
 

 

An Uncertain Programming Model for Lot Sizing Problem 

Xinyang Ai1,a,* 

1School of Management, Shanghai University, No.99 Shangda Road, Baoshan District, Shanghai, 

China 

a. axy261918@163.com 

*corresponding author 

Abstract: Lot Sizing Problem (LSP) is designed to optimize production costs by determining 

optimal production batch sizes. Uncapacitated Single Item Lot Sizing Problem (USILSP), as 

the foundational problem of LSP, focuses on minimizing the aggregate fixed and variable 

costs for a single product over a specified time horizon, assuming no capacity limitations. 

This paper investigates USILSP incorporating demand uncertainty, a critical factor in real-

world production planning. Based on uncertainty theory, future demands are modeled as 

independent uncertain variables characterized by known uncertainty distributions. Then an 

uncertain programming model is formulated for USILSP and ingeniously transformed into 

its deterministic equivalent. 

Keywords: Lot sizing problem, Uncapacitated single item lot sizing problem, Uncertainty 

theory, Uncertain programming. 

1. Introduction 

Lot Sizing Problem (LSP) is a pivotal optimization challenge in the realms of production planning 

and inventory management. Since Harris's introduction of the Economic Order Quantity (EOQ) 

model in 1913, which was the first quantitative model for lot sizing balancing ordering and inventory 

costs to determine the optimal order quantity. But the model only optimized for continuous demand 

and static consumption and inventory costs [1]. Wagner and Whitin proposed a mixed-integer 

programming model to optimize for varying discrete demands and costs in 1958, which was the most 

classical and intuitive model for LSP [2]. 

LSP is designed to ascertain the optimal timing and quantities of production within a planning 

horizon, with the goal of optimizing key performance metrics. Primarily, this involves minimizing 

total costs while ensuring that both demand requirements and capacity limitations are met. The LSPs 

are tailored to various application scenarios and are classified accordingly. Key differentiators include 

whether the production capacity is limited (capacitated) or not (uncapacitated), the nature of the 

products involved (single-item versus multi-item), and the complexity of the production system, 

which can range from single-level to multi-level configurations.  

LSP stands as a critical and complex challenge within the realm of production planning, 

particularly within the medium-term planning horizon. It plays a crucial role in industries 

characterized by a singular production process or those where multiple processes can be integrated 

into a unified operation, exemplified by the medical and chemical sectors. LSP is instrumental in 
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strategizing production activities, including forging and molding, where precise production 

scheduling is essential for efficiency and cost-effectiveness [2]. 

These traditional LSP models assume deterministic or probabilistic demand, which may not reflect 

the inherent unpredictability of market demands. In real-world scenarios, the actual future demand is 

usually unavailable and its frequency cannot be assumed to be known or stable. This uncertainty 

means that future demand cannot be accurately represented as a random variable, thereby challenging 

the applicability of probabilistic models. Consequently, there is a need for alternative modeling 

approaches that can better address the volatility and ambiguity of market demands. 

In the absence of sufficient observational data, it is necessary to refer to the opinions of domain 

experts to make them consistent with the actual situation. Uncertainty theory, a well-defined 

supplement of classic probability theory, offers a rigorous mathematical framework for incorporating 

expert opinions into decision-making processes. This paper adopts uncertainty theory to model 

market demand as independent uncertain variables for each future time period. Furthermore, a 

confidence constraint is introduced within the uncertainty theory framework, ensuring that the firms' 

ability to meet demand during a specific period is not less than a predetermined confidence level. 

This approach leads to the formulation of an uncertain programming model. 

2. Basic theory and literature review 

Considering the discrepancy between theoretical probability distributions and actual observed 

frequencies, Liu proposed uncertainty theory in 2007. This theory provides a mathematical 

framework for quantifying the belief degree in an event through the concept of uncertain measure [4]. 

Uncertainty theory is built on a new axiomatization system that includes Normality, Monotonicity, 

Self-Duality and Countable Subadditivity. And it involves key concepts including uncertain measure, 

uncertainty space, uncertain variable, and uncertainty distribution, offering a distinct approach to 

dealing with imprecise information that deviates from traditional probabilistic methods. 

Based on uncertain variable and uncertainty distribution, Liu proposed the notion of uncertain 

programming, a theory of optimization in uncertain environments in 2009 [5]. At present, uncertain 

programming has found extensive applications across various domains, including Facility Location, 

Machine Scheduling, Vehicle Routing, Problem Scheduling, and Supply Chain Management, among 

others [6]. 

