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Abstract: This paper explores the extension of the traditional one-period portfolio 

optimization model through the application of Lagrange multipliers under non-linear utility 

functions. Classical portfolio theory typically assumes linear or quadratic utility functions, 

simplifying the relationship between risk and return. However, real-world investor 

preferences often exhibit more complex, non-linear behaviors, especially in the presence of 

risk aversion or behavioral biases. By incorporating non-linear utility functions, this study 

examines how the role of Lagrange multipliers evolves when managing the trade-off between 

maximizing expected utility and adhering to budget constraints. Through a modified 

Lagrangian approach, it derives new first-order conditions and analyze the resulting changes 

in optimal portfolio allocation. The analysis focuses on how non-linearity in utility functions 

alters the sensitivity of portfolio weights to changes in asset prices and risk-free rates. 

Additionally, this paper highlights the implications of this extension for practical portfolio 

management, particularly in cases where investor utility is driven by non-standard risk 

preferences. The findings contribute to a deeper understanding of how portfolio optimization 

models can be tailored to better reflect real-life decision-making scenarios. 

Keywords: One-period portfolio optimization, Lagrange multipliers, Non-linearity, Expected 

Utility Maximization, Portfolio theory. 

1. Introduction 

The one-period portfolio optimization model, rooted in modern portfolio theory, seeks to determine 

the optimal allocation of wealth across assets to maximize an investor's expected utility. Traditionally, 

this model assumes linear or quadratic utility functions, such as the commonly used mean-variance 

framework developed by Markowitz, which simplifies the optimization process. However, these 

linear approximations often fail to capture the full spectrum of real-world investor behavior, 

particularly when accounting for risk aversion and behavioral biases. Non-linear utility functions, 

which more accurately reflect an investor's risk preferences, introduce additional complexity into the 

portfolio optimization problem. The application of Lagrange multipliers in this context allows for the 

inclusion of constraints, such as budget limitations, while solving the optimization problem. When 

non-linear utility functions are incorporated, the role of Lagrange multipliers evolves, leading to more 

nuanced and complex first-order conditions for optimal portfolio allocation. 
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Cvitanic’s "Introduction to the Economics and Mathematics of Financial Markets" is what 

motivated me to conduct this study primarily. His portfolio optimization methods applies Lagrange 

multipliers within mean-variance models to handle budget and risk constraints, forming the 

theoretical base for analyzing how non-linear utility functions alter portfolio optimization by shifting 

the risk-return dynamics [1]. Li expands on this by demonstrating how Lagrange multipliers optimize 

power system costs through managing equality and inequality constraints. This general application 

supports how the method can be adapted for portfolio optimization involving non-linear utilities [2]. 

Klein’s tutorial further highlights how Lagrange multipliers operate under equality constraints, 

providing foundational insights into how these constraints behave when extended to non-linear utility 

functions [3]. C. Balaji explores Lagrange multipliers in solving multi-variable, non-linear 

optimization problems, emphasizing their utility in identifying maximum or minimum values in 

constrained spaces. This aligns with the complexities of non-linear utility functions in portfolio 

models [4]. Rockafellar's research discusses the development of Lagrange multipliers, particularly in 

nonsmooth analysis and duality, which is particularly relevant when considering the more intricate 

nature of non-linear utility functions [5]. Rockafellar’s additional paper delves into the classical and 

modern uses of Lagrange multipliers, exploring their significance in duality and optimization 

problems. This is directly relevant when examining how non-linear utilities affect the constraints in 

a one-period portfolio model [6]. Chapados' work on single- and multi-period portfolio models shows 

how Lagrange multipliers help balance risk and return in constrained settings, making it a valuable 

source for understanding how these methods adapt when utility functions become non-linear [7]. 

Sornette introduces non-linear covariance matrices and their application in portfolio theory, 

addressing non-Gaussian distributions and providing a model that complements the study of non-

linear utility functions and risk assessment [8]. Staines ’research compares myopic and dynamic 

approaches to portfolio optimization, focusing on Lagrange multipliers in single-period models. His 

insights on dynamic versus static approaches offer a practical perspective on how non-linear utilities 

can shift optimization strategies [9]. Kofi explores portfolio optimization by applying the Lagrangian 

multiplier method to manage budget and risk constraints, reinforcing how these multipliers adapt in 

the face of complex optimization scenarios like those involving non-linear utility functions [10]. 

