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Abstract: Market risk assessment is crucial for financial practitioners and helps manage 

potential losses from market volatility. This article compares three common VaR (value at 

risk) calculation methods - historical simulation, variance-covariance method and Monte 

Carlo simulation, and applies them to the past ten years of data of the Nasdaq Index. The 

results show that at a 95% confidence level, the VaR estimates given by these three methods 

are relatively close; however, at a 99% confidence level, the VaR values of Monte Carlo 

simulation and variance-covariance method are usually slightly higher than historical 

simulation. This shows that compared with historical simulation, these two methods are more 

sensitive to extreme market events and can more effectively capture tail risks when the market 

is volatile. In the future, machine learning technology is expected to improve the accuracy of 

VaR calculation, especially in dealing with high-dimensional data and complex nonlinear 

relationships. 
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1. Introduction 

Market risk refers to the risk of financial losses due to adverse changes in stock prices, interest rates, 

etc. This issue is not only a core issue of concern to investors and financial institutions, but also an 

important consideration for regulators when formulating policies. The volatility of market risk may 

increase the instability of the financial system and even trigger an economic recession in extreme 

cases. Furthermore, the risk spillover effect across different markets plays a significant role in 

investment decisions and asset allocation optimization. A deeper understanding of these dynamic 

mechanisms is essential for enhancing risk management in financial markets, enabling more precise 

risk identification and improved mitigation strategies [1]. 

2. Literature Review 

Value at Risk (VaR) is a fundamental metric for assessing financial market risk. This section presents 

a review of the literature on VaR, tracing the development of its widely used computational 

approaches and their practical applications. 
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The Historical Simulation method estimates future risk by relying on past market data. Hendricks 

illustrated that this approach effectively captures stock market risk across various periods; however, 

its accuracy is heavily influenced by the length of the historical data window used in the analysis [2]. 

Escanciano and Pei further examined its applicability in emerging markets, observing that its 

effectiveness declines during periods of heightened market volatility. They proposed that integrating 

historical simulation with other techniques could improve the precision of VaR estimates [3]. 

The Monte Carlo simulation method utilizes computational simulations and random sampling 

techniques to estimate VaR. Pasieczna’s research demonstrated that this approach is particularly 

effective in capturing risks in highly volatile markets. Increasing the number of simulation paths has 

been shown to enhance the precision of VaR estimates significantly [4]. Moreover, empirical studies 

suggest that the Monte Carlo method is especially advantageous for complex asset portfolios, 

particularly those containing highly nonlinear financial instruments [5]. 

The Variance-Covariance method, in contrast, estimates VaR based on the assumption that asset 

returns follow a normal distribution. Hull and White observed that while this approach yields reliable 

results under stable market conditions, its accuracy deteriorates markedly during periods of financial 

turbulence [6]. Jorion’s empirical analysis of the foreign exchange market further underscored the 

method’s limitations, emphasizing its inability to adequately capture non-normal return distributions 

and its strong dependence on restrictive statistical assumptions [7]. 

Given the inherent limitations of individual VaR estimation methods, researchers have 

increasingly explored the benefits of combining multiple approaches. McNeil and Frey, in their study 

on financial derivatives, found that while the Monte Carlo simulation method tends to perform better 

in highly volatile market conditions, it comes with significantly higher computational demands [8]. 

Pérignon and Smith further argued that integrating different methods can improve the accuracy of 

VaR estimates, particularly during periods of heightened market uncertainty [9]. Ultimately, selecting 

an appropriate VaR calculation technique—or employing a combination of methods—is essential for 

strengthening risk management practices. 

3. Methodology 

This section applies Historical simulation, Monte Carlo simulation, and the Variance-Covariance 

method to evaluate the Nasdaq Index's market risk. Each method has distinct features in estimating 

losses, relies on different assumptions, and varies in computational complexity. 

3.1. Return and Loss 

In finance, a return measures the profit or loss of an investment over a given period, typically 

represented as a percentage of the initial value. Conversely, a loss refers to a negative return, 

indicating a decline in portfolio value. 

 R =
VT−V0

V0
 (1) 

 Loss = − R (2) 

Where V0  is the initial value of portfolio. R  is the return while Loss stands for the loss of 

portfolio [10].  

