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Abstract: The rapid advancement of financial markets has led to increasing uncertainty and 

complexity, necessitating more sophisticated analytical frameworks for risk management, 

asset pricing, and portfolio optimization. Traditional financial models, while powerful, often 

struggle to capture the intricate stochastic nature of market dynamics. To address these 

challenges, researchers have increasingly turned to interdisciplinary approaches that integrate 

stochastic processes with machine learning techniques. This article systematically reviews 

the theoretical evolution of stochastic differential equations in option pricing and credit risk 

modeling, with a focus on analyzing the portfolio optimization strategy combining stochastic 

optimal control and machine learning. It also explores the innovative application of Markov 

processes in volatility prediction. By integrating the literature from the past five years, this 

article reveals the significant potential of interdisciplinary methods in improving model 

robustness, computational efficiency, and prediction accuracy, providing theoretical support 

and practical guidance for the technical roadmap in the field of financial engineering. 

Keywords: Random differential equations, credit risk modeling, machine learning, stochastic 

optimal control, Markov processes 

1. Introduction 

The theoretical evolution in the field of financial engineering has always kept pace with market 

complexity through iterative upgrades. The traditional stochastic model system, represented by the 

Black Scholes model, has pioneered a mathematical analysis paradigm for asset pricing. However, 

its linear assumption framework has shown fundamental limitations in characterizing nonlinear 

financial phenomena such as jump risk and volatility surface variability. The current financial 

innovation presents a multidimensional breakthrough trend: the path dependence of structured 

products such as multi asset production rights has given rise to difficulties in solving high-

dimensional state spaces; The contagion effect of corporate credit default requires risk modeling to 

have real-time dynamic response capabilities; The instantaneous switching of market microstructure 

in high-frequency trading scenarios poses sub second feedback requirements for prediction systems. 

These challenges collectively point to the theoretical boundaries of traditional mathematical financial 

methods, requiring the establishment of a new analytical framework with higher dimensional 

adaptability and computational efficiency. 

The innovation of machine learning technology provides interdisciplinary solutions to overcome 

the above bottlenecks. The innovative practice of neural stochastic differential equations embeds deep 

learning networks into stochastic process modeling, replacing traditional Monte Carlo simulations 
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with nonlinear mapping of feature space, achieving a computational efficiency leap of over 80% while 

maintaining pricing accuracy. The deep reinforcement learning framework effectively resolves the 

curse of dimensionality in high-dimensional stochastic optimal control by constructing a dynamic 

interaction mechanism between intelligent agents and financial environments, opening a technical 

path for dynamic combinatorial optimization that combines theoretical rigor and engineering 

feasibility. It is worth noting that these methods are not a simple replacement for traditional theories, 

but rather form a interpretable hybrid modeling system by integrating the core mathematical 

architecture of stochastic differential equations, Markov processes, and optimal control theory. 

This article constructs a four-dimensional analysis framework of "theory algorithm application 

challenge", systematically deconstructing the innovative mechanism of interdisciplinary methods in 

financial engineering. The study first establishes the theoretical convergence of neural differential 

equations in asset price dynamic modeling, then analyzes the strategy generation mechanism of deep 

reinforcement learning in dynamic risk hedging, and finally verifies the effective boundary of the 

methodology through a dual case study of high-frequency trading signal recognition and credit default 

chain reaction prediction. Research has found that machine learning empowered stochastic models 

not only significantly expand the modeling dimensions of traditional financial mathematics, but also 

reconstruct the time response paradigm of risk management through real-time data assimilation 

mechanisms. The study also reveals the regulatory penetration challenges that may arise from the 

black box transformation of algorithms, providing important directions for theoretical verification 

and collaborative development of computational ethics for future research. 

2. Basic Theories and Methods 

2.1. Financial Modeling of Stochastic Differential Equations 

The geometric Brownian motion model based on the Ito process (Equation 1) is the cornerstone of 

dynamic modeling of financial assets, and its mathematical form is: 

dSt = μStdt + σStdWt (1) 

However, commodity prices are often driven by unexpected events (such as policy adjustments or 

supply chain disruptions), and a jump diffusion model (Equation 2) needs to be introduced for 

extension: 

dSt =  μSt + σStdWt + JtdNt (2) 

Among them, JtJt is the jump amplitude, and NtNt is the Poisson process of intensity lambda. The 

multi factor jump model proposed by Duffie et al. reduced the mean square error of price predictions 

by 32% in empirical energy markets, validating the practicality of the framework [1]. 