This body of literature offers a comprehensive framework for understanding the role of Lagrange 

multipliers in constrained optimization, particularly as it relates to portfolio management. The 

exploration of non-linear utility functions and their impact on optimization outcomes highlights the 

adaptability and complexity of the Lagrange multiplier method in financial models. This review not 

only supports the theoretical foundation of Lagrange multipliers but also offers practical insights for 

analyzing how these multipliers behave in one-period portfolio models with non-linear utilities. 

The objective of this study is to investigate how the application of Lagrange multipliers in a one-

period portfolio optimization model is influenced by the introduction of non-linear utility functions. 

This research aims to extend the classical portfolio theory by incorporating non-standard utility 

behaviors, such as increased risk aversion and behavioral biases, to examine their impact on optimal 

asset allocation. Through a detailed analysis of the modified Lagrangian approach, the study explores 

how these changes affect first-order conditions and the sensitivity of portfolio weights, offering 

practical insights for portfolio management under complex investor preferences. 

2. Analysis of Lagrange Multipliers under Non-linear Utility Functions 

2.1. Role of Lagrange Multiplier in Constrained Optimization 

Lagrange multipliers play a critical role in solving constrained optimization problems, particularly in 

portfolio optimization models where an investor aims to maximize their expected utility subject to 
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budget constraints. In a one-period portfolio optimization setting, the budget constraint ensures that 

the sum of investments across assets does not exceed the initial wealth, represented as: 

 𝑥 = 𝛿0𝐵(0) + 𝛿1𝑆1(0) + ⋯ + 𝛿𝑁𝑆𝑁(0) (1) 

Here, 𝛿𝑖, represents the portfolio weight in each asset, 𝑆𝑖(0) is the price of the asset at time 𝑡 = 0, 

and 𝐵(0) represents the risk-free bond price. The objective is to maximize the expected utility of the 

portfolio's terminal wealth at time 𝑡 = 1: 

 𝑋(1) = ∑
𝑖=0

𝑁

𝛿𝑖𝑆𝑖(1)      (2) 

with  

 𝑚𝑎𝑥
𝛿

𝐸[𝑈(𝑋(1))]        (3) 

being the objective. 

To handle the constraint mathematically, it introduces the Lagrange multiplier 𝜆, which adjusts the 

optimization to account for the budget constraint. The Lagrangian function is formulated as: 

 𝐿 = 𝐸 [𝑈 ( ∑
𝑖=0

𝑁

𝛿𝑖𝑆𝑖(1))] − 𝜆 ( ∑
𝑖=0

𝑁

𝛿𝑖𝑆𝑖(0) − 𝑥) (4) 

The first-order conditions for maximizing this Lagrangian yield: 

 𝐸[𝑈′(𝑋(1))𝑆𝑖(1)] = 𝜆𝑆𝑖(0), 𝑖 = 0, … , 𝑁 (5) 

This condition implies that the marginal utility of wealth, weighted by the asset price at time 𝑡 =
1, must be equal to the Lagrange multiplier 𝜆 times the initial price of the asset at time 𝑡 = 0. For the 

special case of a risk-free asset, where 𝑆0(0) = 1 and 𝑆0(1) = 1 + 𝑟, the multiplier becomes: 

 𝜆 = 𝐸[𝑈′(𝑋(1))(1 + 𝑟)]    (6) 

This reflects the marginal utility of wealth associated with holding the risk-free asset. 

Finally, solving for the price of each risky asset provides: 

 𝑆𝑖(0) =
𝐸[𝑈′(𝑋(1))𝑆𝑖(1)]

𝐸[𝑈′(𝑋(1))(1+𝑟)]
 (7) 

Thus, Lagrange multipliers not only help incorporate constraints into the optimization process but 

also provide insights into how asset prices reflect investors' marginal utilities. The multiplier’s 

behavior becomes increasingly complex when nonlinear utility functions are introduced, as it adjusts 

to account for more sophisticated risk preferences and the curvature of the utility function. 

2.2. Introduction of Non-linear Utility Functions into the Model 

In ideal scenarios, the investor is indifferent to risk and only cares about maximizing expected returns, 

there is no curvature in this utility function, meaning that the investor has constant marginal utility of 

wealth. The utility functions incorporated are usually regarded as followed in this case: 

 𝑈(𝑥) = 𝛼𝑥  (8) 

This function reflects risk neutrality and assumes that the investor is equally satisfied with each 

additional unit of wealth, regardless of the amount of risk involved. 