3.2. Value at Risk (VaR) 

VaR quantifies the potential loss of a portfolio within a given period, calculated at a predetermined 

confidence level. It offers a clear measure of the maximum expected loss under normal market 

conditions. 
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 VaRα(T) = inf{x ∈ R: P(Loss > x)} ≤ 1 − α (3) 

This formula implies that VaR is the smallest value x such that the probability of experiencing a 

loss greater than x is no more than 1 − α. 

3.3. Historical Simulation Method 

The Historical simulation method estimates VaR by ordering historical returns and identifying losses 

at a given confidence level. Unlike parametric approaches, it derives estimates directly from historical 

data without assuming a specific return distribution. 

 VaRα,HS = −Q(Rt, 1 − α) (4) 

Where α  represents the confidence level, Rt  denotes the set of historical returns and 

Q(Rt, 1 − α) is the (1 − α)- quantile of the return.  

3.4. Monte Carlo Simulation Method 

The Monte Carlo simulation method uses a probabilistic model to simulate numerous possible future 

return scenarios for VaR estimation. This approach effectively captures extreme market movements 

and models complex nonlinear dependencies. The calculation is given by 

 VaRα,MC = −Q(Rsim(t),1 − α) (5) 

Where α  represents the confidence level, Rsim(t)  represents the simulated returns and 

Q(Rsim(t),1 − α) is the (1 − α)- quantile of the simulated return distribution. 

3.5. Variance-Covariance Method 

The Variance-Covariance method calculates VaR under the assumption that returns follow a normal 

distribution, using the mean and standard deviation. Its computational efficiency and simplicity make 

it widely applied in practice. 

 VaRα,VC = Zα ⋅ σ − μ (6) 

Where Zα is the critical value from the standard normal distribution with the confidence level α 

and portfolio's mean return is μ. 

4. Analysis and Discussion 

4.1. Descriptive Statistics 

This part provides an overview of the adjusted closing prices of the Nasdaq Index and its daily returns 

from 2015 to 2024. Daily returns are calculated as percentage changes from the adjusted closing 

prices of adjacent trading days. This analysis provides a data basis for different methods to calculate 

VaR. 
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Figure 1: NASDAQ Composite Index (2015-2025) 

 

Figure 2: NASDAQ Composite Index Daily Returns (2015-2025) 

These two figures reflect the overall growth trend of the NASDAQ Composite Index and the 

fluctuation of daily returns. The following descriptive statistical indicators, such as the mean and 

median of daily returns, help analyze the distribution characteristics of the data and reveal the key 

characteristics of market fluctuations. 

Table 1: Descriptive statistical indicators 

Descriptive Metrics Value 

Count 2515 

Mean Return 0.0006 

Standard Deviation 0.0134 

Skewness -0.4506 

Kurtosis 7.3133 

1st Percentile (VaR 99%) -0.038 

5th Percentile (VaR 95%) -0.0218 

4.2. Historical Simulation VaR 

 VaR0.95,HS = −Q(Rt, 0.05) (7) 

 VaR0.99,HS = −Q(Rt, 0.01) (8) 
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Figure 3: Historical Simulation of NASDAQ Returns with VaR Threshold (95% & 99%) 

As can be seen from Figure 3, when the historical simulation method is applied, the NASDQ 

Composite Index falls by more than 2.19% on 5% of trading days and by more than 3.80% on 1% of 

trading days. 

4.3. Monte Carlo Simulation VaR 

When performing a Monte Carlo simulation of the NASDAQ Composite Index, the model first 

assumes that returns follow a normal distribution and uses the historical mean and standard deviation 

as model parameters. Then, the 1-day VaR is estimated at 95% and 99% confidence levels by 

generating 10,000 simulated return paths. 

 VaR0.95,MC = −Q(Rsim(t), 0.05) (9) 

 VaR0.99,MC = −Q(Rsim(t), 0.01) (10) 

 

Figure 4: Monte Carlo Simulation of NASDAQ Returns with VaR Threshold (95% & 99%) 

Figure 4 shows that the simulated return distribution is centered around zero and exhibits a slight 

negative skewness, which indicates that negative returns occur slightly more frequently or more 

dramatically than positive returns. Based on the simulated data, the VaR threshold is -0.0216, which 

means that there is a 5% probability that the Nasdaq Composite Index will lose more than 2.16% on 

any given day. 