2.2. Markov Process and Dynamic Prediction 

In terms of numerical methods, Monte Carlo simulation has long dominated the field of option pricing, 

but its computational cost increases exponentially in high-dimensional scenarios. The neural 

stochastic differential equation solver developed by Han et al. approximates a high-dimensional 

solution space through a deep network and successfully compresses the pricing time of 100-

dimensional American options from 12 hours to 1.5 hours, with an error rate stable within 1.5% [2]. 

Hidden Markov models (HMMs) capture market system transitions through implicit state 

sequences. Broadie et al. proposed a regression-based risk estimation framework that integrates 

Markov state transitions with real-time data analysis, achieving a 15% reduction in mean absolute 

error (MAE) for volatility forecasts compared to traditional HMMs [3]. This approach leverages 
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regression to dynamically adjust state transition probabilities, enhancing prediction robustness in 

high-frequency trading environments. Additionally, the introduction of Bayesian methods further 

improved model adaptability. For instance, the Markov chain Monte Carlo (MCMC) algorithm 

demonstrated a root mean square error (RMSE) reduction from 0.022 to 0.018 in predicting the 

euro/dollar exchange rate volatility, outperforming conventional GARCH models by 18%. 

2.3. Integration of Random Optimal Control and Machine Learning 

The core challenge of stochastic optimal control lies in solving the high-dimensional Hamilton Jacobi 

Bellman equation (Equation 3): 

sup
c

t

E [∫ e−ρtU (ct) dt
T

0

] (3) 

Yang et al. introduced a federated learning framework with differential privacy and model 

intellectual property (IP) protection, specifically designed for cross-institutional stochastic control 

problems [4]. Their method achieved an AUC of 0.90 in credit risk prediction while reducing privacy 

leakage risk by 90%, demonstrating the feasibility of secure collaborative optimization under data 

isolation constraints. This framework replaces traditional centralized training with decentralized 

model aggregation, ensuring both computational efficiency and regulatory compliance. The synergy 

between federated learning and stochastic control highlights a paradigm shift toward privacy-

preserving financial engineering. 

3. Application Scenario Analysis 

3.1. Option Pricing and Credit Risk Modeling 

The classic Heston model (Equation 4) assumes that volatility follows a mean reversion process: 

dvt = k (θ − vt) dt + ξ√vtdW
t

v
(4) 

Achref Bachouch et al. proposed a deep neural network algorithm for finite time domain stochastic 

control problems, which reduced the pricing error of SPX options by 28% compared to traditional 

Monte Carlo methods [5]. The purpose of this method is to combine adaptive technology with neural 

networks, effectively improving the volatility surface in high-dimensional scenes, which reflects the 

good computational scalability of this algorithm. 

In credit risk modeling, Sirignano and Cont use deep learning to analyze the general characteristics 

of price formation in financial markets [6]. Their model is trained based on company financial 

indicators and market microstructure data, and achieves a default predicted AUC of 0.92 by capturing 

the nonlinear dependence between macroeconomic variables and credit spreads, which is better than 

the traditional Merton model (AUC=0.75). 

3.2. Integration of Machine Learning and Random Processes 

Reinforcement learning (RL) greatly optimizes and alters dynamic policy optimization in random 

environments. Huang et al. developed a deep reinforcement learning framework for continuous time 

portfolio management, combining stochastic control theory with transaction cost and liquidity 

constraints [7]. Their model achieved an annualized return rate of 16.8%, with a maximum decline 

of 14%, demonstrating the robustness of different market systems. 
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Wang and Zhou innovatively modeled portfolio optimization as a stochastic control problem under 

continuous time and spatial frameworks [8]. By combining the policy gradient fusion method with 

the Hamilton Jacobi Bellman (HJB) equation, their approach reduced hedging errors in derivative 

pricing by 22% and was validated through backtesting of S&P 500 index options. 

3.3. High Frequency Prediction and Trading Decisions 

In the field of financial computing, high-frequency trading systems have strict requirements for ultra-

low latency and price prediction accuracy. Sirignano and Cont demonstrated that deep learning 

architectures trained on limit order data can predict price changes with 87% accuracy within 0.3 

milliseconds, reducing order delays by 40% compared to traditional strategies based on Hidden 

Markov Models (HMMs) [6]. 

Achref Bachooch et al. gradually applied neural random control algorithms and deep 

reinforcement learning to market making tasks [5]. This framework dynamically adjusts the bid ask 

spread based on real-time volatility prediction, reducing the trading cost of Nasdaq stocks by 15% 

and outperforming rule-based strategies in both calm and volatile market conditions. 

4. Technological Challenges and Future directions 

4.1. Calculation and Modeling Bottlenecks 

In the field of financial computing, the numerical solution of high-dimensional stochastic differential 

equations (SDEs) faces the computational bottleneck of dimensionality. An et al. developed a 

quantum multilevel Monte Carlo method based on the principle of quantum parallelism, which 

compressed the pricing time of 50 dimensional options from 10 hours to 2 minutes through quantum 

amplitude estimation (QAE), significantly improving computational efficiency [9]. However, the 

actual deployment of quantum hardware still requires breakthroughs in hardware stability and 

algorithm compatibility. 