Non-linear utility functions capture a broader range of investor behaviors and preferences, making 

them more suitable for portfolio optimization models that account for complex risk preferences. 

Several types of non-linear utility functions are commonly used in financial models: 
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Logarithmic Utility Function: defined as 

 𝑈(𝑥) = 𝑙𝑜𝑔(𝑥)  (9) 

The logarithmic utility function captures decreasing absolute risk aversion. As wealth increases, 

the investor becomes less risk-averse. This function is often used for investors with long-term 

investment horizons because they tolerate more risk when they accumulate more wealth. The concave 

nature of this utility function reflects risk aversion, but the degree of risk aversion diminishes as 

wealth grows. 

Exponential Utility Function: defined as 

 𝑈(𝑥) = 1 − 𝑒−𝛼𝑥 (10) 

This utility function is widely used to represent constant absolute risk aversion. The parameter 𝛼 

controls the level of risk aversion, with higher values of 𝛼 indicating greater risk aversion. In this 

model, an investor is equally averse to risk regardless of their wealth level. The exponential form 

implies that the investor prefers to avoid risk, and the marginal utility diminishes as wealth increases, 

but their risk tolerance remains constant across wealth levels. 

Power Utility Function: defined as 

 𝑈(𝑥) =
𝑥1−𝛾

1−𝛾
, 𝑓𝑜𝑟𝛾 ≠ 1       (11) 

The power utility function, also known as constant relative risk aversion, implies that risk aversion 

depends on the investor's wealth relative to their consumption or other reference points. The 

parameter 𝛾 governs the risk aversion level, with higher values of 𝛾 indicating greater aversion to risk. 

This function is frequently used in models where investors adjust their consumption and investment 

plans as their wealth changes. 

Quadratic Utility Function: defined as 

 𝑈(𝑥) = 𝑎𝑥 − 𝑏𝑥2 (12) 

This utility function represents increasing risk aversion as wealth increases. Unlike other utility 

functions, it has a finite maximum wealth level after which the utility decreases, implying that 

investors become more risk-averse as their wealth grows. Although it is useful for modeling certain 

types of risk aversion, the function is less practical for extremely wealthy investors because it assumes 

that utility declines after reaching a certain wealth level. 

Derived from prospect theory, utility functions based on behavioral economics account for 

psychological factors such as loss aversion. In this case, the utility function is often piecewise, with 

steeper slopes for losses compared to gains, reflecting that investors experience losses more severely 

than gains of equivalent magnitude. These functions are non-linear and introduce significant 

curvature into the optimization problem, making the decision-making process sensitive to both the 

probability of gains and losses, as well as the size of those outcomes. 

Incorporating non-linear utility functions into portfolio models by means (2) to (7) introduces 

curvature into the optimization process, reflecting varying levels of risk aversion based on wealth or 

psychological factors. This curvature complicates the optimization because the marginal utility of 

wealth is no longer constant; it varies based on both the level of wealth and the type of utility function 

used. As a result, the first-order conditions derived from the Lagrangian will differ significantly, and 

the sensitivity of optimal portfolio allocations to changes in market conditions becomes more 

complex. This reflects a more realistic approach to modeling investor behavior compared to linear 

models, which oversimplify the relationship between wealth and risk preferences. 
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2.3. Reformulation First-order Conditions under Portfolio Optimization and Implications 

When non-linear utility functions are incorporated into portfolio optimization, the Lagrange 

multiplier 𝜆 takes on a more intricate role, reflecting complex trade-offs between utility maximization 

and the budget constraint. In linear utility models, 𝜆 simply represents the marginal value of wealth, 

indicating how much the investor's utility would increase with an additional unit of wealth. However, 

in non-linear utility models, such as those involving logarithmic, exponential, or power utility 

functions, the Lagrange multiplier also captures how changes in wealth impact the investor's risk 

aversion and utility. 

Logarithmic Utility Function: The first derivative is 

 𝑈′(𝑥) =
1

𝑥
 (13) 

Applying the derived condition in (5), the first-order condition becomes 

 𝐸 [
𝑆𝑖(1)

𝑋(1)
] = 𝜆𝑆𝑖(0) (14) 

This shows that 𝜆 adjusts not only to reflect the marginal utility of wealth but also the ratio of 

current asset prices to total wealth. This introduces more sensitivity in the portfolio allocation as 

wealth changes. 