In 2012, Gao applied uncertain programming to address the single facility location problem on 

network. He considered the demand of each vertex as a non-negative Zigzag uncertain variable. And 

he further introduced the concept of satisfaction degree, which quantifies how well the allocated 

product quantity meets the demand at each vertex [7]. 

Ning et al. tackled the parallel machine scheduling problem by employing uncertain programming 

in 2017. They regarded the processing times of jobs and release dates as independent uncertain 

variables, each with a known uncertainty distribution. They established an uncertain multi-objective 

programming model with dual optimization objectives: the primary goal was to minimize the 

maximum completion time, and the secondary goal was to minimize the maximum delay time. 

Afterwards, they employed a genetic algorithm to solve this model [8]. 

Addressing the capacity planning challenges in the semiconductor manufacturing industry, Chien 

et al. in 2018 formulated an uncertain multi-objective programming model. Recognizing the inherent 

uncertainty in demand and capacity, they modeled these factors as uncertain variables. Their model 

aimed to optimize the complex trade-offs involved in semiconductor production by minimizing 

potential costs associated with oversupply, shortage, and technology migration [9]. This 

comprehensive approach provides a strategic framework for decision-making under uncertainty, 

which is a common scenario in the dynamic semiconductor industry. 
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In 2019, Majumder et al. addressed the solid transportation problem by incorporating uncertainty 

theory. They posited that key parameters—such as unit transportation costs, fixed charges, 

transportation times, supplies at origins, demands at destinations, conveyance capacities, and budgets 

at destinations—were all subject to uncertainty and thus modeled as uncertain variables. Then they 

developed three distinct models, each transformed into an equivalent deterministic form to account 

for budgetary limitations [10]. 

In 2021, Yang et al. approached the home healthcare routing and scheduling problem by 

integrating uncertain programming. They identified travel time between locations and service time at 

client sites as uncertain variables, reflecting the unpredictable nature of these parameters in home 

healthcare settings. And they formulated an optimization model with three key objectives: to 

minimize routing costs, enhance service consistency, and balance the workload among care providers. 

To tackle this complex multi-objective problem, they proposed an enhanced multi-objective artificial 

bee colony metaheuristic [11]. 

3. Model formulation  

3.1. Traditional LSP model 

The LSP model is fundamentally concerned with determining production quantities over a defined 

planning horizon, which is segmented into discrete time periods. Each period is characterized by a 

specific market demand that the producer must satisfy. The production process entails both fixed and 

variable costs. Fixed costs, also known as setup costs, are incurred whenever production commences, 

while variable costs depend on the levels of production and inventory. The unit variable cost 

encompasses both the cost of producing a single unit and the cost of holding inventory. The challenge 

for enterprises is to devise a production plan for each time period within the planning horizon that 

minimizes the total cost, while ensuring that market demand is met. This involves strategic decisions 

on when to initiate production and the optimal quantity to produce in each period. 

Uncapacitated Single Item Lot Sizing Problem (USILSP) serves as the foundational model in LSP, 

frequently emerging as a key subproblem in the resolution of more complex production planning 

scenarios. This paper provides the basic mathematical expression of USILSP. 

Notation: 

• T=1,2,...,m: planning horizon. 

• dt: the demand for the product during time period t∊T. 

• st: the setup cost for the product during time period t∊T. 

• pt: the unit product production cost during time period t∊T. 

• ht: the unit inventory cost during time period t∊T. 

The objective of the problem is to minimize the aggregate costs associated with production, which 

encompass setup costs, production costs, and inventory costs. The mathematical formulation of 

USILSP is presented as follows: 

Decision variables: 

𝑦𝑡 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 ∈ 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑥𝑡: 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 ∈ 𝑇 

𝑞𝑡: 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 ∈ 𝑇 
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To further refine the relationship between setup and production costs, an additional binary decision 

variable, denoted as yt, is incorporated. The USILSP model, which integrates this 0-1 variable, is 

formulated as follows: 

min ∑ (styt
+ p

t
xt + htqt

)t∈T                            (1)  

subject to: 

 q
t

= q
t−1

+ xt − dt(∀t ∈ T)                           (2) 

q
0

= 0                                     (3) 

xt ≤ Mtyt
 (∀t ∈ T)                               (4) 

y
t

∈ {0,1} (∀t ∈ T)                               (5) 

xt ≥ 0 (∀t ∈ T)                                (6) 

q
t

≥ 0 (∀t ∈ T)                                (7) 

Among the above constraints, the Eq. (2) is the inventory balance constraint, ensures that the sum 

of production and inventory in each time period satisfies the current demand. The Eq. (3) sets the 

initial inventory level at the beginning of the planning horizon to zero, establishing a starting point 

for the model. The Mt in the Eq. (4) represents a sufficiently large number, usually taken 𝑀𝑡 =
∑ 𝑑𝑘

𝑚
𝑘=𝑡 . This constraint enforces that if production is not initiated during a time period (i.e., yt=0), 

then the production volume for that period must also be zero. Lastly, the Eq. (5), Eq. (6) and Eq. (7) 

respectively constrain the permissive range of decision variables. 

