handling outliers was 

carried out. 

The Interquartile Range (IQR) method was applied to handle outliers, calculating the range 

between the first quartile (Q1) and the third quartile (Q3) of the data. This method is effective for 

detecting extreme values that fall below Q1 - 1.5 * IQR or above Q3 + 1.5 * IQR. Any values outside 

this range were considered outliers and replaced with the lower or upper bound, respectively.  

A logarithmic transformation was applied to the population data to normalize the distribution, 

considering the large differences in population sizes across the countries. This transformation helps 

mitigate the impact of population skewness on the prediction model. 

After preprocessing, the dataset was divided into training and test sets, with data up to April 1, 

2022, used for training and validation, and data from April 1 to June 1, 2022, reserved for testing. 

This ensures that the model is evaluated on unseen data, simulating a real-world prediction scenario. 

2.3. Descriptive Statistics 

The basic descriptive statistics of infection cases in these countries are shown in Table 1. 

Table 1: descriptive statistics of infection cases 

Countries count mean std 25% 50% 75% max 

Germany 992.0 35572.268145 56682.109086 2088.0 11359.0 41831.75 307914.0 

Italy 974.0 23983.244353 35436.68566 2681.5 11672.5 28313.0 228123.0 

Malta 974.0 119.54668 180.373579 16.0 57.5 141.25 1403.0 

Sweden 982.0 2652.613035 5806.913301 315.0 800.0 2500.5 53881.0 

 

For countries with larger populations, such as Germany and Italy, the average daily cases were 

considerably higher than for smaller nations like Malta. The standard deviation and the interquartile 

range fluctuate highly due to waves of infections, lockdowns, or changes in testing policies, especially 

in Germany, Italy and Sweden, which exhibited key trends for the training and validation data. 

Analysis of the daily-updated positive testing data trend reveals that most countries experienced 

consistent increases in daily cases during major waves of the pandemic, influenced by factors such 

as new variants (e.g., Delta and Omicron) and varying lockdown measures [8]. What’s more, due to 

underreporting or weekends/holidays, the testing was potentially reduced. This led to the difficulties 

for handling missing values, outliers and misleading prediction during data experiment. 

3. Methodologies 

This paper mainly uses SARIMA and RANDOM FOREST to forecast the infection cases of covid19 

in European countries based on the data by the end of March 2022. This chapter mainly introduces 

these two methods, which predict the cases in April and May in 2022 in several European countries 

and compare the prediction effect by calculating the RMSE and MAE of the predicted value and the 

real value, and finally visualize the prediction results.  
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3.1. SARIMA 

The SARIMA model is an extension of the ARIMA (AutoRegressive Integrated Moving Average) 

model that explicitly accounts for seasonality in the data. The general form of SARIMA is denoted 

as SARIMA(p,d,q)(P,D,Q)[s], where: 

p represents the order of the autoregressive part, 

d represents the order of differencing to make the series stationary, 

q represents the order of the moving average part, 

P, D, and Q represent the seasonal components of autoregressive, differencing, and moving 

average parts, respectively, 

s is the length of the seasonal cycle (e.g., 7 for weekly seasonality in daily data). 

The analysis began with a time series decomposition to identify potential seasonality and trends. 

The auto.arima function was then applied to automatically select the optimal SARIMA model based 

on model selection criteria. The selection was guided by calculating metrics such as Akaike 

Information Criterion (AIC), corrected AIC (AICc), and Bayesian Information Criterion (BIC). 

Additionally, the model's performance was evaluated using error metrics, including Mean Error (ME), 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Percentage Error (MPE), 

Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), and the first lag of 

the autocorrelation function (ACF1). The final model was then used to generate forecasts for the 

validation period. 

3.2. Random Forest 

The Random Forest (RF) algorithm is a robust ensemble learning method based on decision trees, 

capable of handling high-dimensional data and non-linear relationships [9-10] (See Figure 1). The 

prediction of daily COVID-19 infection cases is treated as a regression problem in this approach. 

Lagged infection case values and additional exogenous variables (e.g., deaths, logarithm of 

population, lagged cases from the past 7 days, maximum temperature of the largest city, daily 

vaccination rates, and national jurisdiction parameters) are utilized as input features for the model. 

The hyperparameters of the Random Forest model, such as the number of trees, maximum depth, and 

minimum samples per leaf, are optimized using cross-validation. 

For each decision tree, a random subset of the features and training samples are selected, and 

predictions from multiple trees are averaged to generate the final forecast. This reduces overfitting 

and improves model robustness. 

 

Figure 1: Random Forest prediction model 
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4. Results 

4.1. Time Series Decomposition 

A time series decomposition was conducted for each of the selected countries to better understand 

the trends and seasonality in the COVID-19 infection data: Malta, Sweden, Germany, and Italy. The 

decomposition breaks down the observed time series into three components: trend, seasonal, and 

random (or residual) (See Figure 2-Figure 5).  