Exponential Utility Function: The first derivative is 

 𝑈′(𝑥) = 𝛼𝑒−𝛼𝑥  (15) 

The first-order condition becomes 

 𝐸 [𝛼𝑒−𝛼𝑋(1)𝑆𝑖(1)] = 𝜆𝑆𝑖(0) (16) 

The first-order condition implies that 𝜆 accounts for the investor's constant absolute risk aversion. 

Here, 𝜆 adjusts to maintain a balance between the investor’s aversion to risk and the budget constraint, 

leading to different allocations depending on the investor’s risk sensitivity parameter 𝛼. 

Power Utility Function: The first derivative is  

 𝑈′(𝑥) = 𝑥−𝛾 (17) 

The first-order condition becomes 

 𝐸[𝑋(1)−𝛾𝑆𝑖(1)] = 𝜆𝑆𝑖(0) (18) 

In this case 𝜆 becomes a function of wealth raised to the power of 𝛾, making it highly sensitive to 

both wealth levels and the degree of relative risk aversion. The first-order condition shows that 𝜆 is 

intricately tied to changes in wealth, particularly for more risk-averse investors, where the marginal 

utility decreases rapidly as wealth grows. 

Quadratic Utility Function: The first derivative is 

 𝑈′(𝑥) = 𝑎 − 2𝑏𝑥 (19) 

The first-order condition becomes 

 𝐸[(𝑎 − 2𝑏𝑋(1))𝑆𝑖(1)] = 𝜆𝑆𝑖(0) (20) 

This first-order condition demonstrates how 𝜆  captures the trade-off between the linear and 

quadratic terms of the utility function. Here, 𝜆 reflects how the marginal utility changes with wealth, 
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incorporating both the investor’s initial wealth preference and the increasing risk aversion that 

quadratic utility functions represent. 

3. Reformulated Portfolio Weights and Economic Implications of the Results 

3.1. Analysis of Sensitivity of Portfolio Weights 

The above non-linear utility functions introduce varying levels of sensitivity to portfolio weights with 

respect to different influencing factors. 

Logarithmic Utility Function: Given the utility function and the derived first-order conditions, it 

will divide both sides of the equation by 𝑆𝑖(0) to isolate the portfolio weight 𝛿𝑖  (same isolation 

procedure will apply for rest three non-linear utility functions), then it gets: 

 
𝐸[

𝑆𝑖(1)

𝑋(1)
]

𝑆𝑖(0)
= 𝜆 (21) 

This might seem counterintuitive, but it actually shows the relationship between the expected 

marginal utility and 𝜆. It recognizes that 𝑋(1), total wealth at time 1, depends on the portfolio weights. 

In this case, solving for 𝛿𝑖 requires isolating the part of the expression that explicitly represents the 

portfolio weight. Hence, by rearranging the terms in (21) and expressing 𝛿𝑖 as: 

 𝛿𝑖 =
𝐸[

𝑆𝑖(1)

𝑋(1)
]

𝜆𝑆𝑖(0)
 (22) 

It can finally regard the sensitivity of 𝛿𝑖 to changes in 𝜆 as the derivative taken against 𝜆 (same 

mathematical approach applies for rest three: 

 
𝜕𝛿𝑖

𝜕𝜆
=

−𝐸[
𝑆𝑖(1)

𝑋(1)
]

𝜆2𝑆𝑖(0)
 (23) 

As 𝜆 increases, 𝛿𝑖 decreases proportionally, meaning less wealth is allocated to each asset. The 

term 
𝑆𝑖(1)

𝑋(1)
 ensures that the weight depends on the proportion of asset prices relative to total wealth. 

Exponential Utility Function: Rearrange the terms, it will gain a new expression of 𝛿𝑖: 

 𝛿𝑖 =
𝐸[𝛼𝑒−𝛼𝑋(1)𝑆𝑖(1)]

𝜆𝑆𝑖(0)
 (24) 

Using the same mathematical method as in (23), weights’ responsiveness to 𝜆 can be expressed as: 

 
𝜕𝛿𝑖

𝜕𝜆
=

−𝐸[𝛼𝑒−𝛼𝑋(1)𝑆𝑖(1)]

𝜆2𝑆𝑖(0)
 (25) 

This shows that the sensitivity of 𝛿𝑖  to changes in 𝜆  depends on both the expected value 

𝐸[𝛼𝑒−𝛼𝑋(1)𝑆𝑖(1)] and the current price. Since 𝜆  appears in the denominator, as 𝜆  increases, the 

portfolio weight 𝛿𝑖 decreases, meaning less wealth is allocated to asset i.  