3.2. Uncertain programming model for USILSP 

This section begins by revisiting some theorems related to uncertain programming. 

Theorem 1 (Liu 2015) [12] Assume the objective function f(x, ξ1, ξ2, · · · , ξn) is strictly increasing 

with respect to ξ1, ξ2, ··· , ξm and strictly decreasing with respect to ξm+1, ξm+2, ··· , ξn. If ξ1, ξ2, ··· , ξn 

are independent uncertain variables with uncertainty distributions Φ1, Φ2, · · · , Φn, respectively, then 

the expected objective function E[f(x, ξ1, ξ2, · · · , ξn)] is equal to 

∫ f
1

0
(x, Φ1

−1(α),···, Φm
−1(α), Φm+1

−1 (1 − α),···, Φn
−1(1 − α))            (8) 

Theorem 2 (Liu 2015) [12] Assume the constraint function g(x, ξ1, ξ2, · · · , ξn) is strictly 

increasing with respect to ξ1, ξ2, ··· , ξk and strictly decreasing with respect to ξk+1, ξk+2, · · · , ξn. If 

ξ1, ξ2, · · · , ξn are independent uncertain variables with uncertainty distributions Φ1, Φ2, · · · , Φn, 

respectively, then the chance constraint 

M{g(x, ξ
1
, ξ

2
,···, ξ

n
) ≤ 0} ≥α                           (9) 

holds if and only if 

g(x, Φ1
−1(α),···, Φk

−1(α), Φk+1
−1 (1 − α),···, Φn

−1(1 − α)) ≤ 0            (10) 

In the context of the USILSP model with demand uncertainty, the demand dt for each time period 

t∊T is modeled as an uncertain variable characterized by a known uncertainty distribution Φt. And 

the inverse uncertainty distribution is denoted as Φt
-1. From Eq. (2), the inventory qt is expressed as 

a linear function of qt-1, xt and dt. With the initial condition that q0=0, and the following recursive 

equation exists: 

q
t

= q
t−1

+ xt − dt 
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q
t−1

= q
t−2

+ xt−1 − dt−1 

                    …                                     (11) 

q
2

= q
1

+ x2 − d2 

q
1

= x1 − d1 

Accordingly, qt is also an uncertain variable. And it is easy to obtain from the above recurrence 

relation equation that 𝑞𝑡 = ∑ (𝑥𝑖 − 𝑑𝑖)𝑡
𝑖=1  (∀𝑡 ∈ 𝑇). 

Liu pointed out in 2009 that since an objective function with uncertain variables cannot be 

minimized directly, we may need to minimize its expected value [5]. The expression of Eq. (1) is 

modified here by modifying the objective function to minimize the expected cost: 

min E[∑ (styt
+ p

t
xt + htqt

)t∈T ]                        (12) 

equivalent to: 

min E{∑ [styt
+ p

t
xt + ht ∑ (xi − di)

t
i=1 ]t∈T }                  (13) 

The primary goal of LSP is to minimize costs while satisfying the market demand. However, in 

the uncertain programming model, the complete satisfaction of market demand is not guaranteed due 

to its inherent uncertainty. To address this, it is assumed that the production xt and the inventory from 

the previous period qt-1 can meet the current period’s demand dt with a confidence level α. In other 

words, the model requires that the belief degree of xt+qt-1≧dt is greater than or equal to the confidence 

level α. Within the framework of uncertainty theory, this requirement is expressed as a chance 

constraint: 

M{xt + q
t−1

≥ dt} ≥α (∀t ∈ T)                       (14) 

equivalent to: 

M{dt − x
t

− q
t−1

≤ 0} ≥α (∀t ∈ T)                     (15) 

It is obtained from recurrence relation Eq. (11) that 𝑞𝑡 = ∑ (𝑥𝑖 − 𝑑𝑖)
𝑡
𝑖=1  (∀𝑡 ∈ 𝑇). Substituting 