 

Figure 2: Decomposition for Malta 

 

Figure 3: Decomposition for Italy 

Proceedings of  ICFTBA 2024 Workshop:  Finance's  Role in the Just  Transition 
DOI:  10.54254/2754-1169/140/2024.GA18764 

5 



 

 

 

Figure 4: Decomposition for Sweden 

 

Figure 5: Decomposition for Germany 

Observed: This is the original series, showing the daily infection cases over time for each country. 

Notable peaks and changes can be seen, corresponding to various waves of infections throughout the 

observation period. 

Trend: The trend component illustrates the underlying direction of infection cases, smoothing out 

short-term fluctuations. As seen in the decomposed plots, countries such as Germany and Italy exhibit 

clear rising trends at certain intervals, indicating periods of increased infections. In contrast, the trend 

for Malta is relatively lower, reflecting its different infection dynamics. 

Seasonal: The seasonal component reveals repeating patterns within the data, capturing periodic 

fluctuations over a specified cycle (e.g., weekly seasonality). All four countries show strong seasonal 

patterns, suggesting that infection rates may be influenced by recurring factors, possibly including 

weekly behavioral changes, public health policies, or variations in testing practices. 

Random (Residual): The random component captures the noise and irregular variations in the data 

that cannot be explained by the trend or seasonality. Each country exhibits some degree of 

randomness, possibly resulting from unpredictable events or changes in external conditions, such as 

sudden policy implementations or shifts in public behavior. 
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This decomposition process provides a clearer view of how trends, seasonality, and random 

fluctuations contribute to the overall infection dynamics in each country. Understanding these 

components is crucial for selecting appropriate forecasting models and improving prediction accuracy 

in subsequent analyses. 

4.2. SARIMA 

The SARIMA model was employed to predict the number of daily COVID-19 infection cases for 

several European countries, including Germany, Italy, Malta and Sweden. The training data spanned 

from the beginning of the pandemic until the end of March 2022, with predictions generated for the 

period between April 1 and June 1, 2022 (See Figure 6-Figure 9). 

 

Figure 6: SARIMA prediction for Italy 

 

Figure 7: SARIMA prediction for Germany 
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Figure 8: SARIMA prediction for Sweden 

 

Figure 9: SARIMA prediction for Malta 

The model was able to capture the overall trends in infection rates effectively for most of the 

countries. The predictions showed that during the spring of 2022, there was an overall decline in 

infection rates across all the countries, largely consistent with the easing of lockdown measures and 

the increasing number of vaccinations. 

However, the accuracy of the model varied between countries. For example, the model performed 

exceptionally well for countries with stable infection patterns, such as Germany and Sweden, where 

the predicted values closely followed the actual reported cases. On the other hand, countries like 

Malta, with more volatile infection patterns, showed greater deviations between predicted and actual 

cases. 
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In general, the mean absolute error (MAE) and root mean square error (RMSE) values across all 

countries indicated satisfactory performance, with smaller error values for countries with more stable 

data. The following Table 2 presents a summary of the key performance metrics for each country. 

Table 2: RMSE & MAE of the SARIMA prediction 

Country RMSE MAE 

Germany 40216.8535 30566.3015 

Italy 24281.4601 18247.6911 

Malta 176.1702 142.7981 

Sweden 344.1079 282.7384 

 

The SARIMA model's ability to incorporate historical infection rates and account for seasonal 

patterns made it a robust choice for this forecasting task. 

4.3. Random Forest 

The Random Forest Regression model was applied to predict daily COVID-19 infection cases for 

five European countries: Germany, Italy, Malta and Sweden. The model training was based on data 

up until the end of March 2022, and predictions were generated for the period between April 1 and 

June 1, 2022 (See Figure 10-Figure 13).  

 

Figure 10: RF prediction for Malta 

 

Figure 11: RF prediction for Germany 
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Figure 12: RF prediction for Italy 

 

Figure 13: RF prediction for Sweden 

The key features included in the model were the number of deaths, population size (logarithm of 

population), number of cases in the previous 7 days (lagcases7), daily maximum temperature (tmax), 

daily people vaccinated, and national jurisdiction stringency index [7] (See Table 3).  

Table 3: Correlation coefficients between factors 

 deaths logpopData2020 lagcases7 tmax daily_people_vaccinated national jurisdiction 

deaths 1 0.47085 0.335579 -0.22254 0.1414 0.405918 

logpopData2020 0.47085 1 0.363144 0.000247 0.3545 0.293518 

lagcases7 0.335579 0.363144 1 -0.11433 0.028942 -0.10131 

tmax -0.22254 0.000247 -0.11433 1 0.140819 0.064359 

daily_people_vaccinated 0.1414 0.3545 0.028942 0.140819 1 0.311882 

national jurisdiction 0.405918 0.293518 -0.10131 0.064359 0.311882 1 
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The model performance, as measured by Root Mean Square Error (RMSE) and Mean Absolute 

Error (MAE), varied across countries. This indicates that the model performed better in countries 

with smaller, more stable infection rates, like Malta and Sweden, where the predicted values closely 

followed the actual cases. The MAE values showed a similar pattern, with Malta having the smallest 

error (100.04) and Germany the largest (21,002.35) (See Table 4).  