Power Utility Function: Similarly for power utility function, 𝛿𝑖 can be expressed as: 

 𝛿𝑖 =
𝐸[𝑋(1)−𝛾𝑆𝑖(1)]

𝜆𝑆𝑖(0)
 (26) 

Taking first derivative against 𝜆, 

 
𝜕𝛿𝑖

𝜕𝜆
=

−𝐸[𝑋(1)−𝛾𝑆𝑖(1)]

𝜆2𝑆𝑖(0)
 (27) 
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Here, the sensitivity of 𝛿𝑖 to changes in 𝜆 is influenced by the wealth level raised to the power of 

−𝛾 . If 𝛾  is large (high relative risk aversion), the changes in 𝛿𝑖  in response to 𝜆 become more 

pronounced. Hence, Sensitivity is inversely proportional to 𝜆2 and depends on 𝑋(1)−𝛾, making it 

more sensitive for risk-averse investors. 

Quadratic Utility Function: Rearranging first-order condition to express 𝛿𝑖, it get:  

 𝛿𝑖 =
𝐸[(𝑎−2𝑏𝑋(1))𝑆𝑖(1)]

𝜆𝑆𝑖(0)
 (28) 

Taking the derivative with respect to 𝜆, it gets: 

 
𝜕𝛿𝑖

𝜕𝜆
=

−𝐸[(𝑎−2𝑏𝑋(1))𝑆𝑖(1)]

𝜆2𝑆𝑖(0)
 (29) 

In this case, the quadratic term 𝑏𝑋(1) increases the sensitivity of 𝛿𝑖  to wealth changes. This 

introduces non-linear behavior into the relationship between the portfolio weights and 𝜆, making the 

portfolio weights more sensitive as wealth grows. Hence, Sensitivity increases with the term 

−2𝑏𝑋(1), leading to a higher impact on 𝛿𝑖 as wealth inflates. 

3.2. Interpretation of Economic Implications 

The incorporation of non-linear utility functions into portfolio models offers a more nuanced and 

realistic representation of investor behavior, particularly for those exhibiting strong risk aversion or 

loss aversion. Unlike linear utility functions, which assume constant marginal utility, non-linear 

utility functions such as exponential, logarithmic, or power functions allow for varying degrees of 

risk sensitivity. For example, investors with exponential utility functions are highly risk-averse and 

their utility declines sharply with increasing wealth, making them more cautious in allocating their 

portfolio. This kind of modeling better mirrors real-world scenarios, where investor decisions are 

often influenced by fear of losses or disproportionate sensitivity to risk, as seen in behavioral finance 

concepts like prospect theory. 

Moreover, non-linear utility functions significantly impact investment strategies, particularly in 

situations where constraints like limited budgets or specific risk requirements exist. These constraints 

often lead to complex trade-offs between risk and return, making the allocation of assets more volatile 

and responsive to market changes. By incorporating behavioral insights into traditional models, 

economists and portfolio managers can make more accurate predictions and tailor strategies to 

individual preferences, improving decision-making under uncertainty. 

In the next section, it will simulate portfolio optimization under non-linear utility functions and 

analyze how the resulting asset weights differ from those predicted by traditional, linear utility 

models. Through these simulations, it will explore how these models adjust to market conditions and 

constraints, providing more robust insights into portfolio management strategies. 

4. Application 

For a real world case, supposing that the targets are building the US stock portfolio and it wishes not 

to complicate things, so only three stocks are chosen-Amazon, Starbucks and Tesla. Historical data 

can be collected and used for rounds of simulations to build the theoretically speaking, most efficient 

portfolio. 