𝑞𝑡−1 = ∑ (𝑥𝑖 − 𝑑𝑖)
𝑡−1
𝑖=1  into Eq. (15), upon rearrangement, the following equation is derived: 

M{∑ (di − xi)
t
i=1 ≤ 0} ≥α (∀t ∈ T)                     (16) 

The complete uncertain programming model is as follows: 

min E{∑ [styt
+ p

t
xt + ht ∑ (xi − di)

t
i=1 ]t∈T }                 (13) 

subject to: 

M{∑ (di − xi)
t
i=1 ≤ 0} ≥α (∀t ∈ T)                    (16) 

y
t

∈ {0,1} (∀t ∈ T)                             (5) 

xt ≥ 0 (∀t ∈ T)                               (6) 

Traditional numerical optimization and heuristic algorithms are not directly applicable to uncertain 

programming problems. To bridge this gap, in 2015, Liu gave a method for converting uncertain 

programming models into their crisp mathematical programming equivalents, thereby enabling the 

use of conventional algorithms to solve problems [12]. 

According to Liu’s theorem, the above uncertain programming is equivalent to the follow crisp 

mathematical programming: 

min ∑ [styt
+ p

t
xt + ht ∑ xi

t
i=1 ]t∈T − ∫ [∑ htt∈T ∑ 𝛷i

−1(1 − α)t
i=1 ]

1

0
dα      (17) 
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subject to: 

∑ [𝛷i
−1(α) − xi]

t
i=1 ≤ 0 (∀t ∈ T)                       (18) 

y
t

∈ {0,1} (∀t ∈ T)                              (5) 

xt ≥ 0 (∀t ∈ T)                                (6) 

3.3. Solution method 

The transformed model becomes a standard constrained optimization problem, amenable to a variety 

of optimization methods to find either the global optimum or a near-optimal solution. Among the 

widely utilized algorithms are the Gradient Descent Method, Newton's Method, Genetic Algorithm, 

and Simulated Annealing Algorithm, etc.  

The Gradient Descent Method is an iterative optimization algorithm that updates variables in the 

direction opposite to the gradient of the objective function, making it well-suited for optimizing 

simple, continuously differentiable, convex functions. The Newton's Method is based on second-

order derivatives, approximating the current point as the extremum of a quadratic function and then 

moving to the extremum of the quadratic function. This method requires calculating both first and 

second order partial derivatives and solving a linear system, which is ideal for problems with smooth 

second order derivatives. The Genetic Algorithm is a heuristic search and does not depend on any 

particular problem characteristics but perform optimization directly on the objective function. The 

method simulates natural selection and genetic mechanisms to iteratively evolve candidate solutions 

through selection, crossover and mutation operations. The Simulated Annealing Algorithm draws 

inspiration from the annealing process in metallurgy, where a system is gradually cooled to minimize 

its energy. This method treats the problem as a physical system and minimizes the objective function 

by gradually decreasing the temperature of the system. This approach helps the algorithm to escape 

local minima, enabling a broader exploration of the solution space.  

Selecting the most suitable solution method depends on the specific characteristics of the problem 

at hand, particularly the expression of the uncertainty distribution Φt associated with the demand dt. 

It is crucial to evaluate these factors to determine which algorithm will most effectively address 

specific problems.  

4. Conclusion 

This paper presents an integrated approach to Lot Sizing Problem (LSP) for production processes, 

accounting for setup, production, and inventory costs. It focuses on the foundational Uncapacitated 

Single Item Lot Sizing Problem (USILSP), aiming to minimize total costs. Innovatively, this paper 

applies uncertainty theory to address the unpredictability of future demand, a critical factor in 

production planning. Furthermore, it develops an uncertain programming model for USILSP and 

transforms it into a deterministic equivalent, paving the way for effective solution strategies using 

conventional optimization techniques. 

Future research can be extended by focusing on the following areas. Firstly, specifying the 

uncertainty distributions for real-world problems will allow for the application of various algorithms 

to solve USILSP under uncertainty. This will facilitate a comparative analysis of algorithmic 

efficiency, leading to the optimization of solution methods. Secondly, extending the study to more 

complex variants of the LSP, such as Capacitated Single Item Lot Sizing Problem (CSILSP) and 

Capacitated Multi Item Lot Sizing Problem (CMILSP). Formulating uncertain programming models 

for these variants will broaden the scope of practical applications and enhance the versatility of such 

models across diverse industrial settings. 
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