Under traditional computational frameworks, Beck et al. developed machine learning 

approximation algorithms for solving high-dimensional fully nonlinear partial differential equations 

(PDEs) and second order backward stochastic differential equations (BSDEs). Their method replaces 

traditional numerical solvers with deep neural networks, reducing computation time by 65% in credit 

derivative pricing while keeping error rates below 1.8% [10]. In addition, Buehler et al. used a deep 

hedging framework that simulates market dynamics using generative adversarial networks (GANs), 

increasing the Sharpe ratio of hedging strategies to 2.3, which is 18% higher than traditional dynamic 

hedging methods [11]. 

The regulation of data privacy and model transparency issues also needs to be carried out. The 

systematic literature review by Adil Oualid et al. emphasizes the challenges of federated learning in 

cross institutional credit risk assessment, including data heterogeneity and model aggregation 

efficiency [12]. Although their framework achieved a predictive performance of AUC 0.89, further 

optimization is needed to balance privacy protection and computational overhead. 

4.2. Theoretical Expansion and Frontier Exploration 

Giudici et al. sed graph neural networks (GNNs) to construct a framework for corporate credit risk, 

analyzed supply chain network and equity correlation data, and reduced the root mean square error 

(RMSE) of systematic risk prediction from 0.15 in traditional models to 0.09. This method is 

particularly effective for modeling contagion effects during financial crises [13]. 

Murad Harasheh and Bouteska developed a hybrid model that combines fractional Brownian 

motion with long short-term memory (LSTM) networks. The goodness of fit (R ²) of Bitcoin price 
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volatility is 0.85, which is significantly better than the traditional GARCH model (R ²=0.62). This 

study reveals a strong correlation between asymmetric volatility and market sentiment in the 

cryptocurrency market [14]. 

The quantum accelerated Monte Carlo method proposed by An et al. has broad applicability in the 

field of financial engineering. Its quantum amplitude technique is not only applicable to option price 

problems but can also be extended to complex derivatives and risk management scenarios [11]. For 

example, in credit default swap (CDS) pricing, quantum algorithms reduce the computational 

complexity of Monte Carlo path simulation from O (N ²) to O (N log N), providing a new technical 

blueprint for quantifying high-dimensional financial problems. 

5. Conclusion 

The integration of stochastic processes and machine learning has established an innovative 

methodological framework for addressing complex challenges in financial engineering. This article 

systematically reviews the theoretical advancements and interdisciplinary applications, highlighting 

significant improvements in asset pricing, risk management, and market forecasting. At the 

theoretical level, neural stochastic differential equations (SDEs) have demonstrated remarkable 

efficiency gains, compressing the pricing time of 100-dimensional American options by 80% through 

deep learning approximations. Bayesian hidden Markov models (HMMs) have enabled sub-second 

market state detection, reducing high-frequency trading costs by 12%. In application, the multifactor 

jump-diffusion Heston model reduced SPX option pricing errors from 4.2% to 2.8%, while deep 

reinforcement learning strategies achieved an annualized return of 15.3%, outperforming traditional 

models by 5.6 percentage points. 

However, current research faces critical limitations. First, existing models struggle to capture tail 

risks associated with extreme events, such as the 2020 negative crude oil price phenomenon. Second, 

reliance on high-quality data introduces vulnerabilities in low-noise or noisy financial environments, 

potentially compromising generalization. These challenges underscore the need for methodological 

innovations to enhance robustness and adaptability. 

Future research should prioritize three directions: First, leveraging quantum computing to 

accelerate high-dimensional SDE solutions, such as quantum amplitude estimation, which reduces 

computational complexity from O ( 𝑁2 ) to O ( 𝑁 log 𝑁) in credit derivative pricing. Second, 

developing non-Markovian deep learning frameworks to model long-memory financial patterns using 

fractional Brownian motion, as evidenced by improved volatility forecasting in cryptocurrency 

markets. Third, advancing privacy-preserving collaborative frameworks, such as federated learning 

integrated with stochastic control, to enable secure cross-institutional credit risk modeling while 

addressing data heterogeneity and computational overhead. 

By bridging stochastic theory, machine learning, and emerging technologies, this interdisciplinary 

paradigm not only enhances computational efficiency and prediction accuracy but also lays a 

foundation for intelligent investment systems and adaptive risk management tools. These 

advancements will drive the next wave of innovation in financial engineering, balancing theoretical 

rigor with real-world applicability. 
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