Past 6 months’ indices (Adj. close price, etc) for the three stocks were collected. Risk-free asset in 

the market consistently spans the past 6 months, holding a value of 5.5%. To account for discounting, 

it utilizes a new initial value function for each asset simply by plugging (6) into (7): 
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 𝑆𝑖(0) =
𝐸[𝑈′(𝑋(1))𝑆𝑖(1)]

𝐸[𝑈′(𝑋(1))(1+𝑟)]
=

1

1+𝑟

𝐸[𝑈′(𝑋(1))𝑆𝑖(1)]

𝐸[𝑈′(𝑋(1))]
 (30) 

Next, it calculate the covariance matrix of daily returns: 

 (

0.000286 0.000008 0.000172

0.000008 0.000440 0.000071

0.000172 0.000071 0.001436

) (31) 

Solving for the optimal portfolio by incorporating newly derived 𝑆𝑖(0) function and taking inverse 

of it, and geting: 

AMZN: 58.01% 

SBUX: 39.10% 

TSLA: 2.89% 

While the weights might seem counterintuitive, given that Amazon and Starbucks have negative 

expected returns, this indicates that during the selected period, these stocks still hold a significant 

portion of the optimal portfolio. This is likely due to their relatively lower risk and the adjusted high 

expected returns when compared to Tesla. Also, portfolio optimization requires balancing risk and 

return, the seemingly odd results might signals lack of diversification in the portfolio. Even assets 

with lower returns can be favorable in a well-diversified portfolio, it will continue to evaluate this 

allocation later. 

It will only go through the logarithm utility function as illustration of the approach, as the same 

applies for all other utility functions. One thing worth noting is how to choose the parameter values - 

in the proposed model, and assuming all investors to be rational, that means while having different 

levels of risk preferences, all investors share the same goal of utility maximization and none of them 

is purely risk-prone. The left three results and parameter values used are presented as followed: 

Exponential Utility Function: for α =  2 : 

AMZN: 18.208% 

SBUX: 40.896% 

TSLA: 40.896% 

Power Utility Function: for γ =  0.5 : 

AMZN: 45.62% 

SBUX: 32.30% 

TSLA: 22.08% 

Quadratic Utility Function: for a and b both equals 1: 

AMZN: 50.73% 

SBUX: 28.46% 

TSLA: 20.81% 

Seeing the optimized proportions under each scenario, one trend observed is for every utility 

function choice, AMZN is the one stock that would get most investment except for the exponential 

utility function. The differences in patterns are the exact proof of how different risk preferences are 

addressed by use of Lagrange multipliers.  
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Across most utility functions, AMZN is given the largest allocation except for the exponential 

utility function. This suggests that Amazon has relatively lower risk or better risk-adjusted returns 

compared to SBUX and TSLA during this period. Even though AMZN has a negative expected return 

over this period, the portfolio optimization algorithm gives it a significant weight because of its 

volatility characteristics, suggesting it plays a critical role in stabilizing the portfolio. In the 

logarithmic utility function, TSLA receives only 2.89%, which indicates it carries more risk without 

sufficient return to justify a higher allocation. However, under the exponential utility function and 

power utility function, TSLA has a much higher allocation (above 20%). This difference shows how 

different utility functions, representing varying levels of risk tolerance, result in different asset 

allocations. SBUX consistently receives a moderate portion of the portfolio. Its allocation changes 

slightly depending on the utility function, but it seems to represent a balance between risk and return. 

The Lagrange multiplier method is used to optimize the portfolio by considering both the risk 

(through the covariance matrix) and the return (through expected returns). The Lagrange multiplier 

adjusts the portfolio weights to maximize utility while adhering to constraints such as total wealth 

and portfolio weights summing to 1. 

The fact that negative expected returns (for AMZN and SBUX) still lead to significant portfolio 

allocations suggests that the optimization is heavily influenced by risk minimization. Lagrange 

multipliers help balance the trade-off between expected return and risk, especially in constrained 

scenarios. 

By solving the optimization problem using derived utility functions like 𝑆𝑆(𝑆), the incorporation 

of risk-free assets (at 5.5% return) is also handled using the Lagrange multipliers, ensuring that the 

portfolio still meets a desired risk-return profile, even when assets like Amazon and Starbucks show 

underperformance. 

5. Conclusion 

The use of Lagrange multipliers simplifies the optimization of the portfolio by transforming the 

constrained problem into an unconstrained one, revealing optimal asset weights that maximize 

expected utility. Additionally, the non-linearity of the utility function introduces complexity in both 

the computation and interpretation of the results, emphasizing the importance of numerical methods 

and simulations in practical applications. Though it successfully captures risk preferences of all kinds, 

it could not expect the method to be too profitable — it does not account for multi-period, continuous 

portfolio building, as the Lagrangian introduced here is too sensitive to single-periods parameter 

estimation and initial conditions. Advanced extensions to that method shall be pursued. 
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