Table 4: RMSE&MAE of the RF prediction 

Country RMSE MAE 

Germany 26453.38 21002.35 

Italy 14661.09 10436.64 

Malta 135.3 100.04 

Sweden 254.69 203.22 

 

The feature importance analysis reveals that the most influential factor across all countries was 

"lagcases7" (the total number of cases over the past 7 days), which accounted for between 75% and 

80% of the model's predictive power. Other features, such as "daily-people-vaccinated" and "deaths," 

played a minor but still notable role, particularly in countries with higher vaccination rates and more 

pronounced daily death counts. National jurisdiction, temperature, and population size contributed 

only minimally to the predictions, indicating their limited impact on daily case fluctuations (See Table 

5). 

Table 5: Feature importances for each country 

Variable Germany Italy Malta Sweden 

lagcases7 0.8 0.77 0.75 0.78 

daily-people-vaccinated 0.05 0.08 0.1 0.07 

national jurisdiction 0.03 0.05 0.05 0.04 

tmax 0.02 0.04 0.03 0.03 

deaths 0.1 0.05 0.06 0.06 

logpopData2020 0.0 0.01 0.01 0.02 

 

In summary, while the Random Forest model demonstrated varying levels of accuracy across 

different countries, it performed well in capturing infection trends, especially in countries with more 

stable patterns. The predictive accuracy was largely driven by recent infection data (lagcases7), while 

other factors had more modest impacts. The model's predictions could be further refined by tuning 

the feature set or employing additional time-series-specific models. 

4.4. Comparison 

To evaluate the prediction performance of the SARIMA and Random Forest models, this paper 

focuses on the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values for each 

country. 

SARIMA Model: 

The SARIMA model generally produced higher RMSE and MAE values across the countries, 

indicating more substantial deviations in its predictions compared to the observed values. 

For instance, Germany had a significantly high RMSE of 40,216.85 and an MAE of 30,566.30, 

suggesting large errors in forecasting infection cases. 
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Other countries like Italy, Malta, and Sweden also exhibited high RMSE and MAE values, 

indicating that while SARIMA can capture the general trend and seasonality in time series data, it 

might struggle with sudden fluctuations. 

Random Forest Model: 

The Random Forest model demonstrated comparatively lower RMSE and MAE values for the 

same countries, indicating more accurate predictions. 

For Germany, the RMSE was reduced to 26,453.38, and the MAE dropped to 21,002.35, showing 

a significant improvement over the SARIMA model. 

Similarly, Italy, Malta, and Sweden had lower errors using the Random Forest model, highlighting 

its capability to capture complex patterns and interactions within the data more effectively than 

SARIMA. 

The comparison between SARIMA and Random Forest models reveals that the Random Forest 

model achieves higher prediction accuracy, as indicated by the lower RMSE and MAE values across 

all countries. Additionally, the Random Forest model's feature importance analysis provides valuable 

insights into the primary drivers of COVID-19 case dynamics. In contrast, the SARIMA model, while 

useful for capturing general trends and seasonality, appears less capable of handling the complexities 

inherent in the data. Thus, for the countries and data considered, the Random Forest model 

outperforms the SARIMA model in terms of predictive accuracy. 

5. Conclusion 

This study aimed to forecast COVID-19 infection cases in four European countries—Germany, Italy, 

Malta, and Sweden—during April and May of 2022 using two distinct models: the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model and a Random Forest regression 

model. Data up to the end of March 2022, including lagged case numbers, vaccination rates, 

temperature, and jurisdictional policies, were utilized for this purpose. The results indicate that while 

the SARIMA model effectively captures general seasonal trends, the Random Forest model 

outperforms it in predictive accuracy, as demonstrated by lower Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE) values. Additionally, the feature importance analysis from the 

Random Forest model reveals that recent infection rates (lagcases7) significantly impact future case 

predictions, suggesting that machine learning techniques have strong potential for capturing complex 

interactions in epidemiological data. These findings offer valuable insights for policymakers, aiding 

in the planning of effective pandemic responses. 

For future research, expanding the predictive models to include more countries and additional 

features such as mobility data, healthcare capacity, and varying policy measures could further 

enhance forecast accuracy. Moreover, integrating hybrid models that combine statistical and machine 

learning methods may yield more robust and adaptable predictions. Continuous refinement of these 

predictive models is crucial for their application in real-time pandemic management, helping to 

inform and guide public health policies effectively. 
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