4.4. Variance-Covariance VaR 

 VaR0.95,VC = Z0.05 ⋅ σ − μ (11) 

 VaR0.99,VC = Z0.01 ⋅ σ − μ (12) 
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where μ is the mean return, σ is the standard deviation of returns, and Z0.05 and Z0.01  are the 

critical values from the standard normal distribution corresponding to the 95% & 99% confidence 

level.  

 

Figure 5: Variance-Covariance Simulation of NASDAQ Returns with VaR Threshold (95% & 99%) 

As shown in Figure 5, the histogram illustrates that the return distribution is roughly symmetric 

around the mean, consistent with the normal distribution assumption. The 5th percentile of the VaR 

threshold is marked by the red dashed line at -0.0215, indicating that there is a 5% probability that 

the Nasdaq Composite Index will lose more than 2.15% on any given day. Similarly, there is a 1% 

probability that the loss will exceed 3.07%. 

4.5. Comparison of Returns and VaR for Different Models 
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Figure 6: Comparison of Returns and VaR at 95% & 99% for Different Methods 

The close proximity of the VaR thresholds indicates consistent risk estimation across methods, but 

slight differences highlight their distinct approaches. 

Table 2: VaR (95% & 99%) for Different Mothods 

Method VaR (95%) VaR (99%) 

Historical Simulation -0.0219 -0.038 

Monte Carlo Simulation -0.0214 -0.0295 

Variance-Covariance -0.0215 -0.0307 

 

From Table 2, the VaR estimates of the three methods at 95% and 99% confidence levels are 

relatively close. However, at the 99% confidence level, the risk values given by the Monte Carlo 

simulation method and the variance-covariance method are slightly higher than those of the historical 

simulation method. 

Through the above calculations and comparative analysis, the advantages and disadvantages of 

different VaR methods can be seen. The historical simulation method does not need to make 

assumptions about the distribution of returns and estimates risks directly based on historical data. 

However, this method relies on the assumption that "past market behavior can reflect future risks", 

so it has poor adaptability when dealing with unknown extreme events in the future. The Monte Carlo 

simulation method provides a more flexible way to assess risk and can simulate a variety of possible 

market scenarios. However, the effectiveness of this method depends on model assumptions, such as 

the normal distribution of returns may deviate from the actual situation. If the actual return 

distribution deviates significantly, the VaR estimate may not accurately reflect the potential risk.  

Moreover, its high computational complexity makes large-scale simulations costly, potentially 

limiting its practicality. The Variance-Covariance method is widely used for its efficiency; however, 

its reliance on the normality assumption often leads to an underestimation of tail risk. In times of 

extreme market volatility, such as financial crises, it may fail to capture severe loss risks accurately, 

thus reducing the reliability of risk management decisions [11]. 

5. Conclusion 

This study compares three VaR calculation methods in the stock market. Results indicate that at a 95% 

confidence level, VaR estimates across methods are similar. However, at a 99% confidence level, the 

historical simulation method produces lower VaR estimates than the Monte Carlo simulation and 

variance-covariance methods. As it directly relies on historical data, the historical simulation method 
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is computationally simple and easy to implement, though it may underestimate risk during extreme 

market fluctuations. Monte Carlo simulation is more responsive to extreme events, offering a more 

comprehensive risk evaluation. The variance-covariance method is computationally efficient but 

depends on the normality assumption, which can lead to underestimating tail risk and extreme market 

volatility. 

Traditional VaR models are typically based on linear assumptions, potentially introducing 

estimation biases in nonlinear market settings. In contrast, machine learning methods can 

accommodate high-dimensional data and capture complex nonlinear relationships, improving risk 

prediction accuracy [12]. This study primarily examines investment risk in a single market, and 

traditional VaR models may not sufficiently capture risks in cross-asset and cross-market portfolios. 

Future research should further investigate market volatility and risk transmission mechanisms to 

enhance portfolio risk management strategies [13,14]. 
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